Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively. Here we report a qualitative deviation from the standard behaviour in doped metallic graphene. We show that Dirac electrons exposed to continuous-wave terahertz (THz) radiation can be thermally decoupled from the lattice, which activates hydrodynamic electron transport. In this regime, the resistance of graphene constrictions experiences a decrease caused by the THz-driven superballistic flow of correlated electrons. We analyse the dependencies of the negative photoresistance on the carrier density, and the radiation power, and show that our superballistic devices operate as sensitive phonon-cooled bolometers and can thus offer, in principle, a picosecond-scale response time. Beyond their fundamental implications, our findings underscore the practicality of electron hydrodynamics in designing ultra-fast THz sensors and electron thermometers.
Mesoporous structured electron transport layers (ETLs) in perovskite solar cells (PSCs) have an increased surface contact with the perovskite layer, enabling effective charge separation and extraction, and high-efficiency devices. However, the most widely used ETL material in PSCs, TiO2, requires a sintering temperature of more than 500 °C and undergoes photocatalytic reaction under incident illumination that limits operational stability. Recent efforts have focused on finding alternative ETL materials, such as SnO2. Here we propose mesoporous MoS2 as an efficient and stable ETL material. The MoS2 interlayer increases the surface contact area with the adjacent perovskite layer, improving charge transfer dynamics between the two layers. In addition, the matching between the MoS2 and the perovskite lattices facilitates preferential growth of perovskite crystals with low residual strain, compared with TiO2. Using mesoporous structured MoS2 as ETL, we obtain PSCs with 25.7% (0.08 cm2, certified 25.4%) and 22.4% (1.00 cm2) efficiencies. Under continuous illumination, our cell remains stable for more than 2,000 h, demonstrating improved photostability with respect to TiO2.
The Front Cover shows the electrocatalytic activity of a cobalt corrole for CO2 reduction. In their Research Article, A. Aukauloo, G. Canard and co-workers report how they designed an electron-deficient A2B-type corrole featuring two −CF3 groups and a cyanobenzene at the meso positions, along with its cobalt complex. When adsorbed on a carbon electrode, the A2B cobalt corrole exhibited excellent catalytic performance for CO production and demonstrated the ability to convert CO2 to methanol.