Pub Date : 2023-08-24DOI: 10.3390/geosciences13090257
Olive L. Ponyalou, M. Petterson, J. O. Espi
Feni is located at the southeastern end of the NW-trending Tabar–Lihir–Tanga–Feni (TLTF) volcanic island chain, in northeastern Papua New Guinea. This island chain is renowned for hosting alkaline volcanics, geothermal activity, copper–gold mineralization, and mining. There is no agreed consensus on the tectonic and petrogenetic evolution of Feni. Thus, the purpose of our paper is to present the geology of Feni within the context of the regional tectonic evolution of the TLTF chain and offer a succinct and generic geodynamic model that sets the stage for our next paper. The methodologies used in this study include a critical review of published and unpublished literature in conjunction with our geological observations on Feni. The Pliocene-to-Holocene TLTF chain is a younger arc situated within the greater Eocene-to-Oligocene Melanesian Arc bounded by New Ireland to the west, the Kilinailau Trench and Ontong Java Plateau in the east, and the New Britain Trench to the south. The geological units mapped on Feni include a large volume of basaltic lava flow and trachyandesite stocks intruding a limestone and siltstone basement. Younger units include the trachyte domes, pyroclastic flow, and ash fall deposits. The major structures on Feni are normal or extensional faults such as the Niffin Graben. Feni magmatism is attributed to the petrogenetic processes of polybaric or decompression melting and crystal fractionation of magmas previously influenced by sediment assimilation, mantle wedge metasomatism, slab tears, slab melts, and subduction. Deep lithospheric normal faults provide the fluid pathways for the Feni alkaline magmas.
{"title":"The Geological and Tectonic Evolution of Feni, Papua New Guinea","authors":"Olive L. Ponyalou, M. Petterson, J. O. Espi","doi":"10.3390/geosciences13090257","DOIUrl":"https://doi.org/10.3390/geosciences13090257","url":null,"abstract":"Feni is located at the southeastern end of the NW-trending Tabar–Lihir–Tanga–Feni (TLTF) volcanic island chain, in northeastern Papua New Guinea. This island chain is renowned for hosting alkaline volcanics, geothermal activity, copper–gold mineralization, and mining. There is no agreed consensus on the tectonic and petrogenetic evolution of Feni. Thus, the purpose of our paper is to present the geology of Feni within the context of the regional tectonic evolution of the TLTF chain and offer a succinct and generic geodynamic model that sets the stage for our next paper. The methodologies used in this study include a critical review of published and unpublished literature in conjunction with our geological observations on Feni. The Pliocene-to-Holocene TLTF chain is a younger arc situated within the greater Eocene-to-Oligocene Melanesian Arc bounded by New Ireland to the west, the Kilinailau Trench and Ontong Java Plateau in the east, and the New Britain Trench to the south. The geological units mapped on Feni include a large volume of basaltic lava flow and trachyandesite stocks intruding a limestone and siltstone basement. Younger units include the trachyte domes, pyroclastic flow, and ash fall deposits. The major structures on Feni are normal or extensional faults such as the Niffin Graben. Feni magmatism is attributed to the petrogenetic processes of polybaric or decompression melting and crystal fractionation of magmas previously influenced by sediment assimilation, mantle wedge metasomatism, slab tears, slab melts, and subduction. Deep lithospheric normal faults provide the fluid pathways for the Feni alkaline magmas.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"49 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86679032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24DOI: 10.3390/geosciences13090259
C. Alegria, T. Albuquerque
Continuous monitoring of water resources is essential for ensuring sustainable urban water supply. Remote sensing techniques have proven to be valuable in monitoring certain qualitative parameters of water with optical characteristics. This survey was conducted in the Marateca reservoir located in central inland Portugal, after a major event that killed a considerable number of fish. The objectives of the study were as follows: (1) to define a pollution spectral signature specific to the Marateca reservoir that could shed light on the event; (2) to validate the spectral water’s quality characteristics using the data collected in five gauging points; and (3) to model the characteristics of the reservoir water, including its depth, trophic state, and turbidity. The parameters considered for analysis were total phosphorus, total nitrogen, and chlorophyll-a, which were used to calculate a trophic level index. Sentinel-2 imagery was employed to calculate spectral indices and image ratios for specific bands, aiming at the definition of spectral signatures, and to model the water characteristics in the reservoir. The trophic level index acquired from each of the five gauging points was used for validation purposes. The reservoir’s trophic level was classified as hypereutrophic and eutrophic, indicating its sensitivity to contamination. The developed methodological approach can be easily applied to other reservoirs and serves as a crucial decision-making tool for policymakers.
{"title":"Remote Sensing for Water Quality Monitoring—A Case Study for the Marateca Reservoir, Portugal","authors":"C. Alegria, T. Albuquerque","doi":"10.3390/geosciences13090259","DOIUrl":"https://doi.org/10.3390/geosciences13090259","url":null,"abstract":"Continuous monitoring of water resources is essential for ensuring sustainable urban water supply. Remote sensing techniques have proven to be valuable in monitoring certain qualitative parameters of water with optical characteristics. This survey was conducted in the Marateca reservoir located in central inland Portugal, after a major event that killed a considerable number of fish. The objectives of the study were as follows: (1) to define a pollution spectral signature specific to the Marateca reservoir that could shed light on the event; (2) to validate the spectral water’s quality characteristics using the data collected in five gauging points; and (3) to model the characteristics of the reservoir water, including its depth, trophic state, and turbidity. The parameters considered for analysis were total phosphorus, total nitrogen, and chlorophyll-a, which were used to calculate a trophic level index. Sentinel-2 imagery was employed to calculate spectral indices and image ratios for specific bands, aiming at the definition of spectral signatures, and to model the water characteristics in the reservoir. The trophic level index acquired from each of the five gauging points was used for validation purposes. The reservoir’s trophic level was classified as hypereutrophic and eutrophic, indicating its sensitivity to contamination. The developed methodological approach can be easily applied to other reservoirs and serves as a crucial decision-making tool for policymakers.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"2 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89266302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-23DOI: 10.3390/geosciences13090255
G. Mustoe
The 2023 discovery of a fish fossil from lower Eocene strata of the Chuckanut Formation provides new insights into the paleoenvironment and paleoecology of one of the region’s most prolific fossil deposits. The detrital clastic fluvial and floodplain deposits of the Chuckanut Formation are not favorable for the preservation of fish, but the high quality of preservation of this specimen is evidence that some Chuckanut Formation sediments provide suitable depositional conditions for the preservation of skeletal remains. This information improves our understanding of the range of depositional environments within the Chuckanut Formation, and provides clues for searching for additional specimens. The discovery of this fossil has larger significance; the skeletal remains of fish are scarce in fluvial and floodplain deposits. Despite its incompleteness, dorsal fin and caudal fin ray anatomy suggest that the specimens represent the extinct genus Phareodus, an open-water carnivore that has previously only been reported in North America from the Green River and Bridger Formations in Wyoming and Utah, USA.
{"title":"The First Discovery of a Fish Fossil (Phareodus sp.) from Paleogene Fluvial Deposits in Western Washington State, USA","authors":"G. Mustoe","doi":"10.3390/geosciences13090255","DOIUrl":"https://doi.org/10.3390/geosciences13090255","url":null,"abstract":"The 2023 discovery of a fish fossil from lower Eocene strata of the Chuckanut Formation provides new insights into the paleoenvironment and paleoecology of one of the region’s most prolific fossil deposits. The detrital clastic fluvial and floodplain deposits of the Chuckanut Formation are not favorable for the preservation of fish, but the high quality of preservation of this specimen is evidence that some Chuckanut Formation sediments provide suitable depositional conditions for the preservation of skeletal remains. This information improves our understanding of the range of depositional environments within the Chuckanut Formation, and provides clues for searching for additional specimens. The discovery of this fossil has larger significance; the skeletal remains of fish are scarce in fluvial and floodplain deposits. Despite its incompleteness, dorsal fin and caudal fin ray anatomy suggest that the specimens represent the extinct genus Phareodus, an open-water carnivore that has previously only been reported in North America from the Green River and Bridger Formations in Wyoming and Utah, USA.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"48 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88500185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-23DOI: 10.3390/geosciences13090256
P. Rosset, Adil Takahashi, L. Chouinard
The metropolitan community of Montreal (MMC) is located in Eastern Canada and included in the western Quebec seismic zone characterized by shallow crustal earthquakes and moderate seismicity. Most of the urbanized areas are settled close to the Saint-Lawrence River and its tributaries and within the region, delimiting the extension of the clay deposits from the Champlain Sea. The influence of these recent and soft deposits on seismic waves has been observed after the 1988 M5.8 Saguenay earthquake and has proven to be crucial in seismic hazard analysis. The shear-wave velocity Vs averaged over the 30 m of soil, abbreviated Vs30, is one of the most used parameters to characterize the site condition and its influence on seismic waves. Since 2000, a site condition model has been developed for the municipalities of Montreal and Laval, combining seismic and borehole data for risk mitigation purposes. The paper presents an extended version of the Vs30 mapping for the entire region of the MMC, which accounts for half of the population of Quebec, including additional ambient noise recordings, recently updated borehole datasets, geological vector map and unpublished seismic refraction data to derive Vs profiles. The estimated Vs30 values for thousands of sites are then interpolated on a regular grid of 0.01 degrees using the inverse distance weighted interpolation approach. Regions with the lowest estimated Vs30 values where site amplification could be expected on seismic waves are in the Northeastern part and in the Southwest of the MMC. The map expresses in terms of site classes is compared with intensity values derived from citizen observations after recent felt. In general, the highest reported intensity values are found in regions with the lowest Vs30 values on the map. Areas where this rule does not apply, should be investigated further. This site condition model can be used in seismic hazard and risk analysis.
{"title":"Vs30 Mapping of the Greater Montreal Region Using Multiple Data Sources","authors":"P. Rosset, Adil Takahashi, L. Chouinard","doi":"10.3390/geosciences13090256","DOIUrl":"https://doi.org/10.3390/geosciences13090256","url":null,"abstract":"The metropolitan community of Montreal (MMC) is located in Eastern Canada and included in the western Quebec seismic zone characterized by shallow crustal earthquakes and moderate seismicity. Most of the urbanized areas are settled close to the Saint-Lawrence River and its tributaries and within the region, delimiting the extension of the clay deposits from the Champlain Sea. The influence of these recent and soft deposits on seismic waves has been observed after the 1988 M5.8 Saguenay earthquake and has proven to be crucial in seismic hazard analysis. The shear-wave velocity Vs averaged over the 30 m of soil, abbreviated Vs30, is one of the most used parameters to characterize the site condition and its influence on seismic waves. Since 2000, a site condition model has been developed for the municipalities of Montreal and Laval, combining seismic and borehole data for risk mitigation purposes. The paper presents an extended version of the Vs30 mapping for the entire region of the MMC, which accounts for half of the population of Quebec, including additional ambient noise recordings, recently updated borehole datasets, geological vector map and unpublished seismic refraction data to derive Vs profiles. The estimated Vs30 values for thousands of sites are then interpolated on a regular grid of 0.01 degrees using the inverse distance weighted interpolation approach. Regions with the lowest estimated Vs30 values where site amplification could be expected on seismic waves are in the Northeastern part and in the Southwest of the MMC. The map expresses in terms of site classes is compared with intensity values derived from citizen observations after recent felt. In general, the highest reported intensity values are found in regions with the lowest Vs30 values on the map. Areas where this rule does not apply, should be investigated further. This site condition model can be used in seismic hazard and risk analysis.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"23 s2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72389699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-22DOI: 10.3390/geosciences13090254
F. Mattern, A. Scharf, Abdul Razak Al-Sayigh, Nada Al-Wahaibi, L. Galluccio, G. Frijia, Mazin Al-Salmani
The study improves the understanding of the basal part of the Eocene Seeb Formation of Oman, informally known as “Unit 1”, in terms of microfacies, lithostratigraphy and shale migration within the context of regional tectonics. We logged four sections bed-by-bed over a distance of 8.3 km, collected samples and analyzed thin-sections as well as XRD samples. For the first time, the microfacies and stratigraphic correlation of the lowermost part of the limestone-dominated Seeb Formation were studied in detail. In the analyzed area, Unit 1 is ~20 to 40 m thick, with the thickness increasing to the SE. In the upper part of Unit 1 is a laterally continuous shale horizon. The limestones of Unit 1 contain mostly packstones and grainstones. The dominant standard microfacies types are SMF 18-FOR and SMF 16. The former is dominated by benthic foraminifera, and the latter by peloids. Both SMFs indicate restricted lagoonal conditions. Foraminifera are common in Unit 1 and indicate a middle Eocene age. Considering the abundance of encountered foraminiferal bioclasts, it appears probable that the lagoon barrier was mainly composed of foraminiferal tests. Gutter casts, slumps and debrites indicate an active, partly unstable syndepositional slope, which was likely initially created by uplift of the Saih Hatat Dome and Jabal Nakhl Subdome. Differential regional uplift due to a more pronounced overall doming in the NW (Jabal Nakhl Subdome) than in the SE (Saih Hatat Dome) explains more accommodation space and greater thickness towards the SE. For the first time, we report visco-plastic shale migration/intrusion within the Seeb Formation, related to a shale horizon of Unit 1. This shale locally migrated as indicated by (1) local thickness variations, (2) detached limestone boulders floating in the shale, (3) limestone beds that have been cut-off by the shale and (4) dragged by the shale (5) an upward shale intrusion/injection which then spread parallelly to bedding similar to a salt tongue and (6) tilting overlying limestones. We suggest that shale migration is related to post-“mid”-Eocene E-W convergence between Arabia and India and to faulting or to the second, late Paleogene/early Neogene, faulting interval of the Frontal Range Fault. The shale horizon in the upper part of Unit 1 is a marker bed, which can be correlated across the study area.
{"title":"Lagoonal Microfacies, Lithostratigraphy, Correlation and Shale Migration of the Basal Middle Eocene Seeb Formation (Rusayl Embayment, Sultanate of Oman)","authors":"F. Mattern, A. Scharf, Abdul Razak Al-Sayigh, Nada Al-Wahaibi, L. Galluccio, G. Frijia, Mazin Al-Salmani","doi":"10.3390/geosciences13090254","DOIUrl":"https://doi.org/10.3390/geosciences13090254","url":null,"abstract":"The study improves the understanding of the basal part of the Eocene Seeb Formation of Oman, informally known as “Unit 1”, in terms of microfacies, lithostratigraphy and shale migration within the context of regional tectonics. We logged four sections bed-by-bed over a distance of 8.3 km, collected samples and analyzed thin-sections as well as XRD samples. For the first time, the microfacies and stratigraphic correlation of the lowermost part of the limestone-dominated Seeb Formation were studied in detail. In the analyzed area, Unit 1 is ~20 to 40 m thick, with the thickness increasing to the SE. In the upper part of Unit 1 is a laterally continuous shale horizon. The limestones of Unit 1 contain mostly packstones and grainstones. The dominant standard microfacies types are SMF 18-FOR and SMF 16. The former is dominated by benthic foraminifera, and the latter by peloids. Both SMFs indicate restricted lagoonal conditions. Foraminifera are common in Unit 1 and indicate a middle Eocene age. Considering the abundance of encountered foraminiferal bioclasts, it appears probable that the lagoon barrier was mainly composed of foraminiferal tests. Gutter casts, slumps and debrites indicate an active, partly unstable syndepositional slope, which was likely initially created by uplift of the Saih Hatat Dome and Jabal Nakhl Subdome. Differential regional uplift due to a more pronounced overall doming in the NW (Jabal Nakhl Subdome) than in the SE (Saih Hatat Dome) explains more accommodation space and greater thickness towards the SE. For the first time, we report visco-plastic shale migration/intrusion within the Seeb Formation, related to a shale horizon of Unit 1. This shale locally migrated as indicated by (1) local thickness variations, (2) detached limestone boulders floating in the shale, (3) limestone beds that have been cut-off by the shale and (4) dragged by the shale (5) an upward shale intrusion/injection which then spread parallelly to bedding similar to a salt tongue and (6) tilting overlying limestones. We suggest that shale migration is related to post-“mid”-Eocene E-W convergence between Arabia and India and to faulting or to the second, late Paleogene/early Neogene, faulting interval of the Frontal Range Fault. The shale horizon in the upper part of Unit 1 is a marker bed, which can be correlated across the study area.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"34 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85473666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.3390/geosciences13080253
Vanessa Cocal-Smith, Graham Hinchliffe, M. Petterson
The geoheritage value in the Thames District, North Island, New Zealand, is notable for its over 50 epithermal gold deposits associated with the Coromandel Volcanic Zone, significant to the region’s geological, cultural, and mining heritage. This case study was conducted in collaboration with the Thames School of Mines and Mineralogical Museum to develop a series of web-based applications for public outreach and an accessible museum experience through the utilization of specimens from the mineralogical museum. This research applies a conceptual framework of ex situ geoheritage to explore links between local geology with cultural and mining heritage. Minerals and rock specimens collected for the Thames School of Mines Mineralogical Museum were used to create 3D virtual models demonstrating the epithermal mineralization in the Thames Goldfield. Outputs of this project consist of two digital products, including a digital mineral and rock repository and the dissemination of the geological collection through integrating the photogrammetric models into a user-friendly outreach, ArcGIS Storymaps, to depict the geoheritage relationship of the specimens to regional gold mining, and at the same time, to be developed to be implemented in geoscience education and communication. The results of this paper are intended to promote the use of digital tools for enhancing and raising awareness of the geoheritage values of the Thames Goldfield. This approach has relevance for Papua New Guinea and the Pacific Islands in raising awareness of geological, mineral, and mining heritage within widely distributed and often isolated communities across island archipelago nations.
{"title":"Digital Tools for the Promotion of Geological and Mining Heritage: Case Study from the Thames Goldfield, Aotearoa, New Zealand","authors":"Vanessa Cocal-Smith, Graham Hinchliffe, M. Petterson","doi":"10.3390/geosciences13080253","DOIUrl":"https://doi.org/10.3390/geosciences13080253","url":null,"abstract":"The geoheritage value in the Thames District, North Island, New Zealand, is notable for its over 50 epithermal gold deposits associated with the Coromandel Volcanic Zone, significant to the region’s geological, cultural, and mining heritage. This case study was conducted in collaboration with the Thames School of Mines and Mineralogical Museum to develop a series of web-based applications for public outreach and an accessible museum experience through the utilization of specimens from the mineralogical museum. This research applies a conceptual framework of ex situ geoheritage to explore links between local geology with cultural and mining heritage. Minerals and rock specimens collected for the Thames School of Mines Mineralogical Museum were used to create 3D virtual models demonstrating the epithermal mineralization in the Thames Goldfield. Outputs of this project consist of two digital products, including a digital mineral and rock repository and the dissemination of the geological collection through integrating the photogrammetric models into a user-friendly outreach, ArcGIS Storymaps, to depict the geoheritage relationship of the specimens to regional gold mining, and at the same time, to be developed to be implemented in geoscience education and communication. The results of this paper are intended to promote the use of digital tools for enhancing and raising awareness of the geoheritage values of the Thames Goldfield. This approach has relevance for Papua New Guinea and the Pacific Islands in raising awareness of geological, mineral, and mining heritage within widely distributed and often isolated communities across island archipelago nations.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"99 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75449837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-19DOI: 10.3390/geosciences13080251
Mario Rammler, Robin Zeh, David Bertermann
The water balance in the very shallow subsurface can be influenced by capillary rise due to a high groundwater table. Since moisture content is an important factor for the thermal conductivity of soils, this can also have an influence on the very shallow geothermal potential (vSGP). For this reason, the effect of spatial and seasonal variations in groundwater tables on moisture content in essential depth layers was investigated at a large-scale geothermal collector system (LSC) in Bad Nauheim, Germany. Quasi-one-dimensional simulations using the FEFLOW® finite-element simulation system were employed to determine site-dependent and seasonally varying moisture contents, from which thermal conductivities were derived. The model setup was previously validated based on recorded moisture contents. The simulations resulted in groundwater-related maximum seasonal and spatial differences in thermal conductivity of 0.14 W/(m∙K) in the LSC area. Larger differences of up to 0.21 W/(m∙K) resulted for different soil textures at the same depth due to different thermal properties. The results indicate that an efficient design of LSCs requires a sufficiently detailed subsurface exploration to account for small-scale variations in grain size distribution and groundwater level.
{"title":"Influence of Groundwater on the Very Shallow Geothermal Potential (vSGP) in the Area of a Large-Scale Geothermal Collector System (LSC)","authors":"Mario Rammler, Robin Zeh, David Bertermann","doi":"10.3390/geosciences13080251","DOIUrl":"https://doi.org/10.3390/geosciences13080251","url":null,"abstract":"The water balance in the very shallow subsurface can be influenced by capillary rise due to a high groundwater table. Since moisture content is an important factor for the thermal conductivity of soils, this can also have an influence on the very shallow geothermal potential (vSGP). For this reason, the effect of spatial and seasonal variations in groundwater tables on moisture content in essential depth layers was investigated at a large-scale geothermal collector system (LSC) in Bad Nauheim, Germany. Quasi-one-dimensional simulations using the FEFLOW® finite-element simulation system were employed to determine site-dependent and seasonally varying moisture contents, from which thermal conductivities were derived. The model setup was previously validated based on recorded moisture contents. The simulations resulted in groundwater-related maximum seasonal and spatial differences in thermal conductivity of 0.14 W/(m∙K) in the LSC area. Larger differences of up to 0.21 W/(m∙K) resulted for different soil textures at the same depth due to different thermal properties. The results indicate that an efficient design of LSCs requires a sufficiently detailed subsurface exploration to account for small-scale variations in grain size distribution and groundwater level.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"6 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80885739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-19DOI: 10.3390/geosciences13080252
Eva Fedato, G. Fubelli, L. Kurilla, Davide Tiranti
Landslides are the most common natural hazard in the Piemonte region (northwestern Italy). This study is focused on shallow landslides caused by the sliding of the surficial detrital-colluvial cover caused by rainfall and characterized by a sudden and fast evolution. This study investigates shallow landslide events compared with variables considered as main predisposing qualitative factors (lithology, pedology and land use) to obtain a zonation of shallow landslide susceptibility in a GIS environment. Additionally, wildfire occurrence is also evaluated as a further predisposing factor for shallow landslide initiation. The resulting susceptibility map shows a strong correlation between the first three variables and shallow landslide occurrence, while it shows a negligible, or very localized, relationship with wildfire occurrence. Through the intersection of the predisposing factors with the landslide data points, a map of homogeneous zones is obtained; each identified zone is characterized by uniform lithological, soil-type, and land-use characteristics. The shallow landslide density occurrence is computed for each zone, resulting in a four-range susceptibility map. The resulting susceptibility zones can be used to define and evaluate the hazard linked to shallow landslide events for civil protection and regional planning purposes.
{"title":"Predisposing Factors for Shallow Landslides in Alpine and Hilly/Apennines Environments: A Case Study from Piemonte, Italy","authors":"Eva Fedato, G. Fubelli, L. Kurilla, Davide Tiranti","doi":"10.3390/geosciences13080252","DOIUrl":"https://doi.org/10.3390/geosciences13080252","url":null,"abstract":"Landslides are the most common natural hazard in the Piemonte region (northwestern Italy). This study is focused on shallow landslides caused by the sliding of the surficial detrital-colluvial cover caused by rainfall and characterized by a sudden and fast evolution. This study investigates shallow landslide events compared with variables considered as main predisposing qualitative factors (lithology, pedology and land use) to obtain a zonation of shallow landslide susceptibility in a GIS environment. Additionally, wildfire occurrence is also evaluated as a further predisposing factor for shallow landslide initiation. The resulting susceptibility map shows a strong correlation between the first three variables and shallow landslide occurrence, while it shows a negligible, or very localized, relationship with wildfire occurrence. Through the intersection of the predisposing factors with the landslide data points, a map of homogeneous zones is obtained; each identified zone is characterized by uniform lithological, soil-type, and land-use characteristics. The shallow landslide density occurrence is computed for each zone, resulting in a four-range susceptibility map. The resulting susceptibility zones can be used to define and evaluate the hazard linked to shallow landslide events for civil protection and regional planning purposes.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"20 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82405009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3390/geosciences13080249
S. Saunders, Eric Tenor, Joseph Wakawa, John Nohou
It has long been recognised that volcanoes deform as fluids migrate, or change pressure in fractures and reservoirs within the volcano or in the crust below and around them. Calderas in particular have been shown to deform in complex and often major ways. The Rabaul Caldera is a type example of a caldera that undergoes complex and occasionally rapid deformation. This was first recognised by visual observations, and by the 1970s these movements were being monitored by traditional surveying techniques. Between 1972 and 1994, the centre of the caldera was uplifted by approximately 2 m. Following the 1994 eruption, it was indirectly found that parts of the caldera were uplifted ~6 m in the final hours before the eruption. It was realized that ‘real-time’ monitoring of the uplift may have given a better warning that an eruption was imminent. Traditional surveying techniques are time consuming; in the late 1990s, the only option for real-time monitoring was a Global Positioning System (GPS). By early 2000, a real-time GPS system was working at Rabaul Volcanological Observatory (RVO). Twenty-two years of continually recording differential GPS or Global Navigational Satellite System (GNSS) has proven the technique to be of immense importance. Often it has been the only parameter showing that unrest is happening. At times, inflation and deflation have warned of impending activity or recorded the emptying of the system; at other times, patterns of deformation have been more difficult to interpret. The technique has proven its worth in monitoring the status or general ‘health’ of the caldera, but for more precise forecasts it can only form part of an integrated monitoring system. Current testing of much cheaper receivers and improvements in telemetry mean the technique may soon be available for the more remote volcanoes of Papua New Guinea.
{"title":"Twenty-Two Years of GPS Monitoring at Rabaul Caldera, a Narrative History","authors":"S. Saunders, Eric Tenor, Joseph Wakawa, John Nohou","doi":"10.3390/geosciences13080249","DOIUrl":"https://doi.org/10.3390/geosciences13080249","url":null,"abstract":"It has long been recognised that volcanoes deform as fluids migrate, or change pressure in fractures and reservoirs within the volcano or in the crust below and around them. Calderas in particular have been shown to deform in complex and often major ways. The Rabaul Caldera is a type example of a caldera that undergoes complex and occasionally rapid deformation. This was first recognised by visual observations, and by the 1970s these movements were being monitored by traditional surveying techniques. Between 1972 and 1994, the centre of the caldera was uplifted by approximately 2 m. Following the 1994 eruption, it was indirectly found that parts of the caldera were uplifted ~6 m in the final hours before the eruption. It was realized that ‘real-time’ monitoring of the uplift may have given a better warning that an eruption was imminent. Traditional surveying techniques are time consuming; in the late 1990s, the only option for real-time monitoring was a Global Positioning System (GPS). By early 2000, a real-time GPS system was working at Rabaul Volcanological Observatory (RVO). Twenty-two years of continually recording differential GPS or Global Navigational Satellite System (GNSS) has proven the technique to be of immense importance. Often it has been the only parameter showing that unrest is happening. At times, inflation and deflation have warned of impending activity or recorded the emptying of the system; at other times, patterns of deformation have been more difficult to interpret. The technique has proven its worth in monitoring the status or general ‘health’ of the caldera, but for more precise forecasts it can only form part of an integrated monitoring system. Current testing of much cheaper receivers and improvements in telemetry mean the technique may soon be available for the more remote volcanoes of Papua New Guinea.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"48 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84363096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-18DOI: 10.3390/geosciences13080250
T. Abiye
Dolomitic aquifers are regarded as important groundwater storage sites in South Africa. Since these aquifers occur in a semi-arid climatic setting with low rainfall, often characterized by a torrential downpour and high potential evapotranspiration, the occurrence of active recharge is very limited (<5% of mean annual rainfall) as compared with the rainfall amount. The Malmani dolomites that have undergone greenschist metamorphism contain widespread caves and open karst structures at shallow levels, which facilitate groundwater recharge, circulation, storage and spring occurrence. However, the open karst structures receive recharge that passes through fractures in the vadose zone, which regulates the recharge through retardation and mixing processes. The integrated approach involving major ions and stable isotopes of water was applied to understand the recharge mechanism. The cave drip water samples were represented by the δ18O values of −3.95‰ to 3.32‰ and the δ2H values ranging from −11.0‰ to 27.7‰. On the other hand, the rainfall isotope results for δ18O fall between −16.11‰ and 5.38‰, while the δ2H values fall between −105.7‰ and 35.6‰. The most depleted Malapa springs contain δ18O of −5.64‰ and δ2H of −32.4‰. Based on the results, the mixing of water in the vadose zone could be considered as an indicator of the dominance of a slow-diffusive flow process in the aquifer as a result of poor fracture permeability. However, regional groundwater circulation through faults and dykes besides interconnected karst structures helps in generating highly productive karst springs in the region characterized by low rainfall.
{"title":"Groundwater Recharge and Circulation in Dolomitic Aquifer Located in Semi-Arid Region: Evidence from the δ18O and δ2H Record, South Africa","authors":"T. Abiye","doi":"10.3390/geosciences13080250","DOIUrl":"https://doi.org/10.3390/geosciences13080250","url":null,"abstract":"Dolomitic aquifers are regarded as important groundwater storage sites in South Africa. Since these aquifers occur in a semi-arid climatic setting with low rainfall, often characterized by a torrential downpour and high potential evapotranspiration, the occurrence of active recharge is very limited (<5% of mean annual rainfall) as compared with the rainfall amount. The Malmani dolomites that have undergone greenschist metamorphism contain widespread caves and open karst structures at shallow levels, which facilitate groundwater recharge, circulation, storage and spring occurrence. However, the open karst structures receive recharge that passes through fractures in the vadose zone, which regulates the recharge through retardation and mixing processes. The integrated approach involving major ions and stable isotopes of water was applied to understand the recharge mechanism. The cave drip water samples were represented by the δ18O values of −3.95‰ to 3.32‰ and the δ2H values ranging from −11.0‰ to 27.7‰. On the other hand, the rainfall isotope results for δ18O fall between −16.11‰ and 5.38‰, while the δ2H values fall between −105.7‰ and 35.6‰. The most depleted Malapa springs contain δ18O of −5.64‰ and δ2H of −32.4‰. Based on the results, the mixing of water in the vadose zone could be considered as an indicator of the dominance of a slow-diffusive flow process in the aquifer as a result of poor fracture permeability. However, regional groundwater circulation through faults and dykes besides interconnected karst structures helps in generating highly productive karst springs in the region characterized by low rainfall.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"68 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86440519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}