Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5354-5365
Romil Rawat, Olukayode Ayodele Oki, Sakthidasan Sankaran, Hector Florez, S. A. Ajagbe
Malicious actors, specially trained professionals operating anonymously on the dark web (DW) platform to conduct cyber fraud, illegal drug supply, online kidnapping orders, CryptoLocker induction, contract hacking, terrorist recruitment portals on the online social network (OSN) platform, and financing are always a possibility in the hyperspace. The amount and variety of unlawful actions are increasing, which has prompted law enforcement (LE) agencies to develop efficient prevention tactics. In the current atmosphere of rapidly expanding cybercrime, conventional crime-solving methods are unable to produce results due to their slowness and inefficiency. The methods for accurately predicting crime before it happens "automated machine" to help police officers ease the burden on personnel while also assisting in preventing offense. To achieve and explain the results of a few cases in which such approaches were applied, we advise combining machine learning (ML) with computer vision (CV) strategies. This study's objective is to present dark web crime statistics and a forecasting model for generating alerts of illegal operations like drug supply, people smuggling, terrorist staffing and radicalization, and deceitful activities that are connected to gangs or organizations showing online presence using ML and CV to help law enforcement organizations identify, and accumulate proactive tactics for solving crimes.
{"title":"Techniques for predicting dark web events focused on the delivery of illicit products and ordered crime","authors":"Romil Rawat, Olukayode Ayodele Oki, Sakthidasan Sankaran, Hector Florez, S. A. Ajagbe","doi":"10.11591/ijece.v13i5.pp5354-5365","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5354-5365","url":null,"abstract":"Malicious actors, specially trained professionals operating anonymously on the dark web (DW) platform to conduct cyber fraud, illegal drug supply, online kidnapping orders, CryptoLocker induction, contract hacking, terrorist recruitment portals on the online social network (OSN) platform, and financing are always a possibility in the hyperspace. The amount and variety of unlawful actions are increasing, which has prompted law enforcement (LE) agencies to develop efficient prevention tactics. In the current atmosphere of rapidly expanding cybercrime, conventional crime-solving methods are unable to produce results due to their slowness and inefficiency. The methods for accurately predicting crime before it happens \"automated machine\" to help police officers ease the burden on personnel while also assisting in preventing offense. To achieve and explain the results of a few cases in which such approaches were applied, we advise combining machine learning (ML) with computer vision (CV) strategies. This study's objective is to present dark web crime statistics and a forecasting model for generating alerts of illegal operations like drug supply, people smuggling, terrorist staffing and radicalization, and deceitful activities that are connected to gangs or organizations showing online presence using ML and CV to help law enforcement organizations identify, and accumulate proactive tactics for solving crimes.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44784624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5054-5065
Koto Omiloli, A. Awelewa, Isaac Samuel, Oghorchukwuyem Obiazi, J. Katende
The global transition from fossil-based automobile systems to their electric-driven counterparts has made the use of a storage device inevitable. Owing to its high energy density, lower self-discharge, and higher cycle lifetime the lithium-ion battery is of significant consideration and usage in electric vehicles. Nevertheless, the state of charge (SOC) of the battery, which cannot be measured directly, must be calculated using an estimator. This paper proposes, by means of a modified priori estimate and a compensating proportional gain, an improved extended Kalman filter (IEKF) for the estimation task due to its nonlinear application and adaptiveness to noise. The improvement was achieved by incorporating the residuals of the previous state matrices to the current state predictor and introducing an attenuating factor in the Kalman gain, which was chosen to counteract the effect of the measurement and process noise resulting in better accuracy performance than the conventional SOC curve fitting-based estimation and ampere hour methods. Simulation results show that the standard EKF estimator results in performance with an error bound of 12.9% due to an unstable start, while the modified EKF reduces the maximum error to within 2.05% demonstrating the quality of the estimator.
{"title":"State of charge estimation based on a modified extended Kalman filter","authors":"Koto Omiloli, A. Awelewa, Isaac Samuel, Oghorchukwuyem Obiazi, J. Katende","doi":"10.11591/ijece.v13i5.pp5054-5065","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5054-5065","url":null,"abstract":"The global transition from fossil-based automobile systems to their electric-driven counterparts has made the use of a storage device inevitable. Owing to its high energy density, lower self-discharge, and higher cycle lifetime the lithium-ion battery is of significant consideration and usage in electric vehicles. Nevertheless, the state of charge (SOC) of the battery, which cannot be measured directly, must be calculated using an estimator. This paper proposes, by means of a modified priori estimate and a compensating proportional gain, an improved extended Kalman filter (IEKF) for the estimation task due to its nonlinear application and adaptiveness to noise. The improvement was achieved by incorporating the residuals of the previous state matrices to the current state predictor and introducing an attenuating factor in the Kalman gain, which was chosen to counteract the effect of the measurement and process noise resulting in better accuracy performance than the conventional SOC curve fitting-based estimation and ampere hour methods. Simulation results show that the standard EKF estimator results in performance with an error bound of 12.9% due to an unstable start, while the modified EKF reduces the maximum error to within 2.05% demonstrating the quality of the estimator.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44016143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5696-5706
Md. Ashraful Islam, Md. Rana Sikder, Sayed Mohammed Ishtiaq, A. Sattar
The prediction of stock market trends is a challenging task due to its dynamic and volatile nature. Research has shown that predicting the stock market, especially in developing nations like Bangladesh, is challenging due to the presence of multiple external factors in addition to technical ones. To address this, this study proposed a novel dataset that includes not only technical stock market data from 2014 to 2021, but also external factors such as news sentiment and other economic indicators like inflation, gross domestic product (GDP), exchange rate, interest rate, and current balance. The goal is to provide a comprehensive view of the Dhaka Stock Exchange (DSE), the largest stock market in Bangladesh. The main objective of this study is to predict the trend of DSE by taking into account both technical stock market data and relevant external factors, and to compare the predictions made with and without using external factors. The study utilized a multivariate long short-term memory (LSTM) neural network for the stock market trend prediction. The experimental results showed that the use of external factors improved the accuracy of the LSTM-based stock market trend predictions by approximately 24%.
{"title":"Stock market prediction of Bangladesh using multivariate long short-term memory with sentiment identification","authors":"Md. Ashraful Islam, Md. Rana Sikder, Sayed Mohammed Ishtiaq, A. Sattar","doi":"10.11591/ijece.v13i5.pp5696-5706","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5696-5706","url":null,"abstract":"The prediction of stock market trends is a challenging task due to its dynamic and volatile nature. Research has shown that predicting the stock market, especially in developing nations like Bangladesh, is challenging due to the presence of multiple external factors in addition to technical ones. To address this, this study proposed a novel dataset that includes not only technical stock market data from 2014 to 2021, but also external factors such as news sentiment and other economic indicators like inflation, gross domestic product (GDP), exchange rate, interest rate, and current balance. The goal is to provide a comprehensive view of the Dhaka Stock Exchange (DSE), the largest stock market in Bangladesh. The main objective of this study is to predict the trend of DSE by taking into account both technical stock market data and relevant external factors, and to compare the predictions made with and without using external factors. The study utilized a multivariate long short-term memory (LSTM) neural network for the stock market trend prediction. The experimental results showed that the use of external factors improved the accuracy of the LSTM-based stock market trend predictions by approximately 24%.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42801120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5632-5640
Ramesh Chundi, Vishwanath R. Hulipalled, J. B. Simha
Code-switching is a very common occurrence in social media communication, predominantly found in multilingual countries like India. Using more than one language in communication is known as code-switching or code-mixing. Some of the important applications of code-switch are machine translation (MT), shallow parsing, dialog systems, and semantic parsing. Identifying code-switch and monolingual information is useful for better communication in online networking websites. In this paper, we performed a character level n-gram approach to identify monolingual and code-switch information from English-Kannada social media data. We paralleled various machine learning techniques such as naïve Bayes (NB), support vector classifier (SVC), logistic regression (LR) and neural network (NN) on English-Kannada code-switch (EKCS) data. From the proposed approach, it is observed that the character level n-gram approach provides 1.8% to 4.1% of improvement in terms of Accuracy and 1.6% to 3.8% of improvement in F1-score. Also observed that SVC and NN techniques are outperformed in terms of accuracy (97.9%) and F1-score (98%) with character level n-gram.
{"title":"Identification of monolingual and code-switch information from English-Kannada code-switch data","authors":"Ramesh Chundi, Vishwanath R. Hulipalled, J. B. Simha","doi":"10.11591/ijece.v13i5.pp5632-5640","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5632-5640","url":null,"abstract":"Code-switching is a very common occurrence in social media communication, predominantly found in multilingual countries like India. Using more than one language in communication is known as code-switching or code-mixing. Some of the important applications of code-switch are machine translation (MT), shallow parsing, dialog systems, and semantic parsing. Identifying code-switch and monolingual information is useful for better communication in online networking websites. In this paper, we performed a character level n-gram approach to identify monolingual and code-switch information from English-Kannada social media data. We paralleled various machine learning techniques such as naïve Bayes (NB), support vector classifier (SVC), logistic regression (LR) and neural network (NN) on English-Kannada code-switch (EKCS) data. From the proposed approach, it is observed that the character level n-gram approach provides 1.8% to 4.1% of improvement in terms of Accuracy and 1.6% to 3.8% of improvement in F1-score. Also observed that SVC and NN techniques are outperformed in terms of accuracy (97.9%) and F1-score (98%) with character level n-gram.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42173287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5374-5387
Oussama Sbayti, K. Housni, Moulay Hicham Hanin, Adil El Makrani
In recent years, the vehicular ad-hoc network (VANET), which is an ad-hoc network used by connected autonomous vehicles (CAV) for information processing, has attracted the interest of researchers in order to meet the needs created by the accelerating development of autonomous vehicle technology. The enormous amount of information and the high speed of the vehicles require us to have a very reliable communication protocol. The objective of this paper is to determine a topology-based routing protocol that improves network performance and guarantees information traffic over VANET. This comparative study was carried out using the simulation of urban mobility (SUMO) and network simulator (NS-3). Through the results obtained, we will show that the choice of the type of protocol to use depends on the size of the network and also on the metrics to be optimized.
{"title":"Comparative study of proactive and reactive routing protocols in vehicular ad-hoc network","authors":"Oussama Sbayti, K. Housni, Moulay Hicham Hanin, Adil El Makrani","doi":"10.11591/ijece.v13i5.pp5374-5387","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5374-5387","url":null,"abstract":"In recent years, the vehicular ad-hoc network (VANET), which is an ad-hoc network used by connected autonomous vehicles (CAV) for information processing, has attracted the interest of researchers in order to meet the needs created by the accelerating development of autonomous vehicle technology. The enormous amount of information and the high speed of the vehicles require us to have a very reliable communication protocol. The objective of this paper is to determine a topology-based routing protocol that improves network performance and guarantees information traffic over VANET. This comparative study was carried out using the simulation of urban mobility (SUMO) and network simulator (NS-3). Through the results obtained, we will show that the choice of the type of protocol to use depends on the size of the network and also on the metrics to be optimized.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42473945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solar energy is widely used in order to generate clean electric energy. However, due to its intermittent nature, this resource is only inserted in a limited way within the electrical networks. To increase the share of solar energy in the energy balance and allow better management of its production, it is necessary to know precisely the available solar potential at a fine time step to take into account all these stochastic variations. In this paper, a comparison between different artificial neural network (ANN) configurations is elaborated to estimate the hourly solar irradiation. An investigation of the optimal neurons and layers is investigated. To this end, feedforward neural network, cascade forward neural network and fitting neural network have been applied for this purpose. In this context, we have used different meteorological parameters to estimate the hourly global solar irirradiation in the region of Laghouat, Algeria. The validation process shows that choosing the cascade forward neural network two inputs gives an R2 value equal to 97.24% and an normalized root mean square error (NRMSE) equals to 0.1678 compared to the results of three inputs, which gives an R2 value equaled to 95.54% and an NRMSE equals to 0.2252. The comparison between different existing methods in literature show the goodness of the proposed models.
{"title":"Optimal artificial neural network configurations for hourly solar irradiation estimation","authors":"Mostefaoui Mohamed Dhiaeddine, Benmouiza Khalil, Oubbati Youcef","doi":"10.11591/ijece.v13i5.pp4878-4885","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp4878-4885","url":null,"abstract":"Solar energy is widely used in order to generate clean electric energy. However, due to its intermittent nature, this resource is only inserted in a limited way within the electrical networks. To increase the share of solar energy in the energy balance and allow better management of its production, it is necessary to know precisely the available solar potential at a fine time step to take into account all these stochastic variations. In this paper, a comparison between different artificial neural network (ANN) configurations is elaborated to estimate the hourly solar irradiation. An investigation of the optimal neurons and layers is investigated. To this end, feedforward neural network, cascade forward neural network and fitting neural network have been applied for this purpose. In this context, we have used different meteorological parameters to estimate the hourly global solar irirradiation in the region of Laghouat, Algeria. The validation process shows that choosing the cascade forward neural network two inputs gives an R2 value equal to 97.24% and an normalized root mean square error (NRMSE) equals to 0.1678 compared to the results of three inputs, which gives an R2 value equaled to 95.54% and an NRMSE equals to 0.2252. The comparison between different existing methods in literature show the goodness of the proposed models.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44469319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp4919-4930
Tri Tran, Thai An Nguyen, T. N. Le, N. A. Nguyen, Thi Nhu Thuong Huynh
This paper proposes a method to rank the loads in the microgrid by means of a weight that combines the criteria together in terms of both technical and economic aspects. The fuzzy analytic hierarchy process technique for order of preference by similarity to ideal solution (fuzzy AHP TOPSIS) algorithm is used to calculate this combined weight. The criteria to be considered are load importance factor (LIF), voltage electrical distance (VED) and voltage sensitivity index (VSI). The fuzzy algorithm helps to fuzzy the judgment matrix of the analytic hierarchy process (AHP) method, making it easier to compare objects with each other and remove the uncertainty of the AHP method. The technique for order of preference by similarity to ideal solution (TOPSIS) algorithm is used to normalize the decision matrix, determine the positive and negative ideal solutions to calculate the index of proximity to the ideal solution, and finally rank all the alternatives. The combination of fuzzy AHP and TOPSIS algorithms is the optimal combination for decision making and ranking problems in a multi-criteria environment. The 19-bus microgrid system is applied to calculate and demonstrate the effectiveness of the proposed method.
{"title":"Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem","authors":"Tri Tran, Thai An Nguyen, T. N. Le, N. A. Nguyen, Thi Nhu Thuong Huynh","doi":"10.11591/ijece.v13i5.pp4919-4930","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp4919-4930","url":null,"abstract":"This paper proposes a method to rank the loads in the microgrid by means of a weight that combines the criteria together in terms of both technical and economic aspects. The fuzzy analytic hierarchy process technique for order of preference by similarity to ideal solution (fuzzy AHP TOPSIS) algorithm is used to calculate this combined weight. The criteria to be considered are load importance factor (LIF), voltage electrical distance (VED) and voltage sensitivity index (VSI). The fuzzy algorithm helps to fuzzy the judgment matrix of the analytic hierarchy process (AHP) method, making it easier to compare objects with each other and remove the uncertainty of the AHP method. The technique for order of preference by similarity to ideal solution (TOPSIS) algorithm is used to normalize the decision matrix, determine the positive and negative ideal solutions to calculate the index of proximity to the ideal solution, and finally rank all the alternatives. The combination of fuzzy AHP and TOPSIS algorithms is the optimal combination for decision making and ranking problems in a multi-criteria environment. The 19-bus microgrid system is applied to calculate and demonstrate the effectiveness of the proposed method.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41334950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5253-5264
Mohammed Parwez, D. R. Sulaiman
Microprocessor power and thermal density are increasing exponentially. The reliability of the processor declined, cooling costs rose, and the processor's lifespan was shortened due to an overheated processor and poor thermal management like thermally unbalanced processors. Thus, the thermal management and balancing of multi-core processors are extremely crucial. This work mostly focuses on a compact temperature model of multicore processors. In this paper, a novel task assignment is proposed using a genetic algorithm to maintain the thermal balance of the cores, by considering the energy expended by each task that the core performs. And expecting the cores’ temperature using the hotspot simulator. The algorithm assigns tasks to the processors depending on the task parameters and current cores’ temperature in such a way that none of the tasks’ deadlines are lost for the earliest deadline first (EDF) scheduling algorithm. The mathematical model was derived, and the simulation results showed that the highest temperature difference between the cores is 8 °C for approximately 14 seconds of simulation. These results validate the effectiveness of the proposed algorithm in managing the hotspot and reducing both temperature and energy consumption in multicore processors.
{"title":"Thermal aware task assignment for multicore processors using genetic algorithm","authors":"Mohammed Parwez, D. R. Sulaiman","doi":"10.11591/ijece.v13i5.pp5253-5264","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5253-5264","url":null,"abstract":"Microprocessor power and thermal density are increasing exponentially. The reliability of the processor declined, cooling costs rose, and the processor's lifespan was shortened due to an overheated processor and poor thermal management like thermally unbalanced processors. Thus, the thermal management and balancing of multi-core processors are extremely crucial. This work mostly focuses on a compact temperature model of multicore processors. In this paper, a novel task assignment is proposed using a genetic algorithm to maintain the thermal balance of the cores, by considering the energy expended by each task that the core performs. And expecting the cores’ temperature using the hotspot simulator. The algorithm assigns tasks to the processors depending on the task parameters and current cores’ temperature in such a way that none of the tasks’ deadlines are lost for the earliest deadline first (EDF) scheduling algorithm. The mathematical model was derived, and the simulation results showed that the highest temperature difference between the cores is 8 °C for approximately 14 seconds of simulation. These results validate the effectiveness of the proposed algorithm in managing the hotspot and reducing both temperature and energy consumption in multicore processors.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49599913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5156-5164
Thai-Mai Dinh Thi, N. Duong
Developing an indoor positioning system became essential when global positioning system signals could not work well in indoor environments. Mobile positioning can be accomplished via many radio frequency technology such as Bluetooth low energy (BLE), wireless fidelity (Wi-Fi), ultra-wideband (UWB), and so on. With the pressing need for indoor positioning systems, we, in this work, present a deployment scheme for smartphone using Bluetooth iBeacons. Three main parts, hardware deployment, software deployment, and positioning accuracy assessment, are discussed carefully to find the optimal solution for a complete indoor positioning system. Our application and experimental results show that proposed solution is feasible and indoor positioning system is completely attainable.
{"title":"iBeacon-based indoor positioning system: from theory to practical deployment","authors":"Thai-Mai Dinh Thi, N. Duong","doi":"10.11591/ijece.v13i5.pp5156-5164","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5156-5164","url":null,"abstract":"Developing an indoor positioning system became essential when global positioning system signals could not work well in indoor environments. Mobile positioning can be accomplished via many radio frequency technology such as Bluetooth low energy (BLE), wireless fidelity (Wi-Fi), ultra-wideband (UWB), and so on. With the pressing need for indoor positioning systems, we, in this work, present a deployment scheme for smartphone using Bluetooth iBeacons. Three main parts, hardware deployment, software deployment, and positioning accuracy assessment, are discussed carefully to find the optimal solution for a complete indoor positioning system. Our application and experimental results show that proposed solution is feasible and indoor positioning system is completely attainable.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49499656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.11591/ijece.v13i5.pp5501-5516
Achmad Arwan, S. Rochimah, C. Fatichah
Feature location is a technique for determining source code that implements specific features in software. It developed to help minimize effort on program comprehension. The main challenge of feature location research is how to bridge the gap between abstract keywords in use cases and detail in source code. The use case scenarios are software requirements artifacts that state the input, logic, rules, actor, and output of a function in the software. The sentence on use case scenario is sometimes described another sentence in other use case scenario. This study contributes to creating expansion queries in feature locations by finding the relationship between use case scenarios. The relationships include inner association, outer association and intratoken association. The research employs latent Dirichlet allocation (LDA) to create model topics on source code. Query expansion using inner, outer and intratoken was tested for finding feature locations on a Java-based open-source project. The best precision rate was 50%. The best recall was 100%, which was found in several use case scenarios implemented in a few files. The best average precision rate was 16.7%, which was found in inner association experiments. The best average recall rate was 68.3%, which was found in all compound association experiments.
{"title":"Query expansion using novel use case scenario relationship for finding feature location","authors":"Achmad Arwan, S. Rochimah, C. Fatichah","doi":"10.11591/ijece.v13i5.pp5501-5516","DOIUrl":"https://doi.org/10.11591/ijece.v13i5.pp5501-5516","url":null,"abstract":"Feature location is a technique for determining source code that implements specific features in software. It developed to help minimize effort on program comprehension. The main challenge of feature location research is how to bridge the gap between abstract keywords in use cases and detail in source code. The use case scenarios are software requirements artifacts that state the input, logic, rules, actor, and output of a function in the software. The sentence on use case scenario is sometimes described another sentence in other use case scenario. This study contributes to creating expansion queries in feature locations by finding the relationship between use case scenarios. The relationships include inner association, outer association and intratoken association. The research employs latent Dirichlet allocation (LDA) to create model topics on source code. Query expansion using inner, outer and intratoken was tested for finding feature locations on a Java-based open-source project. The best precision rate was 50%. The best recall was 100%, which was found in several use case scenarios implemented in a few files. The best average precision rate was 16.7%, which was found in inner association experiments. The best average recall rate was 68.3%, which was found in all compound association experiments.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44767323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}