Pub Date : 2023-10-13DOI: 10.3390/geosciences13100305
Olga D. Mokrushina, Julia A. Mikhailova, Yakov A. Pakhomovsky
The 360–370 Ma old Lovozero massif (NW Russia) is a layered nepheline syenitic-foidolitic pluton. Despite its huge size (650 km2), the massif is surrounded by a narrow fenite aureole, and the most intensive fenitization is associated with pegmatites and hydrothermal veins that have intruded into the wall rocks. We studied petrography, petrochemistry, mineralogy and fluid inclusions along a profile crossing the direct contact of the Lovozero massif with country Archean gneiss. We found that the fluid responsible for fenitization was a heterogeneous mixture of two coexisting phases, an aqueous fluid with salinity 8.6–15.1 eq. wt.% NaCl and a methane fluid. The coexistence of these two fluids indicates immiscibility conditions at (or below) CH4–H2O solvus. The aqueous fluid affected both the endocontact alkaline rocks and country gneiss. In the endocontact, intense autometasomatic alterations of the early crystallized minerals occurred, for example, the natrolitization of nepheline and sodalite. Besides, the aqueous fluid transported Na2O, K2O, as well as P2O5, TiO2, H2O, F, Cl and S into the exocontact. These components were precipitated in the immediate vicinity of the massif contact, and the salinity of the aqueous fluid decreased to 0.53–3.06 eq. wt.% NaCl. We assume that there are two reasons for a narrow fenite aureole in the Lovozero massif: intense autometasomatic alterations and a decrease in the permeability of country rocks due to fluid immiscibility.
{"title":"Fenitization at the Lovozero Alkaline Massif, NW Russia: Composition and Evolution of Fluids","authors":"Olga D. Mokrushina, Julia A. Mikhailova, Yakov A. Pakhomovsky","doi":"10.3390/geosciences13100305","DOIUrl":"https://doi.org/10.3390/geosciences13100305","url":null,"abstract":"The 360–370 Ma old Lovozero massif (NW Russia) is a layered nepheline syenitic-foidolitic pluton. Despite its huge size (650 km2), the massif is surrounded by a narrow fenite aureole, and the most intensive fenitization is associated with pegmatites and hydrothermal veins that have intruded into the wall rocks. We studied petrography, petrochemistry, mineralogy and fluid inclusions along a profile crossing the direct contact of the Lovozero massif with country Archean gneiss. We found that the fluid responsible for fenitization was a heterogeneous mixture of two coexisting phases, an aqueous fluid with salinity 8.6–15.1 eq. wt.% NaCl and a methane fluid. The coexistence of these two fluids indicates immiscibility conditions at (or below) CH4–H2O solvus. The aqueous fluid affected both the endocontact alkaline rocks and country gneiss. In the endocontact, intense autometasomatic alterations of the early crystallized minerals occurred, for example, the natrolitization of nepheline and sodalite. Besides, the aqueous fluid transported Na2O, K2O, as well as P2O5, TiO2, H2O, F, Cl and S into the exocontact. These components were precipitated in the immediate vicinity of the massif contact, and the salinity of the aqueous fluid decreased to 0.53–3.06 eq. wt.% NaCl. We assume that there are two reasons for a narrow fenite aureole in the Lovozero massif: intense autometasomatic alterations and a decrease in the permeability of country rocks due to fluid immiscibility.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135854248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.3390/geosciences13100306
Florimond De Smedt, Prabin Kayastha, Megh Raj Dhital
Naïve Bayes classification is widely used for landslide susceptibility analysis, especially in the form of weights-of-evidence. However, when significant conditional dependence is present, the probabilities derived from weights-of-evidence are biased, resulting in an overestimation of landslide susceptibility. As a solution, this study presents a semi-naïve Bayesian method for landslide susceptibility mapping by combining logistic regression with weights-of-evidence. The utility of the method is tested by application to a case study in the Kulekhani River Basin in Central Nepal. The results show that the naïve Bayes approach with weights-of-evidence overpredicts the posterior probability of landslide occurrence by a factor of about two, while the semi-naïve Bayes approach, which uses logistic regression with weights-of-evidence, is unbiased and has more discriminatory power for landslide susceptibility mapping. In addition, the semi-naïve Bayes approach can statistically distinguish the main factors that promote landslides and allows us to estimate the model uncertainty by calculating the standard error of the predictions.
{"title":"Naïve and Semi-Naïve Bayesian Classification of Landslide Susceptibility Applied to the Kulekhani River Basin in Nepal as a Test Case","authors":"Florimond De Smedt, Prabin Kayastha, Megh Raj Dhital","doi":"10.3390/geosciences13100306","DOIUrl":"https://doi.org/10.3390/geosciences13100306","url":null,"abstract":"Naïve Bayes classification is widely used for landslide susceptibility analysis, especially in the form of weights-of-evidence. However, when significant conditional dependence is present, the probabilities derived from weights-of-evidence are biased, resulting in an overestimation of landslide susceptibility. As a solution, this study presents a semi-naïve Bayesian method for landslide susceptibility mapping by combining logistic regression with weights-of-evidence. The utility of the method is tested by application to a case study in the Kulekhani River Basin in Central Nepal. The results show that the naïve Bayes approach with weights-of-evidence overpredicts the posterior probability of landslide occurrence by a factor of about two, while the semi-naïve Bayes approach, which uses logistic regression with weights-of-evidence, is unbiased and has more discriminatory power for landslide susceptibility mapping. In addition, the semi-naïve Bayes approach can statistically distinguish the main factors that promote landslides and allows us to estimate the model uncertainty by calculating the standard error of the predictions.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135858901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.3390/geosciences13100308
Márton Veress
The landscape evolution of the glacier valleys of glaciokarsts is described. Depending on the character of coveredness (quality and thickness of the cover), altitude and the presence of karst features, different ways of geomorphic evolution occur adjacently. Most widespread is the denudation of bare surfaces by karren formation. During this process, beds are denuded, which is primarily controlled by the dip direction of the beds. The denudation of beds may modify the original cross-section of valleys. On terrains covered with caprock, the cover is becoming thinner by erosion processes since the debris is transported into the karst depressions and then from here into the karst. On terrains covered with limestone debris, if the cover is purely limestone debris, denudation is cyclical. The thick cover becomes thinner by dissolution and subsequently, the bedrock is dissolved by karren formation if water with dissolution capacity arrives at the bedrock. Then, the debris that developed on the bedrock makes the cover thicker from below. Reaching an adequate thickness, the process is repeated by the dissolution of the cover debris. In cirques, the superficial deposit is transported into the karst, which is supplied from the slopes, increasing the upfilling of the feature.
{"title":"Landscape Evolution in Glacier Valleys of Glaciokarsts","authors":"Márton Veress","doi":"10.3390/geosciences13100308","DOIUrl":"https://doi.org/10.3390/geosciences13100308","url":null,"abstract":"The landscape evolution of the glacier valleys of glaciokarsts is described. Depending on the character of coveredness (quality and thickness of the cover), altitude and the presence of karst features, different ways of geomorphic evolution occur adjacently. Most widespread is the denudation of bare surfaces by karren formation. During this process, beds are denuded, which is primarily controlled by the dip direction of the beds. The denudation of beds may modify the original cross-section of valleys. On terrains covered with caprock, the cover is becoming thinner by erosion processes since the debris is transported into the karst depressions and then from here into the karst. On terrains covered with limestone debris, if the cover is purely limestone debris, denudation is cyclical. The thick cover becomes thinner by dissolution and subsequently, the bedrock is dissolved by karren formation if water with dissolution capacity arrives at the bedrock. Then, the debris that developed on the bedrock makes the cover thicker from below. Reaching an adequate thickness, the process is repeated by the dissolution of the cover debris. In cirques, the superficial deposit is transported into the karst, which is supplied from the slopes, increasing the upfilling of the feature.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135856272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.3390/geosciences13100307
Sohail Iqbal, Norio Tanaka
A flood protection dike blends seamlessly with natural surroundings. These dikes stand as vital shields, mitigating the catastrophic effects of floods and preserving both communities and ecosystems. Their design not only aids in controlling water flow but also ensures minimal disruption to the local environment and its biodiversity. The present study used a uniform cohesionless sand with d50 = 0.9 mm to investigate the local scour process near a single combined dike (permeable and impermeable), replicating a flooding scenario. The experiments revealed that the maximum scour depth is likely to occur at the upstream edge of the dike, resembling a local scour observed around a scaled-down emerged dike in an open channel. The scour hole downstream of the dike gets shallower as it gets smaller, as do the horseshoe vortices that surround it. Additionally, by combining different pile shapes, the flow surrounding the dike was changed to reduce horseshoe vortices, resulting in scour length and depth reductions of 48% at the nose and 45% and 65% at the upstream and downstream dike–wall junction, respectively. Contrarily, the deposition height downstream of the dike had a reciprocal effect on permeability, which can severely harm the riverbank defense system. The combined dike demonstrates their ability to mitigate scour by reducing the flow swirls formed around the dike. The suggested solutions can slow down the rapid deterioration and shield the dike and other river training infrastructure from scour-caused failures.
{"title":"An Experimental Investigation on Dike Stabilization against Floods","authors":"Sohail Iqbal, Norio Tanaka","doi":"10.3390/geosciences13100307","DOIUrl":"https://doi.org/10.3390/geosciences13100307","url":null,"abstract":"A flood protection dike blends seamlessly with natural surroundings. These dikes stand as vital shields, mitigating the catastrophic effects of floods and preserving both communities and ecosystems. Their design not only aids in controlling water flow but also ensures minimal disruption to the local environment and its biodiversity. The present study used a uniform cohesionless sand with d50 = 0.9 mm to investigate the local scour process near a single combined dike (permeable and impermeable), replicating a flooding scenario. The experiments revealed that the maximum scour depth is likely to occur at the upstream edge of the dike, resembling a local scour observed around a scaled-down emerged dike in an open channel. The scour hole downstream of the dike gets shallower as it gets smaller, as do the horseshoe vortices that surround it. Additionally, by combining different pile shapes, the flow surrounding the dike was changed to reduce horseshoe vortices, resulting in scour length and depth reductions of 48% at the nose and 45% and 65% at the upstream and downstream dike–wall junction, respectively. Contrarily, the deposition height downstream of the dike had a reciprocal effect on permeability, which can severely harm the riverbank defense system. The combined dike demonstrates their ability to mitigate scour by reducing the flow swirls formed around the dike. The suggested solutions can slow down the rapid deterioration and shield the dike and other river training infrastructure from scour-caused failures.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135917981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.3390/geosciences13100304
Dominic Ek Leong Ong, Elizabeth Eu Mee Chong
Retaining walls are often used to construct basements and underground station boxes. This unique case study compares the field-measured contiguous bored pile (CBP) wall, surrounding geology, and hydrogeology or groundwater responses against the results using 2D and 3D numerical back analyses of a deep excavation project that experienced localized groundwater drawdown through the leaking ground anchor points. Site observations indicated that the ground anchor installation works had caused larger than expected through-the-wall leakages that subsequently triggered nearby ground and building settlements. In order to study the complex soil–structure interaction behavior, back analyses using a hybrid modeling technique of through-the-wall transient hydrogeological seepage and geomaterial stress-strain analyses was implemented. Through these soil-structure interaction back analyses, it was evidently revealed that the presence of the continuous capping beam was key in providing pile head restraints against the active earth pressures when the groundwater was depressed, as well as efficiently distributing the beneficial wall corner effects towards the middle CBP wall, leading to smaller bending moment magnitudes, characterized by their ‘S-shaped’ profiles. This behavior had been correctly diagnosed, as opposed to the ‘D-shaped’ bending moment profile usually only seen in a typical free-head cantilever wall in similar geology. The eventual results show that the wall and ground responses, i.e., deflection, bending moment, and settlement, were reasonably well predicted when compared against the instrumented field data, thus validating the reliability of the geotechnical modeling technique, key geological parameters, and hydrogeological fluctuations adopted in the 2D and 3D numerical models, as well as the beneficial contributions of the continuous capping beam, which tend to be overlooked during routine retaining wall design.
{"title":"Soil–Structure Interactions in a Capped CBP Wall System Triggered by Localized Hydrogeological Drawdown in a Complex Geological Setting","authors":"Dominic Ek Leong Ong, Elizabeth Eu Mee Chong","doi":"10.3390/geosciences13100304","DOIUrl":"https://doi.org/10.3390/geosciences13100304","url":null,"abstract":"Retaining walls are often used to construct basements and underground station boxes. This unique case study compares the field-measured contiguous bored pile (CBP) wall, surrounding geology, and hydrogeology or groundwater responses against the results using 2D and 3D numerical back analyses of a deep excavation project that experienced localized groundwater drawdown through the leaking ground anchor points. Site observations indicated that the ground anchor installation works had caused larger than expected through-the-wall leakages that subsequently triggered nearby ground and building settlements. In order to study the complex soil–structure interaction behavior, back analyses using a hybrid modeling technique of through-the-wall transient hydrogeological seepage and geomaterial stress-strain analyses was implemented. Through these soil-structure interaction back analyses, it was evidently revealed that the presence of the continuous capping beam was key in providing pile head restraints against the active earth pressures when the groundwater was depressed, as well as efficiently distributing the beneficial wall corner effects towards the middle CBP wall, leading to smaller bending moment magnitudes, characterized by their ‘S-shaped’ profiles. This behavior had been correctly diagnosed, as opposed to the ‘D-shaped’ bending moment profile usually only seen in a typical free-head cantilever wall in similar geology. The eventual results show that the wall and ground responses, i.e., deflection, bending moment, and settlement, were reasonably well predicted when compared against the instrumented field data, thus validating the reliability of the geotechnical modeling technique, key geological parameters, and hydrogeological fluctuations adopted in the 2D and 3D numerical models, as well as the beneficial contributions of the continuous capping beam, which tend to be overlooked during routine retaining wall design.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136097365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.3390/geosciences13100302
Clara Vasconcelos, Alexandra Cardoso, Tiago Ribeiro
Geoethics is a field of knowledge currently in full development. Researchers in geoethics are primarily concerned with the anthropogenic interaction with the Earth system. Due to its nature, geoethics holds particular importance in sustainable development due to its nature as it aims to promote ethical human behaviour that does not negatively impact the Earth system. In the present research, we implemented an intervention program addressing various issues related to the sustainability of the Earth system, such as the exploitation of geological resources, the management of geological risks, and the conservation and promotion of geopatrimony. The intervention program was applied to higher education students in the geosciences field. A sample of 90 students from various geosciences courses completed an initial questionnaire, revealing limited knowledge about geoethics. This study resorted to mixed-method research involving interviews with some students who volunteered (n = 52). The results showed that after applying the intervention programme, most students developed a deeper understanding of the topics addressed and recognised the contributions this scientific area can make to sustainable development. Additional research in geoethics education is essential to foster the integration of geoethics into the curricula of higher education institutions.
{"title":"A Geoethics Syllabus for Higher Education: Evaluation of an Intervention Programme","authors":"Clara Vasconcelos, Alexandra Cardoso, Tiago Ribeiro","doi":"10.3390/geosciences13100302","DOIUrl":"https://doi.org/10.3390/geosciences13100302","url":null,"abstract":"Geoethics is a field of knowledge currently in full development. Researchers in geoethics are primarily concerned with the anthropogenic interaction with the Earth system. Due to its nature, geoethics holds particular importance in sustainable development due to its nature as it aims to promote ethical human behaviour that does not negatively impact the Earth system. In the present research, we implemented an intervention program addressing various issues related to the sustainability of the Earth system, such as the exploitation of geological resources, the management of geological risks, and the conservation and promotion of geopatrimony. The intervention program was applied to higher education students in the geosciences field. A sample of 90 students from various geosciences courses completed an initial questionnaire, revealing limited knowledge about geoethics. This study resorted to mixed-method research involving interviews with some students who volunteered (n = 52). The results showed that after applying the intervention programme, most students developed a deeper understanding of the topics addressed and recognised the contributions this scientific area can make to sustainable development. Additional research in geoethics education is essential to foster the integration of geoethics into the curricula of higher education institutions.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.3390/geosciences13100303
Spyridon Mavroulis, Ioannis Argyropoulos, Emmanuel Vassilakis, Panayotis Carydis, Efthymis Lekkas
On 6 February 2023, East Anatolia was devastated by two major earthquakes resulting in hundreds of thousands of collapses and tens of thousands of human casualties. This paper investigates the factors related to building properties and earthquake environmental effects (EEEs) that contributed to the building damage grade and distribution in southeastern Turkey. In regards to the building construction properties, the loose enforcement of the building code, the random urban planning solutions and the poor construction standards are the main construction deficiencies that led to one of the largest disasters in Turkey’s recent history. Regarding geological factors, the triggering of primary and secondary EEEs largely shaped the grade and distribution of damage. Where coseismic surface ruptures intersected with the built environment, heavy to very heavy structural damage was observed. This was evident in many cases along the ruptured segments of the East Anatolian Fault Zone (EAFZ). Liquefaction observed close to waterbodies caused damage typical of building foundation load-bearing capacity loss. The earthquake-triggered landslides affected mainly mountainous and semi-mountainous settlements characterized with pre-earthquake high related susceptibility. The high susceptibility to generation of EEEs was extensively confirmed in many cases resulting in extensive damage. The provided information highlights the importance of such studies for hazard mitigation and disaster risk reduction.
{"title":"Earthquake Environmental Effects and Building Properties Controlling Damage Caused by the 6 February 2023 Earthquakes in East Anatolia","authors":"Spyridon Mavroulis, Ioannis Argyropoulos, Emmanuel Vassilakis, Panayotis Carydis, Efthymis Lekkas","doi":"10.3390/geosciences13100303","DOIUrl":"https://doi.org/10.3390/geosciences13100303","url":null,"abstract":"On 6 February 2023, East Anatolia was devastated by two major earthquakes resulting in hundreds of thousands of collapses and tens of thousands of human casualties. This paper investigates the factors related to building properties and earthquake environmental effects (EEEs) that contributed to the building damage grade and distribution in southeastern Turkey. In regards to the building construction properties, the loose enforcement of the building code, the random urban planning solutions and the poor construction standards are the main construction deficiencies that led to one of the largest disasters in Turkey’s recent history. Regarding geological factors, the triggering of primary and secondary EEEs largely shaped the grade and distribution of damage. Where coseismic surface ruptures intersected with the built environment, heavy to very heavy structural damage was observed. This was evident in many cases along the ruptured segments of the East Anatolian Fault Zone (EAFZ). Liquefaction observed close to waterbodies caused damage typical of building foundation load-bearing capacity loss. The earthquake-triggered landslides affected mainly mountainous and semi-mountainous settlements characterized with pre-earthquake high related susceptibility. The high susceptibility to generation of EEEs was extensively confirmed in many cases resulting in extensive damage. The provided information highlights the importance of such studies for hazard mitigation and disaster risk reduction.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135044159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-07DOI: 10.3390/geosciences13100301
Jesús F. Jordá Pardo, David Álvarez-Alonso, María de Andrés-Herrero, Daniel Ballesteros, Pilar Carral, Aitor Hevia-Carrillo, Jorge Sanjurjo, Santiago Giralt, Montserrat Jiménez-Sánchez
El Olivo Cave (Pruvia de Arriba, Llanera, Asturias, Spain) is a small karst cave located in the Aboño River basin and formed in the Cretaceous limestone of the Mesozoic cover of the Cantabrian Mountains (north of the Iberian Peninsula). It contains an important upper Pleistocene sedimentary, archaeological, and paleontological record, with abundant technological evidence and faunal remains. The archaeological record shows a first occupation that could correspond to the Middle Paleolithic and a second occupation in the Middle Magdalenian. The stratigraphic sequence inside and outside the cave was studied with geoarchaeological methodology. In this paper, the lithostratigraphic sequence is analyzed, and the data from the granulometric, mineralogical, edaphological, and radiometric analyses are presented. The results of these analyses enable an accurate interpretation of both the lithostratigraphy of the deposit and the processes responsible for its formation and subsequent evolution. The available numerical dates allow us to locate the first sedimentation episode in the cave in OIS 7a, in the Middle Pleistocene, the base of the outer fluvial sedimentation in the cold OIS 3a stage of the Upper Pleistocene and the Magdalenian occupation in the Last Glacial Maximum (OIS 2) at the end of the Late Pleistocene.
El Olivo洞穴(Pruvia de Arriba, Llanera,西班牙阿斯图里亚斯)是位于Aboño河流域的一个小型岩溶洞穴,形成于坎塔布连山脉(伊比利亚半岛北部)中生代覆盖的白垩纪石灰岩中。它包含了重要的上更新世沉积、考古和古生物记录,有丰富的技术证据和动物遗骸。考古记录显示,第一次职业可能对应于旧石器时代中期,第二次职业可能对应于马格达莱尼中期。用地质考古方法对洞内外层序进行了研究。本文分析了岩石地层层序,并给出了颗粒学、矿物学、土壤学和辐射学等方面的分析资料。这些分析的结果使我们能够准确地解释该矿床的岩石地层学及其形成和随后演化的过程。利用现有的数值资料,确定了中更新世ois7a期洞内第一次沉积期、上更新世ois3a期冷期外河流沉积期的基底和晚更新世末末盛冰期(ois2)末马达莱期的占领期。
{"title":"Geomorphology, Geoarchaeology, and Geochronology of the Upper Pleistocene Archaeological Site of El Olivo Cave (Llanera, Asturias, Northern Spain)","authors":"Jesús F. Jordá Pardo, David Álvarez-Alonso, María de Andrés-Herrero, Daniel Ballesteros, Pilar Carral, Aitor Hevia-Carrillo, Jorge Sanjurjo, Santiago Giralt, Montserrat Jiménez-Sánchez","doi":"10.3390/geosciences13100301","DOIUrl":"https://doi.org/10.3390/geosciences13100301","url":null,"abstract":"El Olivo Cave (Pruvia de Arriba, Llanera, Asturias, Spain) is a small karst cave located in the Aboño River basin and formed in the Cretaceous limestone of the Mesozoic cover of the Cantabrian Mountains (north of the Iberian Peninsula). It contains an important upper Pleistocene sedimentary, archaeological, and paleontological record, with abundant technological evidence and faunal remains. The archaeological record shows a first occupation that could correspond to the Middle Paleolithic and a second occupation in the Middle Magdalenian. The stratigraphic sequence inside and outside the cave was studied with geoarchaeological methodology. In this paper, the lithostratigraphic sequence is analyzed, and the data from the granulometric, mineralogical, edaphological, and radiometric analyses are presented. The results of these analyses enable an accurate interpretation of both the lithostratigraphy of the deposit and the processes responsible for its formation and subsequent evolution. The available numerical dates allow us to locate the first sedimentation episode in the cave in OIS 7a, in the Middle Pleistocene, the base of the outer fluvial sedimentation in the cold OIS 3a stage of the Upper Pleistocene and the Magdalenian occupation in the Last Glacial Maximum (OIS 2) at the end of the Late Pleistocene.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135301852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-06DOI: 10.3390/geosciences13100300
Manuel Roda, Maria Iole Spalla, Marco Filippi, Jean-Marc Lardeaux, Gisella Rebay, Alessandro Regorda, Davide Zanoni, Michele Zucali, Guido Gosso
Lithospheric slices preserving pre-Alpine metamorphic imprints are widely described in the Alps. The Variscan parageneses recorded in continental, oceanic, and mantle rocks suggest a heterogeneous metamorphic evolution across the Alpine domains. In this contribution, we collect quantitative metamorphic imprints and ages of samples that document Variscan tectonometamorphic evolution from 420 to 290 Ma. Based on age distribution and metamorphic imprint, three main stages can be identified for the Variscan evolution of the Alpine region: Devonian (early Variscan), late Devonian–late Carboniferous (middle Variscan), and late Carboniferous–early Permian (late Variscan). The dominant metamorphic imprint during Devonian times was recorded under eclogite and HP granulite facies conditions in the Helvetic–Dauphinois–Provençal, Penninic, and eastern Austroalpine domains and under Ep-amphibolite facies conditions in the Southalpine domain. These metamorphic conditions correspond to a mean Franciscan-type metamorphic field gradient. During the late Devonian–late Carboniferous period, in the Helvetic–Dauphinois–Provençal and central Austroalpine domains, the dominant metamorphic imprint developed under eclogite and HP granulite facies conditions with a Franciscan field gradient. Amphibolite facies conditions dominated in the Penninic and Southalpine domains and corresponded to a Barrovian-type metamorphic field gradient. At the Carboniferous–Permian transition, the metamorphic imprints mainly developed under amphibolite-LP granulite facies conditions in all domains of the Alps, corresponding to a mean metamorphic field gradient at the transition between Barrovian and Abukuma (Buchan) types. This distribution of the metamorphic imprints suggests a pre-Alpine burial of oceanic and continental crust underneath a continental upper plate, in a scenario of single or multiple oceanic subductions preceding the continental collision. Both scenarios are discussed and revised considering the consistency of collected data and a comparison with numerical models. Finally, the distribution of Devonian to Triassic geothermal gradients agrees with a sequence of events that starts with subduction, continues with continental collision, and ends with the continental thinning announcing the Jurassic oceanization.
{"title":"Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance","authors":"Manuel Roda, Maria Iole Spalla, Marco Filippi, Jean-Marc Lardeaux, Gisella Rebay, Alessandro Regorda, Davide Zanoni, Michele Zucali, Guido Gosso","doi":"10.3390/geosciences13100300","DOIUrl":"https://doi.org/10.3390/geosciences13100300","url":null,"abstract":"Lithospheric slices preserving pre-Alpine metamorphic imprints are widely described in the Alps. The Variscan parageneses recorded in continental, oceanic, and mantle rocks suggest a heterogeneous metamorphic evolution across the Alpine domains. In this contribution, we collect quantitative metamorphic imprints and ages of samples that document Variscan tectonometamorphic evolution from 420 to 290 Ma. Based on age distribution and metamorphic imprint, three main stages can be identified for the Variscan evolution of the Alpine region: Devonian (early Variscan), late Devonian–late Carboniferous (middle Variscan), and late Carboniferous–early Permian (late Variscan). The dominant metamorphic imprint during Devonian times was recorded under eclogite and HP granulite facies conditions in the Helvetic–Dauphinois–Provençal, Penninic, and eastern Austroalpine domains and under Ep-amphibolite facies conditions in the Southalpine domain. These metamorphic conditions correspond to a mean Franciscan-type metamorphic field gradient. During the late Devonian–late Carboniferous period, in the Helvetic–Dauphinois–Provençal and central Austroalpine domains, the dominant metamorphic imprint developed under eclogite and HP granulite facies conditions with a Franciscan field gradient. Amphibolite facies conditions dominated in the Penninic and Southalpine domains and corresponded to a Barrovian-type metamorphic field gradient. At the Carboniferous–Permian transition, the metamorphic imprints mainly developed under amphibolite-LP granulite facies conditions in all domains of the Alps, corresponding to a mean metamorphic field gradient at the transition between Barrovian and Abukuma (Buchan) types. This distribution of the metamorphic imprints suggests a pre-Alpine burial of oceanic and continental crust underneath a continental upper plate, in a scenario of single or multiple oceanic subductions preceding the continental collision. Both scenarios are discussed and revised considering the consistency of collected data and a comparison with numerical models. Finally, the distribution of Devonian to Triassic geothermal gradients agrees with a sequence of events that starts with subduction, continues with continental collision, and ends with the continental thinning announcing the Jurassic oceanization.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"300 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134945146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Variability in lithology and weathering degree affects physical and mechanical properties of rocks. In this study, we investigated the relationships between weathering degree and engineering geological properties of trachydacitic volcanic rocks from Monte Amiata (central Italy) by coupling field and laboratory analyses. We collected in situ Schmidt hammer tests in the field. We evaluated weathering quantifying the percentage of secondary minerals through thermal analysis in the laboratory. We also determined dry density (ρd), specific gravity of solids (Gs), porosity (n) and two-dimensional (2D) porosity as resulted from scanning electron microscopy investigations. The results of our study indicate a negative linear correlation between Schmidt hammer rebound values and secondary mineral percentage. This correlation provides a tool to quantitatively estimate the deterioration of rock uniaxial compressive strength (UCS) as weathering increases. Moreover, thermal analysis turned out to be a quantitative and reproducible method to evaluate weathering degree of magmatic rocks.
{"title":"Weathering Effects on Engineering Geological Properties of Trachydacitic Volcanic Rocks from the Monte Amiata (Southern Tuscany, Italy)","authors":"Enrico D’Addario, Giovanna Giorgetti, Claudia Magrini, Leonardo Disperati","doi":"10.3390/geosciences13100299","DOIUrl":"https://doi.org/10.3390/geosciences13100299","url":null,"abstract":"Variability in lithology and weathering degree affects physical and mechanical properties of rocks. In this study, we investigated the relationships between weathering degree and engineering geological properties of trachydacitic volcanic rocks from Monte Amiata (central Italy) by coupling field and laboratory analyses. We collected in situ Schmidt hammer tests in the field. We evaluated weathering quantifying the percentage of secondary minerals through thermal analysis in the laboratory. We also determined dry density (ρd), specific gravity of solids (Gs), porosity (n) and two-dimensional (2D) porosity as resulted from scanning electron microscopy investigations. The results of our study indicate a negative linear correlation between Schmidt hammer rebound values and secondary mineral percentage. This correlation provides a tool to quantitatively estimate the deterioration of rock uniaxial compressive strength (UCS) as weathering increases. Moreover, thermal analysis turned out to be a quantitative and reproducible method to evaluate weathering degree of magmatic rocks.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135352275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}