Solar energy is naturally available from sun, and it can be extracted by using a photovoltaic (PV) cell. However, solar energy extraction entirely depends on the climatic conditions and angle of rays falling on PV cells. Hence, maximum powerpoint tracking (MPPT) is considered in most areas under variable climatic conditions, which acts as a controller unit for PV cells. MPPT can enhance the efficiency of PV cells. However, designing an MPPT model is challenging as different uncertainties in the climatic condition may lead to more fluctuations in voltage and current in PV cells. Under the shaded condition, the PV cell may have other MPPT points that lead to the PV cell’s low efficiency in analyzing maximum power. Hence, this paper introduces a cost-effective and optimized system for the PV model that can find optimal power and improve PV cells’ efficiency. The proposed system achieves better computational performance with ~35% and ~42% than existing MPPT techniques. The improved particle swarm optimization (PSO) is smoother due to the enhanced form of MPP tracking. Hence, improved PSO takes 0.038 sec while the existing PSO technique takes 0.045 sec to obtain the MPP tracking.
{"title":"A cost-effective and optimized maximum powerpoint tracking system for the photovoltaic model","authors":"Yoganandini Arehalli Puttalingaiah, Anitha Gowda Shesadri","doi":"10.11591/ijece.v13i5.pp4942-4949","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp4942-4949","url":null,"abstract":"Solar energy is naturally available from sun, and it can be extracted by using a photovoltaic (PV) cell. However, solar energy extraction entirely depends on the climatic conditions and angle of rays falling on PV cells. Hence, maximum powerpoint tracking (MPPT) is considered in most areas under variable climatic conditions, which acts as a controller unit for PV cells. MPPT can enhance the efficiency of PV cells. However, designing an MPPT model is challenging as different uncertainties in the climatic condition may lead to more fluctuations in voltage and current in PV cells. Under the shaded condition, the PV cell may have other MPPT points that lead to the PV cell’s low efficiency in analyzing maximum power. Hence, this paper introduces a cost-effective and optimized system for the PV model that can find optimal power and improve PV cells’ efficiency. The proposed system achieves better computational performance with ~35% and ~42% than existing MPPT techniques. The improved particle swarm optimization (PSO) is smoother due to the enhanced form of MPP tracking. Hence, improved PSO takes 0.038 sec while the existing PSO technique takes 0.045 sec to obtain the MPP tracking.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47285009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5885-5897
Jia Rong Leow, W. Khoh, Ying-Han Pang, Hui-Yen Yap
Breast cancer represents one of the most common reasons for death in the worldwide. It has a substantially higher death rate than other types of cancer. Early detection can enhance the chances of receiving proper treatment and survival. In order to address this problem, this work has provided a convolutional neural network (CNN) deep learning (DL) based model on the classification that may be used to differentiate breast cancer histopathology images as benign or malignant. Besides that, five different types of pre-trained CNN architectures have been used to investigate the performance of the model to solve this problem which are the residual neural network-50 (ResNet-50), visual geometry group-19 (VGG-19), Inception-V3, and AlexNet while the ResNet-50 is also functions as a feature extractor to retrieve information from images and passed them to machine learning algorithms, in this case, a random forest (RF) and k-nearest neighbors (KNN) are employed for classification. In this paper, experiments are done using the BreakHis public dataset. As a result, the ResNet-50 network has the highest test accuracy of 97% to classify breast cancer images.
{"title":"Breast cancer classification with histopathological image based on machine learning","authors":"Jia Rong Leow, W. Khoh, Ying-Han Pang, Hui-Yen Yap","doi":"10.11591/ijece.v13i5.pp5885-5897","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5885-5897","url":null,"abstract":"Breast cancer represents one of the most common reasons for death in the worldwide. It has a substantially higher death rate than other types of cancer. Early detection can enhance the chances of receiving proper treatment and survival. In order to address this problem, this work has provided a convolutional neural network (CNN) deep learning (DL) based model on the classification that may be used to differentiate breast cancer histopathology images as benign or malignant. Besides that, five different types of pre-trained CNN architectures have been used to investigate the performance of the model to solve this problem which are the residual neural network-50 (ResNet-50), visual geometry group-19 (VGG-19), Inception-V3, and AlexNet while the ResNet-50 is also functions as a feature extractor to retrieve information from images and passed them to machine learning algorithms, in this case, a random forest (RF) and k-nearest neighbors (KNN) are employed for classification. In this paper, experiments are done using the BreakHis public dataset. As a result, the ResNet-50 network has the highest test accuracy of 97% to classify breast cancer images.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42549146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5282-5295
Z. Ragala, A. Retbi, S. Bennani
Maintenance methods have become automated and innovative, especially with the transition to maintenance 4.0. However, social issues such as coronavirus disease of 2019 (COVID-19) and the war in Ukraine have caused significant departures of maintenance experts, resulting in the loss of enormous know-how. As part of this work, we will propose a solution by exploring the knowledge and expertise of these experts for the purpose of sharing and conservation. In this perspective, we have built a knowledge base based on experience and feedback. The proposed method illustrates a case study based on the single excitation configuration interaction (SECI) method to optimally capture the explicit and tacit knowledge of each technician, as well as the theoretical basis, the model of Nonaka and Takeuchi.
{"title":"An approach of ontology and knowledge base for railway maintenance","authors":"Z. Ragala, A. Retbi, S. Bennani","doi":"10.11591/ijece.v13i5.pp5282-5295","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5282-5295","url":null,"abstract":"Maintenance methods have become automated and innovative, especially with the transition to maintenance 4.0. However, social issues such as coronavirus disease of 2019 (COVID-19) and the war in Ukraine have caused significant departures of maintenance experts, resulting in the loss of enormous know-how. As part of this work, we will propose a solution by exploring the knowledge and expertise of these experts for the purpose of sharing and conservation. In this perspective, we have built a knowledge base based on experience and feedback. The proposed method illustrates a case study based on the single excitation configuration interaction (SECI) method to optimally capture the explicit and tacit knowledge of each technician, as well as the theoretical basis, the model of Nonaka and Takeuchi.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42623403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5209-5221
Wael Toghuj, Nidal M. Turab
Vehicle infrastructure must address the challenges posed by today's advances toward connected and autonomous vehicles. To allow for more flexible architectures, high-bandwidth connections and scalability are needed to connect many sensors and electronic control units (ECUs). At the same time, deterministic and low latency is a critical and significant design requirement to support urgent real-time applications in autonomous vehicles. As a recent solution, the time-sensitive network (TSN) was introduced as Ethernet-based amendments in IEEE 802.1 TSN standards to meet those needs. However, it had hurdle to be overcome before it can be used effectively. This paper discusses the latest studies concerning the automotive Ethernet requirements, including transmission delay studies to improve worst-case end-to-end delay and end-to-end jitter. Also, the paper focuses on the securing Ethernet-based in-vehicle networks (IVNs) by reviewing new encryption and authentication methods and approaches.
{"title":"Automotive Ethernet architecture and security: challenges and technologies","authors":"Wael Toghuj, Nidal M. Turab","doi":"10.11591/ijece.v13i5.pp5209-5221","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5209-5221","url":null,"abstract":"Vehicle infrastructure must address the challenges posed by today's advances toward connected and autonomous vehicles. To allow for more flexible architectures, high-bandwidth connections and scalability are needed to connect many sensors and electronic control units (ECUs). At the same time, deterministic and low latency is a critical and significant design requirement to support urgent real-time applications in autonomous vehicles. As a recent solution, the time-sensitive network (TSN) was introduced as Ethernet-based amendments in IEEE 802.1 TSN standards to meet those needs. However, it had hurdle to be overcome before it can be used effectively. This paper discusses the latest studies concerning the automotive Ethernet requirements, including transmission delay studies to improve worst-case end-to-end delay and end-to-end jitter. Also, the paper focuses on the securing Ethernet-based in-vehicle networks (IVNs) by reviewing new encryption and authentication methods and approaches.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42850508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5333-5341
Ghizlane Moukhliss, Reda Filali Hilali, H. Belhadaoui
E-learning has shown significant growth in recent years due to its unavoidable benefits in unexpected situations such as the coronavirus disease 2019 (COVID-19) pandemic. Indeed, online exam is a very important component of an online learning program. It allows higher education institutions to assess student learning outcomes. However, cheating in exams is a widespread phenomenon worldwide, which creates several challenges in terms of integrity, reliability and security of online examinations. In this study, we propose a continuous authentication system for online exam. Our intelligent inference system based on machine learning algorithms and rules, detects continuously any inappropriate behavior in order to limit and prevent fraud. The proposed model includes several modules to enhance security, namely the registration module, the continuous students’ identity verification and control module, the live video stream and the end-to-end sessions recording.
{"title":"Intelligent solution for automatic online exam monitoring","authors":"Ghizlane Moukhliss, Reda Filali Hilali, H. Belhadaoui","doi":"10.11591/ijece.v13i5.pp5333-5341","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5333-5341","url":null,"abstract":"E-learning has shown significant growth in recent years due to its unavoidable benefits in unexpected situations such as the coronavirus disease 2019 (COVID-19) pandemic. Indeed, online exam is a very important component of an online learning program. It allows higher education institutions to assess student learning outcomes. However, cheating in exams is a widespread phenomenon worldwide, which creates several challenges in terms of integrity, reliability and security of online examinations. In this study, we propose a continuous authentication system for online exam. Our intelligent inference system based on machine learning algorithms and rules, detects continuously any inappropriate behavior in order to limit and prevent fraud. The proposed model includes several modules to enhance security, namely the registration module, the continuous students’ identity verification and control module, the live video stream and the end-to-end sessions recording.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43348905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5560-5568
A. Shahapurkar, Rudragoud Patil
In a streaming environment, data is continuously generated and processed in an ongoing manner, and it is necessary to detect fraudulent transactions quickly to prevent significant financial losses. Hence, this paper proposes a machine learning-based approach for detecting fraudulent transactions in a streaming environment, with a focus on addressing concept drift. The approach utilizes the extreme gradient boosting (XGBoost) algorithm. Additionally, the approach employs four algorithms for detecting continuous stream drift. To evaluate the effectiveness of the approach, two datasets are used: a credit card dataset and a Twitter dataset containing financial fraud-related social media data. The approach is evaluated using cross-validation and the results demonstrate that it outperforms traditional machine learning models in terms of accuracy, precision, and recall, and is more robust to concept drift. The proposed approach can be utilized as a real-time fraud detection system in various industries, including finance, insurance, and e-commerce.
{"title":"Concept drift and machine learning model for detecting fraudulent transactions in streaming environment","authors":"A. Shahapurkar, Rudragoud Patil","doi":"10.11591/ijece.v13i5.pp5560-5568","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5560-5568","url":null,"abstract":"In a streaming environment, data is continuously generated and processed in an ongoing manner, and it is necessary to detect fraudulent transactions quickly to prevent significant financial losses. Hence, this paper proposes a machine learning-based approach for detecting fraudulent transactions in a streaming environment, with a focus on addressing concept drift. The approach utilizes the extreme gradient boosting (XGBoost) algorithm. Additionally, the approach employs four algorithms for detecting continuous stream drift. To evaluate the effectiveness of the approach, two datasets are used: a credit card dataset and a Twitter dataset containing financial fraud-related social media data. The approach is evaluated using cross-validation and the results demonstrate that it outperforms traditional machine learning models in terms of accuracy, precision, and recall, and is more robust to concept drift. The proposed approach can be utilized as a real-time fraud detection system in various industries, including finance, insurance, and e-commerce.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42991443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5542-5549
M. Wahyudi, Hengki Tamando Sihotang, S. Efendi, M. Zarlis, H. Mawengkang, Desi Vinsensia
Planning production is an essential component of the decision-making process, which has a direct bearing on the effectiveness of production systems. This study’s objective is to investigate the efficiency performance of decision-making units (DMU) in relation to production planning issues. However, the production system in a manufacturing environment is frequently subject to uncertain situations, such as demand and labor, and this can have an effect not only on production but also on profit. The robust stochastic data envelopment analysis model was proposed in this study with maximizing the number of outputs as the objective function thus means of handling uncertainty in input and output in production planning problems. This model, which is based on stochastic data envelopment analysis and a method of robust optimization, was proposed with the intention of providing an efficient plan of production for each DMU of stage production. The model is applied to small and medium-sized businesses (SMEs), with inputs consisting of the cost of labor, the number of customers, and the quantity of raw materials, and the output consisting of profit and revenue. It has been demonstrated through implementation that the proposed model is both efficient and effective.
{"title":"A stochastic approach for evaluating production planning efficiency under uncertainty","authors":"M. Wahyudi, Hengki Tamando Sihotang, S. Efendi, M. Zarlis, H. Mawengkang, Desi Vinsensia","doi":"10.11591/ijece.v13i5.pp5542-5549","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5542-5549","url":null,"abstract":"Planning production is an essential component of the decision-making process, which has a direct bearing on the effectiveness of production systems. This study’s objective is to investigate the efficiency performance of decision-making units (DMU) in relation to production planning issues. However, the production system in a manufacturing environment is frequently subject to uncertain situations, such as demand and labor, and this can have an effect not only on production but also on profit. The robust stochastic data envelopment analysis model was proposed in this study with maximizing the number of outputs as the objective function thus means of handling uncertainty in input and output in production planning problems. This model, which is based on stochastic data envelopment analysis and a method of robust optimization, was proposed with the intention of providing an efficient plan of production for each DMU of stage production. The model is applied to small and medium-sized businesses (SMEs), with inputs consisting of the cost of labor, the number of customers, and the quantity of raw materials, and the output consisting of profit and revenue. It has been demonstrated through implementation that the proposed model is both efficient and effective.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41895407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5066-5075
Mohammed Taouil, Abdelghani El Ougli, B. Tidhaf, Hafida Zrouri
This paper proposes a fault diagnosis scheme applied to a wind turbine system. The technique used is based on a modified sliding mode observer (SMO), which permits the reconstruction of actuator and sensor faults. A wind turbine benchmark with a real sequence of wind speed is exploited to validate the proposed fault detection and diagnosis scheme. Rotor speed, generator speed, blade pitch angle, and generator torque have different orders of magnitude. As a result, the dedicated sensors are susceptible to faults of quite varying magnitudes, and estimating simultaneous sensor faults with accuracy using a classical SMO is difficult. To address this issue, some modifications are made to the classic SMO. In order to test the efficiency of the modified SMO, several sensor fault scenarios have been simulated, first in the case of separate faults and then in the case of simultaneous faults. The simulation results show that the sensor faults are isolated, detected, and reconstructed accurately in the case of separate faults. In the case of simultaneous faults, with the proposed modification of SMO, the faults are precisely isolated, detected, and reconstructed, even though they have quite different amplitudes; thus, the relative gap does not exceed 0.08% for the generator speed sensor fault.
{"title":"Sensor fault reconstruction for wind turbine benchmark model using a modified sliding mode observer","authors":"Mohammed Taouil, Abdelghani El Ougli, B. Tidhaf, Hafida Zrouri","doi":"10.11591/ijece.v13i5.pp5066-5075","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5066-5075","url":null,"abstract":"This paper proposes a fault diagnosis scheme applied to a wind turbine system. The technique used is based on a modified sliding mode observer (SMO), which permits the reconstruction of actuator and sensor faults. A wind turbine benchmark with a real sequence of wind speed is exploited to validate the proposed fault detection and diagnosis scheme. Rotor speed, generator speed, blade pitch angle, and generator torque have different orders of magnitude. As a result, the dedicated sensors are susceptible to faults of quite varying magnitudes, and estimating simultaneous sensor faults with accuracy using a classical SMO is difficult. To address this issue, some modifications are made to the classic SMO. In order to test the efficiency of the modified SMO, several sensor fault scenarios have been simulated, first in the case of separate faults and then in the case of simultaneous faults. The simulation results show that the sensor faults are isolated, detected, and reconstructed accurately in the case of separate faults. In the case of simultaneous faults, with the proposed modification of SMO, the faults are precisely isolated, detected, and reconstructed, even though they have quite different amplitudes; thus, the relative gap does not exceed 0.08% for the generator speed sensor fault.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44775885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glaucoma is a well-known complex disease of the optic nerve that gradually damages eyesight due to the increase of intraocular pressure inside the eyes. Among two types of glaucoma, open-angle glaucoma is mostly happened by high intraocular pressure and can damage the eyes temporarily or sometimes permanently, another one is angle-closure glaucoma. Therefore, being diagnosed in the early stage is necessary to safe our vision. There are several ways to detect glaucomatous eyes like tonometry, perimetry, and gonioscopy but require time and expertise. Using deep learning approaches could be a better solution. This study focused on the recognition of open-angle affected eyes from the fundus images using deep learning techniques. The study evolved by applying VGG16, VGG19, and ResNet50 deep neural network architectures for classifying glaucoma positive and negative eyes. The experiment was executed on a public dataset collected from Kaggle; however, every model performed better after augmenting the dataset, and the accuracy was between 93% and 97.56%. Among the three models, VGG19 achieved the highest accuracy at 97.56%.
{"title":"An effective deep learning network for detecting and classifying glaucomatous eye","authors":"Md. Tanvir Ahmed, Imran Ahmed, Rubayed Ahmmad Rakin, Mst. Tuhin Akter, Nusrat Jahan","doi":"10.11591/ijece.v13i5.pp5305-5313","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5305-5313","url":null,"abstract":"Glaucoma is a well-known complex disease of the optic nerve that gradually damages eyesight due to the increase of intraocular pressure inside the eyes. Among two types of glaucoma, open-angle glaucoma is mostly happened by high intraocular pressure and can damage the eyes temporarily or sometimes permanently, another one is angle-closure glaucoma. Therefore, being diagnosed in the early stage is necessary to safe our vision. There are several ways to detect glaucomatous eyes like tonometry, perimetry, and gonioscopy but require time and expertise. Using deep learning approaches could be a better solution. This study focused on the recognition of open-angle affected eyes from the fundus images using deep learning techniques. The study evolved by applying VGG16, VGG19, and ResNet50 deep neural network architectures for classifying glaucoma positive and negative eyes. The experiment was executed on a public dataset collected from Kaggle; however, every model performed better after augmenting the dataset, and the accuracy was between 93% and 97.56%. Among the three models, VGG19 achieved the highest accuracy at 97.56%.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49413758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5782-5791
A. Daru, K. Hartomo, H. Purnomo
Internet of things is a technology that allows communication between devices within a network. Since this technology depends on a network to communicate, the vulnerability of the exposed devices increased significantly. Furthermore, the use of internet protocol version 6 (IPv6) as the successor to internet protocol version 4 (IPv4) as a communication protocol constituted a significant problem for the network. Hence, this protocol was exploitable for flooding attacks in the IPv6 network. As a countermeasure against the flood, this study designed an IPv6 flood attack detection by using epsilon greedy optimized Q learning algorithm. According to the evaluation, the agent with epsilon 0.1 could reach 98% of accuracy and 11,550 rewards compared to the other agents. When compared to control models, the agent is also the most accurate compared to other algorithms followed by neural network (NN), K-nearest neighbors (KNN), decision tree (DT), naive Bayes (NB), and support vector machine (SVM). Besides that, the agent used more than 99% of a single central processing unit (CPU). Hence, the agent will not hinder internet of things (IoT) devices with multiple processors. Thus, we concluded that the proposed agent has high accuracy and feasibility in a single board computer (SBC).
{"title":"IPv6 flood attack detection based on epsilon greedy optimized Q learning in single board computer","authors":"A. Daru, K. Hartomo, H. Purnomo","doi":"10.11591/ijece.v13i5.pp5782-5791","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5782-5791","url":null,"abstract":"Internet of things is a technology that allows communication between devices within a network. Since this technology depends on a network to communicate, the vulnerability of the exposed devices increased significantly. Furthermore, the use of internet protocol version 6 (IPv6) as the successor to internet protocol version 4 (IPv4) as a communication protocol constituted a significant problem for the network. Hence, this protocol was exploitable for flooding attacks in the IPv6 network. As a countermeasure against the flood, this study designed an IPv6 flood attack detection by using epsilon greedy optimized Q learning algorithm. According to the evaluation, the agent with epsilon 0.1 could reach 98% of accuracy and 11,550 rewards compared to the other agents. When compared to control models, the agent is also the most accurate compared to other algorithms followed by neural network (NN), K-nearest neighbors (KNN), decision tree (DT), naive Bayes (NB), and support vector machine (SVM). Besides that, the agent used more than 99% of a single central processing unit (CPU). Hence, the agent will not hinder internet of things (IoT) devices with multiple processors. Thus, we concluded that the proposed agent has high accuracy and feasibility in a single board computer (SBC).","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49669412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}