Plants defend against multiple pathogens by activating different signaling pathways. However, the molecular mechanisms underlying the antagonistic responses, where enhanced resistance to one pathogen is often accompanied by increased susceptibility to another, remain poorly understood. This study explores the functional role of the NtabSPL6–4 gene in Arabidopsis thaliana, with a focus on its involvement in regulating plant growth, development, and immune responses. The results show that the NtabSPL6–4 protein is mainly localized in the nucleus. Compared with the wild-type plants, NtabSPL6–4-overexpressing Arabidopsis plants exhibited delayed flowering, increased leaf number, and larger leaf area. Transcriptome analysis under Botrytis cinerea infection showed that differentially expressed genes were mainly enriched in the jasmonic acid (JA) and salicylic acid (SA) signaling pathways. Functional experiments revealed that NtabSPL6–4 enhances plant sensitivity to Pseudomonas syringae by down-regulating the expression of PR1 and PR5, while activating JA pathway-related genes to increase resistance to fungal pathogens. Chromatin immunoprecipitation (ChIP) assays further demonstrated that NtabSPL6–4 binds to the promoter region of ACX1, regulating JA levels. This modulation reduces the accumulation of reactive oxygen species (ROS) and hydrogen peroxide, limits cell damage, and decreases the severity of leaf lesions, thereby contributing to enhanced resistance against fungal infection. These results suggest that NtabSPL6–4 has a dual regulatory role in plant immunity, enhancing resistance to fungal pathogens while increasing susceptibility to bacterial pathogens.
扫码关注我们
求助内容:
应助结果提醒方式:
