Pub Date : 2024-07-15DOI: 10.1016/j.plgene.2024.100465
Mariana Mancini Benez , Rone Charles Maranho , Hugo Zeni Neto , Claudete Aparecida Mangolin , Joseli Cristina Silva , Maria de Fátima Pires da Silva Machado
Energy cane has been identified as an ideal crop for the sustainable production of biofuels due to its large amounts of lignocellulosic biomass. However, biochemical and molecular characteristics of energy cane have not yet been reported. The current study investigates polymorphism of simple sequence repeats in expressed sequence tags (Est-SSR loci) of energy cane clones PRBIO 172 and PRBIO 130 and of sugarcane varieties CTC 9001, CTC 9003, and RB935744, which permits a direct association between genes for specific proteins and enzymes and traits of agronomic interest. Genetic identity was observed in SSRs associated with loci EstA-68 and EstB-130 of the three sugarcane varieties and two energy cane clones. The basic contribution of our study was the identification of the polymorphic Est-SRR loci as targets to assess molecular and biochemical divergences of enzymes between sugarcane and energy cane, as well as between the two energy cane clones.
{"title":"Molecular markers that make energy cane differ from sugarcane cultivars (Saccharum spp.)","authors":"Mariana Mancini Benez , Rone Charles Maranho , Hugo Zeni Neto , Claudete Aparecida Mangolin , Joseli Cristina Silva , Maria de Fátima Pires da Silva Machado","doi":"10.1016/j.plgene.2024.100465","DOIUrl":"10.1016/j.plgene.2024.100465","url":null,"abstract":"<div><p>Energy cane has been identified as an ideal crop for the sustainable production of biofuels due to its large amounts of lignocellulosic biomass. However, biochemical and molecular characteristics of energy cane have not yet been reported. The current study investigates polymorphism of simple sequence repeats in expressed sequence tags (<em>Est-SSR</em> loci) of energy cane clones PRBIO 172 and PRBIO 130 and of sugarcane varieties CTC 9001, CTC 9003, and RB935744, which permits a direct association between genes for specific proteins and enzymes and traits of agronomic interest. Genetic identity was observed in SSRs associated with loci <em>EstA-68</em> and <em>EstB-130</em> of the three sugarcane varieties and two energy cane clones. The basic contribution of our study was the identification of the polymorphic <em>Est-SRR</em> loci as targets to assess molecular and biochemical divergences of enzymes between sugarcane and energy cane, as well as between the two energy cane clones.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"39 ","pages":"Article 100465"},"PeriodicalIF":2.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141688691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moringa (Moringa oleifera Lam.) is one of the multipurpose trees with significant promise as a high-value crop of industrial importance, having nutritional, therapeutic, and prophylactic properties. Genetic diversity is a cornerstone of any crop improvement program and plays a key role in the selection of promising parental lines for hybrid breeding. Morphological and molecular markers have been proven to be potential tools for the evaluation of genetic diversity, crop genetic improvement, and conservation of plant genetic resources. In the current study, morphological descriptors, RAPD, and SCoT markers were used to determine genetic diversity among 28 M. oleifera accessions. Significant morphological variations were noted for several economic traits across the accessions studied. Four primary clusters were visible on the dendrogram based on phenotypic markers, indicating clustering of accession from a shared geographical habitat. No correlation was estimated between morphological traits, indicating an environmental influence. Three RAPD and seven SCoT primer sets produced 37 and 46 markers, with 53.2 and 71.3% polymorphisms, respectively. Based on genotypic data and the UPGMA approach, all 28 accessions were separated into two major clusters in the phylogenetic tree, irrespective of any geographical areas. The clustering pattern indicates widespread plant species and rapid gene flow through cross-pollination in Moringa populations. Three subpopulations of the involved accessions were identified by population structure analysis; however, there was only a weak link with the location of plant cultivation. The expected heterozygosity for the three subpopulations varied from 0.23 to 0.32, as per R-based structural analysis. AMOVA's attribution of 86% and 19% of all variations to within- and between-populations, respectively, indicates that there has been gene flow across geographic regions. The PCA showed a wide distribution of genotypes in the scatterplot, also suggesting huge genetic variation among the M. oleifera population. The study revealed a significant level of genetic diversity among M. oleifera accessions, which can be harnessed to conserve plant genetic resources and develop high-yielding, nutrient-dense Moringa cultivars.
{"title":"Assessment of the genetic diversity and population structure in Moringa oleifera accessions using DNA markers and phenotypic descriptors","authors":"Preeti Sharma , Sumita Kachhwaha , Mahesh Damodhar Mahendrakar , Shanker Lal Kothari , Ram Baran Singh","doi":"10.1016/j.plgene.2024.100462","DOIUrl":"https://doi.org/10.1016/j.plgene.2024.100462","url":null,"abstract":"<div><p>Moringa (<em>Moringa oleifera</em> Lam.) is one of the multipurpose trees with significant promise as a high-value crop of industrial importance, having nutritional, therapeutic, and prophylactic properties. Genetic diversity is a cornerstone of any crop improvement program and plays a key role in the selection of promising parental lines for hybrid breeding. Morphological and molecular markers have been proven to be potential tools for the evaluation of genetic diversity, crop genetic improvement, and conservation of plant genetic resources. In the current study, morphological descriptors, RAPD, and SCoT markers were used to determine genetic diversity among 28 <em>M. oleifera</em> accessions. Significant morphological variations were noted for several economic traits across the accessions studied. Four primary clusters were visible on the dendrogram based on phenotypic markers, indicating clustering of accession from a shared geographical habitat. No correlation was estimated between morphological traits, indicating an environmental influence. Three RAPD and seven SCoT primer sets produced 37 and 46 markers, with 53.2 and 71.3% polymorphisms, respectively. Based on genotypic data and the UPGMA approach, all 28 accessions were separated into two major clusters in the phylogenetic tree, irrespective of any geographical areas. The clustering pattern indicates widespread plant species and rapid gene flow through cross-pollination in <em>Moringa</em> populations. Three subpopulations of the involved accessions were identified by population structure analysis; however, there was only a weak link with the location of plant cultivation. The expected heterozygosity for the three subpopulations varied from 0.23 to 0.32, as per R-based structural analysis. AMOVA's attribution of 86% and 19% of all variations to within- and between-populations, respectively, indicates that there has been gene flow across geographic regions. The PCA showed a wide distribution of genotypes in the scatterplot, also suggesting huge genetic variation among the <em>M. oleifera</em> population. The study revealed a significant level of genetic diversity among <em>M. oleifera</em> accessions, which can be harnessed to conserve plant genetic resources and develop high-yielding, nutrient-dense <em>Moringa</em> cultivars.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"39 ","pages":"Article 100462"},"PeriodicalIF":2.2,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1016/j.plgene.2024.100463
Siti Zainab Jantan , Keong Bun Poh , Florence C. Ginibun
Durian (Durio zibethinus Murr.) is a famous tropical fruit in Malaysia and well-known for its sweet and creamy taste and unique strong aroma. Despite the differences, durian fruit undergo similar fruit developmental stages upon maturity. However, not much information related to metabolic changes at molecular level are available for fruit development in durian. Hence, the aim of this study was to identify and analyze fruit development transcriptomic changes on six commercial durian varieties (D24, D99, D160, D168, D197, and D200). The transcriptome analysis via RNA-seq assays generated 67 to 234 million raw reads, which are assembled into 49,601 genes with protein coding genes as the largest gene biotype, with a total of 35,832 genes (72.2%). All genes were annotated against Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). GO analysis revealed genes were highly linked to biological process, cellular components and molecular function, with the highest representation in cell wall, while the most common pathways identified by KEGG were carotenoid biosynthesis, fatty acid biosynthesis, starch and sucrose metabolism, phenylpropanoid biosynthesis and galactose metabolism. Important changes were found in abscisic acid and lignin accumulation, which associated with post-harvest response and concurrent colour change. Moreover, significant increase in butyric acid, palmitoyl-CoA and different forms of sugars were associated with buttery smell, creamy texture, and sweetness respectively. Thus, mass sequence data and expression profiling provide an insight into molecular mechanisms for durian fruit developmental process. This study aims to enhance comprehension of durian fruit development stages, including physiological, genetic, and molecular processes, to inform breeding, crop enhancement, and post-harvest strategies to meet consumer and agro-biotechnology demands.
{"title":"Comparative transcriptomic study of matured fruit and post-fruit developmental stages in Malaysian durian varieties","authors":"Siti Zainab Jantan , Keong Bun Poh , Florence C. Ginibun","doi":"10.1016/j.plgene.2024.100463","DOIUrl":"https://doi.org/10.1016/j.plgene.2024.100463","url":null,"abstract":"<div><p>Durian (<em>Durio zibethinus</em> Murr.) is a famous tropical fruit in Malaysia and well-known for its sweet and creamy taste and unique strong aroma. Despite the differences, durian fruit undergo similar fruit developmental stages upon maturity. However, not much information related to metabolic changes at molecular level are available for fruit development in durian. Hence, the aim of this study was to identify and analyze fruit development transcriptomic changes on six commercial durian varieties (D24, D99, D160, D168, D197, and D200). The transcriptome analysis via RNA-seq assays generated 67 to 234 million raw reads, which are assembled into 49,601 genes with protein coding genes as the largest gene biotype, with a total of 35,832 genes (72.2%). All genes were annotated against Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). GO analysis revealed genes were highly linked to biological process, cellular components and molecular function, with the highest representation in cell wall, while the most common pathways identified by KEGG were carotenoid biosynthesis, fatty acid biosynthesis, starch and sucrose metabolism, phenylpropanoid biosynthesis and galactose metabolism. Important changes were found in abscisic acid and lignin accumulation, which associated with post-harvest response and concurrent colour change. Moreover, significant increase in butyric acid, palmitoyl-CoA and different forms of sugars were associated with buttery smell, creamy texture, and sweetness respectively. Thus, mass sequence data and expression profiling provide an insight into molecular mechanisms for durian fruit developmental process. This study aims to enhance comprehension of durian fruit development stages, including physiological, genetic, and molecular processes, to inform breeding, crop enhancement, and post-harvest strategies to meet consumer and agro-biotechnology demands.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"39 ","pages":"Article 100463"},"PeriodicalIF":2.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141596342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abiotic stress, notably drought, impacts wheat production globally, but more so in central and South Asia, North Africa (CWANA), and sub-Saharan Africa (SSA). The current study attempts to identify significant markers linked to drought and heat tolerance and assess genomic prediction. A genome-wide association study was conducted using the 10 K wheat SNP markers for grain yield and related traits of 246 spring bread wheat genotypes from ICARDA. Traits including grain yield (GY), days to heading (DHE), days to maturity (DMA), plant height (PLH), and thousand kernel weight (TKW), were evaluated across six different locations, spanning two years 2015–2016 and 2016–2017, as per variance analysis. Grain yield and related-traits showed a considerable variation among genotypes. Moreover, GWAS using a mixed linear model (MLM), revealed 65 marker-trait associations (MTAs) across the six environments on 16 chromosomes. With an average r2 value of 0.26, Genome D has the highest linkage, followed by Genomes B and A with r2 values of 0.22 and 0.21, respectively. GY had the highest MTA rating (35), followed by TKW (9) and 3 for each of the other agronomic traits (DHE, DMA, PLH) at Merchouch station. The marker “CAP8_c1393_327” was the most significant associated marker correlated with grain yield located on chromosome 3 A across Sid El Aidi station. Additionally, the SNP markers “wsnp_Ra_c26091_35652620” displayed extremely significant and stable MTA for TKW on chromosome 5B at Merchouch station. The markers and candidate genes reported throughout this study have the potential to be used in marker-assisted selection to enhance wheat genotypes in terms of yield and resistance to drought limitations.
非生物胁迫(尤其是干旱)对全球小麦生产都有影响,但在中亚、南亚、北非(CWANA)和撒哈拉以南非洲(SSA)影响更大。目前的研究试图找出与耐旱和耐热性相关的重要标记,并评估基因组预测。利用 10 K 个小麦 SNP 标记对来自 ICARDA 的 246 个春季面包小麦基因型的谷物产量和相关性状进行了全基因组关联研究。根据方差分析,在 2015-2016 年和 2016-2017 年两个年度,对六个不同地点的谷物产量(GY)、打顶天数(DHE)、成熟天数(DMA)、株高(PLH)和千粒重(TKW)等性状进行了评估。谷物产量和相关性状在不同基因型之间表现出相当大的差异。此外,使用混合线性模型(MLM)进行的全球基因组分析显示,在 16 条染色体上的 6 种环境中存在 65 个标记-性状关联(MTAs)。基因组 D 的平均 r2 值为 0.26,关联度最高,其次是基因组 B 和 A,r2 值分别为 0.22 和 0.21。在 Merchouch 站,GY 的 MTA 值最高(35),其次是 TKW(9),其他农艺性状(DHE、DMA、PLH)均为 3。标记 "CAP8_c1393_327 "是 Sid El Aidi 站 3 A 号染色体上与谷物产量相关性最显著的标记。此外,位于 Merchouch 站 5B 染色体上的 SNP 标记 "wnsnp_Ra_c26091_35652620 "与 TKW 的 MTA 关系极为显著且稳定。本研究中报告的标记和候选基因有望用于标记辅助选择,以提高小麦基因型的产量和抗旱能力。
{"title":"Genome-wide association and genomic prediction study of elite spring bread wheat (Triticum aestivum L.) genotypes under drought conditions across different locations","authors":"Lamyae Ed-Daoudy , Zakaria El Gataa , Laila Sbabou , Wuletaw Tadesse","doi":"10.1016/j.plgene.2024.100461","DOIUrl":"https://doi.org/10.1016/j.plgene.2024.100461","url":null,"abstract":"<div><p>Abiotic stress, notably drought, impacts wheat production globally, but more so in central and South Asia, North Africa (CWANA), and sub-Saharan Africa (SSA). The current study attempts to identify significant markers linked to drought and heat tolerance and assess genomic prediction. A genome-wide association study was conducted using the 10 K wheat SNP markers for grain yield and related traits of 246 spring bread wheat genotypes from ICARDA. Traits including grain yield (GY), days to heading (DHE), days to maturity (DMA), plant height (PLH), and thousand kernel weight (TKW), were evaluated across six different locations, spanning two years 2015–2016 and 2016–2017, as per variance analysis. Grain yield and related-traits showed a considerable variation among genotypes. Moreover, GWAS using a mixed linear model (MLM), revealed 65 marker-trait associations (MTAs) across the six environments on 16 chromosomes. With an average r<sup>2</sup> value of 0.26, Genome D has the highest linkage, followed by Genomes B and A with r<sup>2</sup> values of 0.22 and 0.21, respectively. GY had the highest MTA rating (35), followed by TKW (9) and 3 for each of the other agronomic traits (DHE, DMA, PLH) at Merchouch station. The marker “<em>CAP8_c1393_327</em>” was the most significant associated marker correlated with grain yield located on chromosome 3 A across Sid El Aidi station. Additionally, the SNP markers “<em>wsnp_Ra_c26091_35652620</em>” displayed extremely significant and stable MTA for TKW on chromosome 5B at Merchouch station. The markers and candidate genes reported throughout this study have the potential to be used in marker-assisted selection to enhance wheat genotypes in terms of yield and resistance to drought limitations.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"39 ","pages":"Article 100461"},"PeriodicalIF":2.2,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1016/j.plgene.2024.100460
Vy Le Uyen Khuat , Tien Minh Le , Trung Thach , Thuong Thi Hong Nguyen
Methylketone synthase 2 (MKS2) has been widely found in the plant kingdom and identified as a single-hotdog-fold acyl-lipid thioesterase (ALT) which mainly hydrolyzes the thioester bond in 3-ketoacyl-acyl carrier protein (3-ketoacyl-ACP) intermediates of the fatty acid biosynthetic pathway into free 3-keto fatty acids. Our previous study identified SmMKS2–2 as one of two functional ALTs in eggplant Solanum melongena. To gain mechanistic insights into catalysis by this enzyme, we herein combined biochemical and in silico structural analyses on SmMKS2–2. While SmMKS2–2 is capable of producing a wide range of 3-ketoacids from corresponding 3-ketoacyl-ACP substrates, SmMKS2–2-D77E mutant variant drops its thioesterase activity to the undetectable level. Consistently, the structural modelling of the D77E mutant displays that the orientation of the side chain carboxylate group of the replacing amino acid has been shifted compared to that of the native residue, resulting in smaller surface area of binding pocket that would dismiss nucleophilic catalysis of the mutant protein. Together, these data suggested that D77 is critical and specific for SmMKS2–2 to hydrolyze the thioester bond of acyl-ACP.
{"title":"Alterations to the catalytic properties of methylketone synthase 2 from eggplant (Solanum melongena) by mutating the conserved aspartate into glutamate","authors":"Vy Le Uyen Khuat , Tien Minh Le , Trung Thach , Thuong Thi Hong Nguyen","doi":"10.1016/j.plgene.2024.100460","DOIUrl":"https://doi.org/10.1016/j.plgene.2024.100460","url":null,"abstract":"<div><p>Methylketone synthase 2 (MKS2) has been widely found in the plant kingdom and identified as a single-hotdog-fold acyl-lipid thioesterase (ALT) which mainly hydrolyzes the thioester bond in 3-ketoacyl-acyl carrier protein (3-ketoacyl-ACP) intermediates of the fatty acid biosynthetic pathway into free 3-keto fatty acids. Our previous study identified SmMKS2–2 as one of two functional ALTs in eggplant <em>Solanum melongena</em>. To gain mechanistic insights into catalysis by this enzyme, we herein combined biochemical and <em>in silico</em> structural analyses on SmMKS2–2. While SmMKS2–2 is capable of producing a wide range of 3-ketoacids from corresponding 3-ketoacyl-ACP substrates, SmMKS2–2-D77E mutant variant drops its thioesterase activity to the undetectable level. Consistently, the structural modelling of the D77E mutant displays that the orientation of the side chain carboxylate group of the replacing amino acid has been shifted compared to that of the native residue, resulting in smaller surface area of binding pocket that would dismiss nucleophilic catalysis of the mutant protein. Together, these data suggested that D77 is critical and specific for SmMKS2–2 to hydrolyze the thioester bond of acyl-ACP.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"39 ","pages":"Article 100460"},"PeriodicalIF":2.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1016/j.plgene.2024.100459
Felipe Castro Teixeira , Erica Monik Silva Roque , Alex Martins Aguiar , Sâmia Alves Silva , Victor Breno Faustino Bezerra , Otávio Hugo Aguiar Gomes , Luciano Gomes Fietto , Murilo Siqueira Alves
Apoptotic Chromatin Condensation Inducer in the Nucleus (ACIN1) is a scaffold protein that was first described as a complex component responsible for triggering apoptosis in human cells. In plants, ACIN1 participates in silencing of Flowering Locus C (FLC), involved in vernalization in Arabidopsis thaliana. Contrary to what has been observed for humans, there are no reports on ACIN1 linked to programmed cell death (PCD) in plants. Actually, the function of ACIN1 in plants is still poorly understood. In the present study, a genome-wide analysis of the ACIN1 gene family in plants identified 27 ACIN1 orthologs from 19 species belonging to 12 plant families. The phylogenetic relationships, physicochemical properties, gene structure, conserved motifs, promoter cis-elements, chromosomal localization, syntenic regions, and protein network were investigated. Altogether, these analyzes revealed highly conserved domains in the structure of the ACIN1 proteins, as well as putative metacaspase cleavage sites, which suggest that they play a conserved function probably associated with the programmed cell death in plants. For instance, differential expression pattern and modulation of ACIN1 were noticed after inoculation of cowpea with Cowpea severe mosaic virus (CPSMV). Therefore, this study was conducted to provide, for the first time, information on the evolutionary, structural, and functional characteristics of the ACIN1 gene family as an initial effort towards understanding the role of these proteins in studied plant development and stress responses.
{"title":"Apoptotic chromatin condensation inducer in the nucleus: Genome-wide analysis in plants and expression profile during Cowpea Severe Mosaic Virus infection in Vigna unguiculata [L.] Walp","authors":"Felipe Castro Teixeira , Erica Monik Silva Roque , Alex Martins Aguiar , Sâmia Alves Silva , Victor Breno Faustino Bezerra , Otávio Hugo Aguiar Gomes , Luciano Gomes Fietto , Murilo Siqueira Alves","doi":"10.1016/j.plgene.2024.100459","DOIUrl":"10.1016/j.plgene.2024.100459","url":null,"abstract":"<div><p>Apoptotic Chromatin Condensation Inducer in the Nucleus (ACIN1) is a scaffold protein that was first described as a complex component responsible for triggering apoptosis in human cells. In plants, ACIN1 participates in silencing of <em>Flowering Locus C</em> (<em>FLC</em>), involved in vernalization in <em>Arabidopsis thaliana</em>. Contrary to what has been observed for humans, there are no reports on ACIN1 linked to programmed cell death (PCD) in plants. Actually, the function of ACIN1 in plants is still poorly understood. In the present study, a genome-wide analysis of the <em>ACIN1</em> gene family in plants identified 27 <em>ACIN1</em> orthologs from 19 species belonging to 12 plant families. The phylogenetic relationships, physicochemical properties, gene structure, conserved motifs, promoter <em>cis-</em>elements, chromosomal localization, syntenic regions, and protein network were investigated. Altogether, these analyzes revealed highly conserved domains in the structure of the ACIN1 proteins, as well as putative metacaspase cleavage sites, which suggest that they play a conserved function probably associated with the programmed cell death in plants. For instance, differential expression pattern and modulation of <em>ACIN1</em> were noticed after inoculation of cowpea with Cowpea severe mosaic virus (CPSMV). Therefore, this study was conducted to provide, for the first time, information on the evolutionary, structural, and functional characteristics of the <em>ACIN1</em> gene family as an initial effort towards understanding the role of these proteins in studied plant development and stress responses.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"39 ","pages":"Article 100459"},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141408384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1016/j.plgene.2024.100458
Donis Gurmessa , Kassahun Bantte , Kefyalew Negisho
This study was conducted to assess the genetic diversity in Pima (Gossypium barbadense L.) and advanced interspecific hybrids (G. hirsutum L. x G. barbadense L.) of cotton germplasm in Ethiopia. A total of 26 germplasm were genotyped using 26 polymorphic simple sequence repeat (SSR) markers. A total of 165 polymorphic loci, with a range of 3 to 13 alleles and a mean of 6.35 per marker were detected. About 11% of total alleles were unique alleles in 11 germplasm. The gene diversity varied from 0.39 to 0. 89, while the heterozygosity was in the range of 0 to 1.00. Furthermore, the polymorphic information content of the markers varied from 0.37 (BNL1417) to 0.88 (BNL1672) with an average of 0.68. Among the complete panel of cotton germplasm used in this study, the pairwise genetic distance ranged from 0.08 to 0.94, with an overall mean of 0.61. The UPGMA cluster analysis grouped the Pima cotton germplasm into two cluster groups and the advanced interspecific hybrid cotton germplasm makes one cluster. Principal coordinate analysis indicates that the first three most informative principal coordinates explained 68.4% of the genetic variation. The result evidenced very low to high genetic dissimilarity and overall, a considerable genetic diversity among and within germplasm which could be used to further broaden the genetic base and to enlarge the number of available cotton germplasm.
{"title":"Genetic diversity in Pima (Gossypium barbadense L.) and advanced interspecific hybrids (Gossypium hirsutum x Gossypium barbadense) of cotton germplasm in Ethiopia","authors":"Donis Gurmessa , Kassahun Bantte , Kefyalew Negisho","doi":"10.1016/j.plgene.2024.100458","DOIUrl":"https://doi.org/10.1016/j.plgene.2024.100458","url":null,"abstract":"<div><p>This study was conducted to assess the genetic diversity in Pima (<em>Gossypium barbadense</em> L.) and advanced interspecific hybrids (<em>G. hirsutum</em> L. x <em>G. barbadense</em> L.) of cotton germplasm in Ethiopia. A total of 26 germplasm were genotyped using 26 polymorphic simple sequence repeat (SSR) markers. A total of 165 polymorphic loci, with a range of 3 to 13 alleles and a mean of 6.35 per marker were detected. About 11% of total alleles were unique alleles in 11 germplasm. The gene diversity varied from 0.39 to 0. 89, while the heterozygosity was in the range of 0 to 1.00. Furthermore, the polymorphic information content of the markers varied from 0.37 (BNL1417) to 0.88 (BNL1672) with an average of 0.68. Among the complete panel of cotton germplasm used in this study, the pairwise genetic distance ranged from 0.08 to 0.94, with an overall mean of 0.61. The UPGMA cluster analysis grouped the Pima cotton germplasm into two cluster groups and the advanced interspecific hybrid cotton germplasm makes one cluster. Principal coordinate analysis indicates that the first three most informative principal coordinates explained 68.4% of the genetic variation. The result evidenced very low to high genetic dissimilarity and overall, a considerable genetic diversity among and within germplasm which could be used to further broaden the genetic base and to enlarge the number of available cotton germplasm.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"39 ","pages":"Article 100458"},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.plgene.2024.100456
Bilal Ahmad Mir , Arjumand John , Farida Rahayu , Chaireni Martasari , Ali Husni , Deden Sukmadjaja , Paulina Evy Retnaning Prahardini , Mia Kosmiatin , Khojin Supriadi , Rully Dyah Purwati , Atif Khurshid Wani
Potato (Solanum tuberosum) stands as the largest non-cereal food crop globally, securing its position as the fourth most vital food crop worldwide, following rice, wheat, and maize. It is a crucial staple food crop globally, contributing significantly to food security. However, its productivity is severely affected by various abiotic stresses, including drought, heavy metals, salinity, heat, and cold. This review concentrates on delineating the influence of different abiotic stresses on potato plants and elucidating the responses employed by potatoes to alleviate the detrimental effects of these stressors. Additionally, this review focuses on regulating abiotic stress in potatoes through signalling molecules and their intricate interplay with phytohormones. Phytohormones such as salicylic acid (SA), abscisic acid (ABA), ethylene and jasmonic acid (JA) interact with signalling molecules, forming a complex regulatory network. This network adjusts stomatal closure, osmotic management, antioxidant defenses, and growth regulation, allowing precise abiotic stress responses. Furthermore, the review describes the role of other signalling molecules such as reactive oxygen species (ROS), calcium ions (Ca2+), nitric oxide (NO), as key mediators in the plant's stress response. Understanding the molecular mechanisms underlying abiotic stress tolerance in potato is essential for developing resilient cultivars and sustainable agricultural practices. Hence, this review also comprehensively summarizes recent research findings on the molecular mechanism involved in abiotic stress tolerance in potato plants. The information provided in this review article can be useful in developing sustainable strategies to improve abiotic stress resilience in potato cultivation.
{"title":"Potato stress resilience: Unraveling the role of signalling molecules and phytohormones","authors":"Bilal Ahmad Mir , Arjumand John , Farida Rahayu , Chaireni Martasari , Ali Husni , Deden Sukmadjaja , Paulina Evy Retnaning Prahardini , Mia Kosmiatin , Khojin Supriadi , Rully Dyah Purwati , Atif Khurshid Wani","doi":"10.1016/j.plgene.2024.100456","DOIUrl":"https://doi.org/10.1016/j.plgene.2024.100456","url":null,"abstract":"<div><p>Potato (<em>Solanum tuberosum</em>) stands as the largest non-cereal food crop globally, securing its position as the fourth most vital food crop worldwide, following rice, wheat, and maize. It is a crucial staple food crop globally, contributing significantly to food security. However, its productivity is severely affected by various abiotic stresses, including drought, heavy metals, salinity, heat, and cold. This review concentrates on delineating the influence of different abiotic stresses on potato plants and elucidating the responses employed by potatoes to alleviate the detrimental effects of these stressors. Additionally, this review focuses on regulating abiotic stress in potatoes through signalling molecules and their intricate interplay with phytohormones. Phytohormones such as salicylic acid (SA), abscisic acid (ABA), ethylene and jasmonic acid (JA) interact with signalling molecules, forming a complex regulatory network. This network adjusts stomatal closure, osmotic management, antioxidant defenses, and growth regulation, allowing precise abiotic stress responses. Furthermore, the review describes the role of other signalling molecules such as reactive oxygen species (ROS), calcium ions (Ca<sup>2+</sup>), nitric oxide (NO), as key mediators in the plant's stress response. Understanding the molecular mechanisms underlying abiotic stress tolerance in potato is essential for developing resilient cultivars and sustainable agricultural practices. Hence, this review also comprehensively summarizes recent research findings on the molecular mechanism involved in abiotic stress tolerance in potato plants. The information provided in this review article can be useful in developing sustainable strategies to improve abiotic stress resilience in potato cultivation.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"38 ","pages":"Article 100456"},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140878448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-10DOI: 10.1016/j.plgene.2024.100455
Li Ying Chang, Hui Wen Lee, Gincy P. Thottathil, Kumar Sudesh
Hevea brasiliensis is the primary source of natural rubber, which is obtained from its latex and used in the manufacturing of various products. Hevein is a small protein found in the latex, produced by post-translational cleavage of prohevin, which is encoded by the hevein precursor gene. It exhibits antimicrobial and agglutination properties. Several nucleotide sequences that encode the hevein precursor genes were reported, however, the sequences are not characterised well. In the present study, four full-length hevein precursor sequences (Hevein 1–4) were obtained by manually curating the sequences from different databases. All sequences show high homology with the highest identity between Hevein 1 and Hevein 3. In a phylogenetic analysis along with sequences from related plants, all sequences from H. brasiliensis were clustered into a specific clade. All hevein precursor genes were expressed in the latex samples obtained from three clones; RRIM 600, RRIM 3001 and PB 350 of less than one year old and five-year-old RRIM 3001 plants, grown in plant house, as well as field-grown trees of clone PB 350 belonging to three different ages; two years, six years and fifteen years. All hevein precursor genes in the five-year-old RRIM 3001 plants with stunted growth, maintained in the plant house showed alternative splicing. Hevein 3 was expressed with two splice variants, one with intron retention and the other without intron whereas the other genes were expressed with only intron retained variant. Differential expression analysis using nanoplate digital PCR showed that Hevein 2 and Hevein 3 were expressed with no significant difference among the three young H. brasiliensis clones. The expression of Hevein 2 and Hevein 3 among the H. brasiliensis clone PB 350 of different ages grown in field conditions showed significant difference. The present study provides a better understanding on the importance of hevein precursor genes in different physiological responses which will be useful for further research leading to the genetic improvement of H. brasiliensis.
{"title":"Genome-wide identification and characterisation of hevein precursor genes in Hevea brasiliensis","authors":"Li Ying Chang, Hui Wen Lee, Gincy P. Thottathil, Kumar Sudesh","doi":"10.1016/j.plgene.2024.100455","DOIUrl":"https://doi.org/10.1016/j.plgene.2024.100455","url":null,"abstract":"<div><p><em>Hevea brasiliensis</em> is the primary source of natural rubber, which is obtained from its latex and used in the manufacturing of various products. Hevein is a small protein found in the latex, produced by post-translational cleavage of prohevin, which is encoded by the hevein precursor gene. It exhibits antimicrobial and agglutination properties. Several nucleotide sequences that encode the hevein precursor genes were reported, however, the sequences are not characterised well. In the present study, four full-length hevein precursor sequences (<em>Hevein 1</em>–<em>4</em>) were obtained by manually curating the sequences from different databases. All sequences show high homology with the highest identity between <em>Hevein 1</em> and <em>Hevein 3</em>. In a phylogenetic analysis along with sequences from related plants, all sequences from <em>H. brasiliensis</em> were clustered into a specific clade. All hevein precursor genes were expressed in the latex samples obtained from three clones; RRIM 600, RRIM 3001 and PB 350 of less than one year old and five-year-old RRIM 3001 plants, grown in plant house, as well as field-grown trees of clone PB 350 belonging to three different ages; two years, six years and fifteen years. All hevein precursor genes in the five-year-old RRIM 3001 plants with stunted growth, maintained in the plant house showed alternative splicing. <em>Hevein 3</em> was expressed with two splice variants, one with intron retention and the other without intron whereas the other genes were expressed with only intron retained variant. Differential expression analysis using nanoplate digital PCR showed that <em>Hevein 2</em> and <em>Hevein 3</em> were expressed with no significant difference among the three young <em>H. brasiliensis</em> clones. The expression of <em>Hevein 2</em> and <em>Hevein 3</em> among the <em>H. brasiliensis</em> clone PB 350 of different ages grown in field conditions showed significant difference. The present study provides a better understanding on the importance of hevein precursor genes in different physiological responses which will be useful for further research leading to the genetic improvement of <em>H. brasiliensis</em>.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"38 ","pages":"Article 100455"},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140550788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Male sterile plants play a significant role in developing hybrid varieties to exploit the benefits of hybrid vigour in crops. Cysteine proteases play critical functions, including proteolysis and programmed cell death in plants. In this study, we have generated male-sterile transgenic tomato plants using AdCP (Arachis diogoi cysteine protease) gene under the control of a tapetum-specific promoter (TA-29). The transgenic tomato plants produced non-functional pollen grains. The aborted pollen grains of the male sterile plant did not germinate even after 24 h of incubation compared to normal pollen grains. PCR analysis confirmed the stable integration of transgenes in transgenic plants. Semi-quantitave RT-PCR analysis showed the tissue-specific AdCP gene expression in the anthers of transgenic tomato plants. A back-cross was conducted between the transgenic male-sterile plants (female parent) and control (untransformed) plants (male parent). The T1 progeny indicated the segregation into female fertile and male-sterile plants, showing normal fruit development and seed set. High levels of AdCP transcripts were detected in anther tissues, confirming tapetum-specific expression of the TA29 promoter. The male-sterile tomato plants with targeted expression of the AdCP gene in tapetum could potentially be used to develop novel varieties through hybrid seed production.
{"title":"Tapetum-specific expression of cysteine protease induces male sterility in tomato","authors":"Phanikanth Jogam , Pandarinath Savitikadi , Dulam Sandhya , Raghu Ellendula , Venkataiah Peddaboina , Venkateswar Rao Allini , Sadanandam Abbagani","doi":"10.1016/j.plgene.2024.100454","DOIUrl":"https://doi.org/10.1016/j.plgene.2024.100454","url":null,"abstract":"<div><p>Male sterile plants play a significant role in developing hybrid varieties to exploit the benefits of hybrid vigour in crops. Cysteine proteases play critical functions, including proteolysis and programmed cell death in plants. In this study, we have generated male-sterile transgenic tomato plants using <em>AdCP</em> (<em>Arachis diogoi cysteine protease</em>) gene under the control of a tapetum-specific promoter (TA-29). The transgenic tomato plants produced non-functional pollen grains. The aborted pollen grains of the male sterile plant did not germinate even after 24 h of incubation compared to normal pollen grains. PCR analysis confirmed the stable integration of transgenes in transgenic plants. Semi-quantitave RT-PCR analysis showed the tissue-specific <em>AdCP</em> gene expression in the anthers of transgenic tomato plants. A back-cross was conducted between the transgenic male-sterile plants (female parent) and control (untransformed) plants (male parent). The T1 progeny indicated the segregation into female fertile and male-sterile plants, showing normal fruit development and seed set. High levels of <em>AdCP</em> transcripts were detected in anther tissues, confirming tapetum-specific expression of the TA29 promoter. The male-sterile tomato plants with targeted expression of the AdCP gene in tapetum could potentially be used to develop novel varieties through hybrid seed production.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"38 ","pages":"Article 100454"},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}