Pub Date : 2020-06-07DOI: 10.15447//sfews.2020v18iss2art5
Eva Dusek Jennings, A. Hendrix
Spawn timing in anadromous Pacific salmon may be especially sensitive to environmental cues such as river temperature and flow regimes. In this study, we explored correlations between peak spawn timing and water temperature in endangered Sacramento River winter-run Chinook Salmon. In recent drought years, rising water temperatures during egg incubation have negatively affected the winter-run Chinook Salmon population. This paper seeks to understand how winter-run spawn timing may be affected by temperatures during the staging period prior to spawning, and how water releases from Shasta Dam might affect these dynamics. We fit a proportional-odds logistic regression model to evaluate annual spawn timing as a function of average temperatures in April and May below Keswick Dam. While the start date of spawning remains relatively constant from year to year, the timing of peak spawning varies annually. Cool springtime temperatures trigger winter-run Chinook Salmon to spawn earlier, whereas warm springtime temperatures trigger fish to spawn later. Before dam construction, winter-run Chinook Salmon spawned in cool, spring-fed streams that are now inaccessible to migrating salmonids. In their natal spawning grounds, temperature-driven spawn timing would have primarily ensured sufficient time for egg maturation in cool years, while secondarily preventing egg and alevin mortality in warm years. In the current winter-run spawning grounds, the relationship between temperature and spawn timing may have important applications to management of Shasta Dam water releases, especially during conditions when thermal mortality can affect developing winter-run Chinook Salmon eggs.
{"title":"Spawn Timing of Winter-Run Chinook Salmon in the Upper Sacramento River","authors":"Eva Dusek Jennings, A. Hendrix","doi":"10.15447//sfews.2020v18iss2art5","DOIUrl":"https://doi.org/10.15447//sfews.2020v18iss2art5","url":null,"abstract":"Spawn timing in anadromous Pacific salmon may be especially sensitive to environmental cues such as river temperature and flow regimes. In this study, we explored correlations between peak spawn timing and water temperature in endangered Sacramento River winter-run Chinook Salmon. In recent drought years, rising water temperatures during egg incubation have negatively affected the winter-run Chinook Salmon population. This paper seeks to understand how winter-run spawn timing may be affected by temperatures during the staging period prior to spawning, and how water releases from Shasta Dam might affect these dynamics. We fit a proportional-odds logistic regression model to evaluate annual spawn timing as a function of average temperatures in April and May below Keswick Dam. While the start date of spawning remains relatively constant from year to year, the timing of peak spawning varies annually. Cool springtime temperatures trigger winter-run Chinook Salmon to spawn earlier, whereas warm springtime temperatures trigger fish to spawn later. Before dam construction, winter-run Chinook Salmon spawned in cool, spring-fed streams that are now inaccessible to migrating salmonids. In their natal spawning grounds, temperature-driven spawn timing would have primarily ensured sufficient time for egg maturation in cool years, while secondarily preventing egg and alevin mortality in warm years. In the current winter-run spawning grounds, the relationship between temperature and spawn timing may have important applications to management of Shasta Dam water releases, especially during conditions when thermal mortality can affect developing winter-run Chinook Salmon eggs.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45933975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-07DOI: 10.15447/SFEWS.2021V19ISS2ART4
J. Romine, R. W. Perry, P. Stumpner, A. Blake, J. R. Burau
Survival of juvenile salmonids in the Sacramento–San Joaquin Delta (Delta) varies by migration route, and thus the proportion of fish that use each route affects overall survival through the Delta. Understanding factors that drive routing at channel junctions along the Sacramento River is therefore critical to devising management strategies that maximize survival. Here, we examine entrainment of acoustically tagged juvenile Chinook Salmon into Sutter and Steamboat sloughs from the Sacramento River. Because these sloughs divert fish away from the downstream entrances of the Delta Cross Channel and Georgiana Slough (where fish access the low-survival region of the interior Delta), management actions to increase fish entrainment into Sutter and Steamboat sloughs are being investigated to increase through-Delta survival. Previous studies suggest that fish generally “go with the flow”—as net flow into a divergence increases, the proportion of fish that enter that divergence correspondingly increases. However, complex tidal hydrodynamics at sub-daily time-scales may be decoupled from net flow. Therefore, we modeled routing of acoustic tagged juvenile salmon as a function of tidally varying hydrodynamic data, which was collected using temporary gaging stations deployed between March and May of 2014. Our results indicate that discharge, the proportion of flow that entered the slough, and the rate of change of flow were good predictors of an individual’s probability of being entrained. In addition, interactions between discharge and the proportion of flow revealed a non-linear relationship between flow and entrainment probability. We found that the highest proportions of fish are likely to be entrained into Steamboat Slough and Sutter Slough on the ascending and descending limbs of the tidal cycle, when flow changes from positive to negative. Our findings characterize how patterns of entrainment vary with tidal flow fluctuations, providing information critical for understanding the potential effect of management actions (e.g., fish guidance structures) to modify routing probabilities at this location.
{"title":"Effects of Tidally Varying River Flow on Entrainment of Juvenile Salmon into Sutter and Steamboat Sloughs","authors":"J. Romine, R. W. Perry, P. Stumpner, A. Blake, J. R. Burau","doi":"10.15447/SFEWS.2021V19ISS2ART4","DOIUrl":"https://doi.org/10.15447/SFEWS.2021V19ISS2ART4","url":null,"abstract":"Survival of juvenile salmonids in the Sacramento–San Joaquin Delta (Delta) varies by migration route, and thus the proportion of fish that use each route affects overall survival through the Delta. Understanding factors that drive routing at channel junctions along the Sacramento River is therefore critical to devising management strategies that maximize survival. Here, we examine entrainment of acoustically tagged juvenile Chinook Salmon into Sutter and Steamboat sloughs from the Sacramento River. Because these sloughs divert fish away from the downstream entrances of the Delta Cross Channel and Georgiana Slough (where fish access the low-survival region of the interior Delta), management actions to increase fish entrainment into Sutter and Steamboat sloughs are being investigated to increase through-Delta survival. Previous studies suggest that fish generally “go with the flow”—as net flow into a divergence increases, the proportion of fish that enter that divergence correspondingly increases. However, complex tidal hydrodynamics at sub-daily time-scales may be decoupled from net flow. Therefore, we modeled routing of acoustic tagged juvenile salmon as a function of tidally varying hydrodynamic data, which was collected using temporary gaging stations deployed between March and May of 2014. Our results indicate that discharge, the proportion of flow that entered the slough, and the rate of change of flow were good predictors of an individual’s probability of being entrained. In addition, interactions between discharge and the proportion of flow revealed a non-linear relationship between flow and entrainment probability. We found that the highest proportions of fish are likely to be entrained into Steamboat Slough and Sutter Slough on the ascending and descending limbs of the tidal cycle, when flow changes from positive to negative. Our findings characterize how patterns of entrainment vary with tidal flow fluctuations, providing information critical for understanding the potential effect of management actions (e.g., fish guidance structures) to modify routing probabilities at this location.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44826493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-07DOI: 10.15447/sfews.2020v18iss2art4
Dylan K. Stompe, P. Moyle, A. Kruger, J. Durand
Many fishes in the San Francisco Estuary have suffered declines in recent decades, as shown by numerous long-term monitoring programs. A long-term monitoring program, such as the Interagency Ecological Program, comprises a suite of surveys, each conducted by a state or federal agency or academic institution. These types of programs have produced rich data sets that are useful for tracking species trends over time. Problems arise from drawing conclusions based on one or few surveys because each survey samples a different subset of species or reflects different spatial or temporal trends in abundance. The challenges in using data sets from these surveys for comparative purposes stem from methodological differences, magnitude of data, incompatible data formats, and end-user preference for familiar surveys. To improve the utility of these data sets and encourage multi-survey analyses, we quantitatively rate these surveys based on their ability to represent species trends, present a methodology for integrating long-term data sets, and provide examples that highlight the importance of expanded analyses. We identify areas and species that are under-sampled, and compare fish salvage data from large water export facilities with survey data. Our analysis indicates that while surveys are redundant for some species, no two surveys are completely duplicative. Differing trends become evident when considering individual and aggregate survey data, because they imply spatial, seasonal, or gear-dependent catch. Our quantitative ratings and integrated data set allow for improved and better-informed comparisons of species trends across surveys, while highlighting the importance of the current array of sampling methodologies.
{"title":"Comparing and Integrating Fish Surveys in the San Francisco Estuary: Why Diverse Long-Term Monitoring Programs are Important","authors":"Dylan K. Stompe, P. Moyle, A. Kruger, J. Durand","doi":"10.15447/sfews.2020v18iss2art4","DOIUrl":"https://doi.org/10.15447/sfews.2020v18iss2art4","url":null,"abstract":"Many fishes in the San Francisco Estuary have suffered declines in recent decades, as shown by numerous long-term monitoring programs. A long-term monitoring program, such as the Interagency Ecological Program, comprises a suite of surveys, each conducted by a state or federal agency or academic institution. These types of programs have produced rich data sets that are useful for tracking species trends over time. Problems arise from drawing conclusions based on one or few surveys because each survey samples a different subset of species or reflects different spatial or temporal trends in abundance. The challenges in using data sets from these surveys for comparative purposes stem from methodological differences, magnitude of data, incompatible data formats, and end-user preference for familiar surveys. To improve the utility of these data sets and encourage multi-survey analyses, we quantitatively rate these surveys based on their ability to represent species trends, present a methodology for integrating long-term data sets, and provide examples that highlight the importance of expanded analyses. We identify areas and species that are under-sampled, and compare fish salvage data from large water export facilities with survey data. Our analysis indicates that while surveys are redundant for some species, no two surveys are completely duplicative. Differing trends become evident when considering individual and aggregate survey data, because they imply spatial, seasonal, or gear-dependent catch. Our quantitative ratings and integrated data set allow for improved and better-informed comparisons of species trends across surveys, while highlighting the importance of the current array of sampling methodologies.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15447/sfews.2020v18iss2art4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46626500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-07DOI: 10.15447/sfews.2020v18iss2art2
J. Durand, F. Bombardelli, W. Fleenor, Y. Henneberry, J. Herman, C. Jeffres, M. Leinfelder-Miles, Robert A. Lusardi, Amber D. Manfree, Josué Medellín-Azura, Brett Milligan, P. Moyle, J. Lund
This paper reviews environmental management and the use of science in the Sacramento–San Joaquin Delta during California’s 2012–2016 drought. The review is based on available reports and data, and guided by discussions with 27 agency staff, stake-holders, and researchers. Key management actions for the drought are discussed relative to four major drought water management priorities stated by water managers: support public health and safety, control saltwater intrusion, preserve cold water in Shasta Reservoir, and maintain minimum protections for endangered species. Despite some success in streamlining communication through interagency task forces, conflicting management mandates sometimes led to confusion about priorities and actions during the drought (i.e., water delivery, the environment, etc.). This report highlights several lessons and offers suggestions to improve management for future droughts. Recommendations include use of pre-drought warnings, timely drought declarations, improved transparency and useful documentation, better scientific preparation, development of a Delta drought management plan (including preparing for salinity barriers), and improved water accounting. Finally, better environmental outcomes occur when resources are applied to improving habitat and bolstering populations of native species during inter-drought periods, well before stressful conditions occur.
{"title":"Drought and the Sacramento–San Joaquin Delta, 2012–2016: Environmental Review and Lessons","authors":"J. Durand, F. Bombardelli, W. Fleenor, Y. Henneberry, J. Herman, C. Jeffres, M. Leinfelder-Miles, Robert A. Lusardi, Amber D. Manfree, Josué Medellín-Azura, Brett Milligan, P. Moyle, J. Lund","doi":"10.15447/sfews.2020v18iss2art2","DOIUrl":"https://doi.org/10.15447/sfews.2020v18iss2art2","url":null,"abstract":"This paper reviews environmental management and the use of science in the Sacramento–San Joaquin Delta during California’s 2012–2016 drought. The review is based on available reports and data, and guided by discussions with 27 agency staff, stake-holders, and researchers. Key management actions for the drought are discussed relative to four major drought water management priorities stated by water managers: support public health and safety, control saltwater intrusion, preserve cold water in Shasta Reservoir, and maintain minimum protections for endangered species. Despite some success in streamlining communication through interagency task forces, conflicting management mandates sometimes led to confusion about priorities and actions during the drought (i.e., water delivery, the environment, etc.). This report highlights several lessons and offers suggestions to improve management for future droughts. Recommendations include use of pre-drought warnings, timely drought declarations, improved transparency and useful documentation, better scientific preparation, development of a Delta drought management plan (including preparing for salinity barriers), and improved water accounting. Finally, better environmental outcomes occur when resources are applied to improving habitat and bolstering populations of native species during inter-drought periods, well before stressful conditions occur.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15447/sfews.2020v18iss2art2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46534164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-07DOI: 10.15447/SFEWS.2021V19ISS2ART1
Bruce Herbold, Independent Consultant, P. Moyle, A. Mueller–Solger, Ted R. Sommer
{"title":"In Honor of Dr. Larry R. Brown","authors":"Bruce Herbold, Independent Consultant, P. Moyle, A. Mueller–Solger, Ted R. Sommer","doi":"10.15447/SFEWS.2021V19ISS2ART1","DOIUrl":"https://doi.org/10.15447/SFEWS.2021V19ISS2ART1","url":null,"abstract":"","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41585890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-07DOI: 10.15447/SFEWS.2021V19ISS2ART2
R. Norgaard, J. Wiens, S. Brandt, E. Canuel, T. Collier, V. Dale, H. Fernando, T. Holzer, S. Luoma, V. Resh
Ecosystems in the Sacramento–San Joaquin Delta are changing rapidly, as are ecosystems around the world. Extreme events are becoming more frequent and thresholds are likely to be crossed more often, creating greater uncertainty about future conditions. The accelerating speed of change means that ecological systems may not remain stable long enough for scientists to understand them, much less use their research findings to inform policy and management. Faced with these challenges, those involved in science, policy, and management must adapt and change and anticipate what the ecosystems may be like in the future. We highlight several ways of looking ahead—scenario analyses, horizon scanning, expert elicitation, and dynamic planning—and suggest that recent advances in distributional ecology, disturbance ecology, resilience thinking, and our increased understanding of coupled human–natural systems may provide fresh ways of thinking about more rapid change in the future. To accelerate forward-looking science, policy, and management in the Delta, we propose that the State of California create a Delta Science Visioning Process to fully and openly assess the challenges of more rapid change to science, policy, and management and propose appropriate solutions, through legislation, if needed.
{"title":"Preparing Scientists, Policymakers, and Managers for a Fast-Forward Future","authors":"R. Norgaard, J. Wiens, S. Brandt, E. Canuel, T. Collier, V. Dale, H. Fernando, T. Holzer, S. Luoma, V. Resh","doi":"10.15447/SFEWS.2021V19ISS2ART2","DOIUrl":"https://doi.org/10.15447/SFEWS.2021V19ISS2ART2","url":null,"abstract":"Ecosystems in the Sacramento–San Joaquin Delta are changing rapidly, as are ecosystems around the world. Extreme events are becoming more frequent and thresholds are likely to be crossed more often, creating greater uncertainty about future conditions. The accelerating speed of change means that ecological systems may not remain stable long enough for scientists to understand them, much less use their research findings to inform policy and management. Faced with these challenges, those involved in science, policy, and management must adapt and change and anticipate what the ecosystems may be like in the future. We highlight several ways of looking ahead—scenario analyses, horizon scanning, expert elicitation, and dynamic planning—and suggest that recent advances in distributional ecology, disturbance ecology, resilience thinking, and our increased understanding of coupled human–natural systems may provide fresh ways of thinking about more rapid change in the future. To accelerate forward-looking science, policy, and management in the Delta, we propose that the State of California create a Delta Science Visioning Process to fully and openly assess the challenges of more rapid change to science, policy, and management and propose appropriate solutions, through legislation, if needed.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43277150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Open Data Framework for the San Francisco Estuary","authors":"M. Baerwald, Brittany Davis, Sarah Lesmeister, B. Mahardja, Rachel Pisor, Jenna Rinde, B. Schreier, V. Tobias","doi":"10.15447/sfews.2020v18iss2art1","DOIUrl":"https://doi.org/10.15447/sfews.2020v18iss2art1","url":null,"abstract":"Author(s): Baerwald, Melinda R.; Davis, Brittany E.; Lesmeister, Sarah; Mahardja, Brian; Pisor, Rachel; Rinde, Jenna; Schreier, Brian; Tobias, Vanessa | Abstract:","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15447/sfews.2020v18iss2art1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42263149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-01DOI: 10.15447/sfews.2020v18iss2art3
B. Mahardja, A. Goodman, Alisha M. Goodbla, A. Schreier, Catherine Johnston, R. Fuller, Dave Contreras, L. McMartin
Biological invasion by non-native species has been identified as one of the major threats to native fish communities worldwide. The fish community of San Francisco Estuary is no exception, as the estuary has been recognized as one of the most invaded on the planet and the system has been impacted significantly by these invasions. Here, we summarize the introduction and probable establishment of a new species in the Sacramento–San Joaquin Delta, the Bluefin Killifish (Lucania goodei), as discovered by the US Fish and Wildlife Service Delta Juvenile Fish Monitoring Program (DJFMP). The DJFMP has conducted a large-scale beach seine survey since 1976, and it is the longest-running monitoring program in the San Francisco Estuary that extensively monitors the shallow-water nearshore habitat. Possibly introduced as discarded aquarium fish within the vicinity of the Delta Cross Channel, Bluefin Killifish is a close relative of the Rainwater Killifish (Lucania parva), another non-native fish species that has been present in the San Francisco Estuary system for decades. Studies in their native range suggest that Bluefin Killifish will fill a similar niche to Rainwater Killifish, albeit with a more freshwater distribution. The potential ecological impact of Bluefin Killifish remains unclear in the absence of additional studies. However, we have been able to track the spread of the species within the Sacramento–San Joaquin Delta through the existence of long-term monitoring programs. Our findings demonstrate the value of monitoring across various habitats for the early detection and proactive management of invasive species.
{"title":"Introduction of Bluefin Killifish (Lucania goodei) into the Sacramento–San Joaquin Delta","authors":"B. Mahardja, A. Goodman, Alisha M. Goodbla, A. Schreier, Catherine Johnston, R. Fuller, Dave Contreras, L. McMartin","doi":"10.15447/sfews.2020v18iss2art3","DOIUrl":"https://doi.org/10.15447/sfews.2020v18iss2art3","url":null,"abstract":"Biological invasion by non-native species has been identified as one of the major threats to native fish communities worldwide. The fish community of San Francisco Estuary is no exception, as the estuary has been recognized as one of the most invaded on the planet and the system has been impacted significantly by these invasions. Here, we summarize the introduction and probable establishment of a new species in the Sacramento–San Joaquin Delta, the Bluefin Killifish (Lucania goodei), as discovered by the US Fish and Wildlife Service Delta Juvenile Fish Monitoring Program (DJFMP). The DJFMP has conducted a large-scale beach seine survey since 1976, and it is the longest-running monitoring program in the San Francisco Estuary that extensively monitors the shallow-water nearshore habitat. Possibly introduced as discarded aquarium fish within the vicinity of the Delta Cross Channel, Bluefin Killifish is a close relative of the Rainwater Killifish (Lucania parva), another non-native fish species that has been present in the San Francisco Estuary system for decades. Studies in their native range suggest that Bluefin Killifish will fill a similar niche to Rainwater Killifish, albeit with a more freshwater distribution. The potential ecological impact of Bluefin Killifish remains unclear in the absence of additional studies. However, we have been able to track the spread of the species within the Sacramento–San Joaquin Delta through the existence of long-term monitoring programs. Our findings demonstrate the value of monitoring across various habitats for the early detection and proactive management of invasive species.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15447/sfews.2020v18iss2art3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47004916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.15447/sfews.2020v18iss1art3
Dalton J. Hance, R. W. Perry, J. R. Burau, A. Blake, P. Stumpner, Xiaochun Wang, Adam C. Pope
Author(s): Hance, Dalton J.; Perry, Russell W.; Burau, Jon R.; Blake, Aaron; Stumpner, Paul; Wang, Xiaochung; Pope, Adam | Abstract: Because fish that enter the interior Delta have poorer survival than those emigrating via the Sacramento River, understanding the mechanisms that drive entrainment rates at side channel junctions is critically important for the management of imperiled juvenile salmon. Here, we implement a previously proposed process-based conceptual model to study entrainment rates based on three linked elements: the entrainment zone, critical streakline, and cross-sectional distribution of fish. The critical streakline is the location along a channel cross-section immediately upstream of a junction that forms the spatial divide between parcels of water that enter a side channel or remain in the main channel. The critical streakline therefore divides the main channel into entrainment zones within which fish would likely enter each channel. Combined with information about the cross-sectional distribution of fish upstream of a junction, this conceptual model provides a means to predict fish entrainment into each channel. To apply this conceptual model, we combined statistical models of the critical streakline, the cross-sectional distribution of acoustic tagged juvenile Chinook salmon, and their probability of entrainment into Georgiana Slough. We fit joint beta regression and logistic regression models to acoustic telemetry data gathered in 2011 and 2012 to estimate the cross-sectional distribution of fish upstream of the junction, and to estimate the probability of entrainment for fish on either side of the critical streakline. We show that entrainment rates can be predicted by understanding how the combination of critical streakline position and cross-sectional distribution of fish co-vary as a function of environmental covariates. By integrating over individual positions and entrainment fates to arrive at population-level entrain probability in relation to environmental covariates, our model offers managers a simple but powerful tool to evaluate how alternative actions affect migrating fish.
{"title":"Combining Models of the Critical Streakline and the Cross-Sectional Distribution of Juvenile Salmon to Predict Fish Routing at River Junctions","authors":"Dalton J. Hance, R. W. Perry, J. R. Burau, A. Blake, P. Stumpner, Xiaochun Wang, Adam C. Pope","doi":"10.15447/sfews.2020v18iss1art3","DOIUrl":"https://doi.org/10.15447/sfews.2020v18iss1art3","url":null,"abstract":"Author(s): Hance, Dalton J.; Perry, Russell W.; Burau, Jon R.; Blake, Aaron; Stumpner, Paul; Wang, Xiaochung; Pope, Adam | Abstract: Because fish that enter the interior Delta have poorer survival than those emigrating via the Sacramento River, understanding the mechanisms that drive entrainment rates at side channel junctions is critically important for the management of imperiled juvenile salmon. Here, we implement a previously proposed process-based conceptual model to study entrainment rates based on three linked elements: the entrainment zone, critical streakline, and cross-sectional distribution of fish. The critical streakline is the location along a channel cross-section immediately upstream of a junction that forms the spatial divide between parcels of water that enter a side channel or remain in the main channel. The critical streakline therefore divides the main channel into entrainment zones within which fish would likely enter each channel. Combined with information about the cross-sectional distribution of fish upstream of a junction, this conceptual model provides a means to predict fish entrainment into each channel. To apply this conceptual model, we combined statistical models of the critical streakline, the cross-sectional distribution of acoustic tagged juvenile Chinook salmon, and their probability of entrainment into Georgiana Slough. We fit joint beta regression and logistic regression models to acoustic telemetry data gathered in 2011 and 2012 to estimate the cross-sectional distribution of fish upstream of the junction, and to estimate the probability of entrainment for fish on either side of the critical streakline. We show that entrainment rates can be predicted by understanding how the combination of critical streakline position and cross-sectional distribution of fish co-vary as a function of environmental covariates. By integrating over individual positions and entrainment fates to arrive at population-level entrain probability in relation to environmental covariates, our model offers managers a simple but powerful tool to evaluate how alternative actions affect migrating fish.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15447/sfews.2020v18iss1art3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49535806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-09DOI: 10.15447/sfews.2020v18iss1art2
J. Goodrich, D. Cayan, D. Pierce
Author(s): Goodrich, Jordan P.; Cayan, Daniel R.; Pierce, David W. | Abstract: California’s Central Valley (CV) is one of the most productive agricultural regions in the world, enabled by the conjunctive use of surface water and groundwater. We investigated variations in the CV’s managed surface water diversions relative to climate variability. Using a historical record (1979−2010) of diversions from 531 sites, we found diversions are largest in the wetter Sacramento basin to the north, but most variable in the drier Tulare basin to the south. A rotated empirical orthogonal function (REOF) analysis finds 72% of the variance of diversions is captured by the first three REOFs. The leading REOF (35% of variance) exhibited strong positive loadings in the Tulare basin, and the corresponding principal component time-series (RPC1) was strongly correlated (ρ g 0.9) with contemporaneous hydrologic variability. This pattern indicates larger than average diversions in the south, with neutral or slightly less than average diversions to the north during wet years, with the opposite true for dry years. The second and third REOFs (20% and 17% of variance, respectively), were strongest in the Sacramento basin and San Francisco Bay−Delta. RPC2 and RPC3 were associated with variations in agricultural- and municipal-bound diversions, respectively. RPC2 and RPC3 were also moderately correlated with 7-year cumulative precipitation based on lagged correlation analysis, indicating that diversions in the north and central portions of the CV respond to longer-term hydrologic variations. The results illustrate a dichotomy of regimes wherein diversions in the more arid Tulare are governed by year-to-year hydrologic variability, while those in wetter northern basins reflect land-use patterns and low-frequency hydrologic variations.
{"title":"Climate and Land-Use Controls on Surface Water Diversions in the Central Valley, California","authors":"J. Goodrich, D. Cayan, D. Pierce","doi":"10.15447/sfews.2020v18iss1art2","DOIUrl":"https://doi.org/10.15447/sfews.2020v18iss1art2","url":null,"abstract":"Author(s): Goodrich, Jordan P.; Cayan, Daniel R.; Pierce, David W. | Abstract: California’s Central Valley (CV) is one of the most productive agricultural regions in the world, enabled by the conjunctive use of surface water and groundwater. We investigated variations in the CV’s managed surface water diversions relative to climate variability. Using a historical record (1979−2010) of diversions from 531 sites, we found diversions are largest in the wetter Sacramento basin to the north, but most variable in the drier Tulare basin to the south. A rotated empirical orthogonal function (REOF) analysis finds 72% of the variance of diversions is captured by the first three REOFs. The leading REOF (35% of variance) exhibited strong positive loadings in the Tulare basin, and the corresponding principal component time-series (RPC1) was strongly correlated (ρ g 0.9) with contemporaneous hydrologic variability. This pattern indicates larger than average diversions in the south, with neutral or slightly less than average diversions to the north during wet years, with the opposite true for dry years. The second and third REOFs (20% and 17% of variance, respectively), were strongest in the Sacramento basin and San Francisco Bay−Delta. RPC2 and RPC3 were associated with variations in agricultural- and municipal-bound diversions, respectively. RPC2 and RPC3 were also moderately correlated with 7-year cumulative precipitation based on lagged correlation analysis, indicating that diversions in the north and central portions of the CV respond to longer-term hydrologic variations. The results illustrate a dichotomy of regimes wherein diversions in the more arid Tulare are governed by year-to-year hydrologic variability, while those in wetter northern basins reflect land-use patterns and low-frequency hydrologic variations.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15447/sfews.2020v18iss1art2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43765390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}