首页 > 最新文献

European Journal of Inorganic Chemistry最新文献

英文 中文
Carbon abatement costs of green hydrogen across end-use sectors 绿色氢气在各最终使用部门的碳减排成本
IF 39.8 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-08 DOI: 10.1016/j.joule.2024.09.003
Roxana T. Shafiee, Daniel P. Schrag
Green hydrogen has emerged as a potentially important pathway in decarbonizing the hard-to-abate sectors, including freight, dispatchable power, and industry. Many organizations predict that green hydrogen will become cost competitive with fossil fuels as production costs fall. However, most published green hydrogen cost estimates do not consider storage and distribution costs and how they vary across sectors. We estimate the carbon abatement cost of green hydrogen across major sectors in the United States, considering each sector’s storage and distribution requirements. At current delivered prices, green hydrogen is a prohibitively expensive abatement strategy, with carbon abatement costs of $500–1,250/tCO2 across sectors. If production costs reduce to $2/kgH2, low-cost carbon abatement opportunities will remain limited to sectors already using hydrogen (e.g., ammonia) unless storage and distribution costs decrease. Our findings suggest that green hydrogen’s potential is narrower than suggested, emphasizing the need for diverse technological options to decarbonize hard-to-abate sectors.
绿色氢能已成为货运、可调度电力和工业等难以消减的部门实现去碳化的潜在重要途径。许多机构预测,随着生产成本的下降,绿色氢气在成本上将与化石燃料具有竞争力。然而,大多数已公布的绿色氢气成本估算并没有考虑储存和分配成本,也没有考虑这些成本在不同部门之间的差异。我们估算了美国各主要行业的绿色氢气碳减排成本,并考虑了各行业的储存和配送要求。按照目前的交付价格,绿色氢气是一种过于昂贵的减排策略,各行业的碳减排成本为 500-1,250 美元/吨 CO2。如果生产成本降低到 2 美元/千克氢气,低成本碳减排机会将仅限于已经使用氢气的行业(如氨),除非储存和分配成本降低。我们的研究结果表明,绿色氢气的潜力比想象的要小,这强调了需要多样化的技术方案来使难以减排的行业脱碳。
{"title":"Carbon abatement costs of green hydrogen across end-use sectors","authors":"Roxana T. Shafiee, Daniel P. Schrag","doi":"10.1016/j.joule.2024.09.003","DOIUrl":"https://doi.org/10.1016/j.joule.2024.09.003","url":null,"abstract":"Green hydrogen has emerged as a potentially important pathway in decarbonizing the hard-to-abate sectors, including freight, dispatchable power, and industry. Many organizations predict that green hydrogen will become cost competitive with fossil fuels as production costs fall. However, most published green hydrogen cost estimates do not consider storage and distribution costs and how they vary across sectors. We estimate the carbon abatement cost of green hydrogen across major sectors in the United States, considering each sector’s storage and distribution requirements. At current delivered prices, green hydrogen is a prohibitively expensive abatement strategy, with carbon abatement costs of $500–1,250/tCO<sub>2</sub> across sectors. If production costs reduce to $2/kgH<sub>2</sub>, low-cost carbon abatement opportunities will remain limited to sectors already using hydrogen (e.g., ammonia) unless storage and distribution costs decrease. Our findings suggest that green hydrogen’s potential is narrower than suggested, emphasizing the need for diverse technological options to decarbonize hard-to-abate sectors.","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"7 1","pages":""},"PeriodicalIF":39.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viscous terahertz photoconductivity of hydrodynamic electrons in graphene 石墨烯中流体动力电子的粘性太赫兹光电导性
IF 38.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-07 DOI: 10.1038/s41565-024-01795-y
M. Kravtsov, A. L. Shilov, Y. Yang, T. Pryadilin, M. A. Kashchenko, O. Popova, M. Titova, D. Voropaev, Y. Wang, K. Shein, I. Gayduchenko, G. N. Goltsman, M. Lukianov, A. Kudriashov, T. Taniguchi, K. Watanabe, D. A. Svintsov, S. Adam, K. S. Novoselov, A. Principi, D. A. Bandurin

Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively. Here we report a qualitative deviation from the standard behaviour in doped metallic graphene. We show that Dirac electrons exposed to continuous-wave terahertz (THz) radiation can be thermally decoupled from the lattice, which activates hydrodynamic electron transport. In this regime, the resistance of graphene constrictions experiences a decrease caused by the THz-driven superballistic flow of correlated electrons. We analyse the dependencies of the negative photoresistance on the carrier density, and the radiation power, and show that our superballistic devices operate as sensitive phonon-cooled bolometers and can thus offer, in principle, a picosecond-scale response time. Beyond their fundamental implications, our findings underscore the practicality of electron hydrodynamics in designing ultra-fast THz sensors and electron thermometers.

光线入射到材料上会导致其导电性发生变化,这种现象被称为光阻。在半导体中,光阻是负的,因为光诱导电子穿过带隙会增加参与传输的电荷载流子数量。在超导体和普通金属中,光阻为正,原因分别是超导态的破坏和动量松弛散射的增强。在这里,我们报告了掺杂金属石墨烯中与标准行为的定性偏差。我们的研究表明,暴露在连续波太赫兹(THz)辐射下的狄拉克电子可以与晶格热解耦,从而激活流体动力电子传输。在这种情况下,太赫兹驱动的相关电子超弹流会导致石墨烯收缩电阻下降。我们分析了负光阻对载流子密度和辐射功率的依赖关系,结果表明我们的超弹道装置可以作为灵敏的声子冷却波长计运行,因此原则上可以提供皮秒级的响应时间。除了基本影响之外,我们的发现还强调了电子流体力学在设计超快太赫兹传感器和电子温度计方面的实用性。
{"title":"Viscous terahertz photoconductivity of hydrodynamic electrons in graphene","authors":"M. Kravtsov, A. L. Shilov, Y. Yang, T. Pryadilin, M. A. Kashchenko, O. Popova, M. Titova, D. Voropaev, Y. Wang, K. Shein, I. Gayduchenko, G. N. Goltsman, M. Lukianov, A. Kudriashov, T. Taniguchi, K. Watanabe, D. A. Svintsov, S. Adam, K. S. Novoselov, A. Principi, D. A. Bandurin","doi":"10.1038/s41565-024-01795-y","DOIUrl":"https://doi.org/10.1038/s41565-024-01795-y","url":null,"abstract":"<p>Light incident upon materials can induce changes in their electrical conductivity, a phenomenon referred to as photoresistance. In semiconductors, the photoresistance is negative, as light-induced promotion of electrons across the bandgap enhances the number of charge carriers participating in transport. In superconductors and normal metals, the photoresistance is positive because of the destruction of the superconducting state and enhanced momentum-relaxing scattering, respectively. Here we report a qualitative deviation from the standard behaviour in doped metallic graphene. We show that Dirac electrons exposed to continuous-wave terahertz (THz) radiation can be thermally decoupled from the lattice, which activates hydrodynamic electron transport. In this regime, the resistance of graphene constrictions experiences a decrease caused by the THz-driven superballistic flow of correlated electrons. We analyse the dependencies of the negative photoresistance on the carrier density, and the radiation power, and show that our superballistic devices operate as sensitive phonon-cooled bolometers and can thus offer, in principle, a picosecond-scale response time. Beyond their fundamental implications, our findings underscore the practicality of electron hydrodynamics in designing ultra-fast THz sensors and electron thermometers.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"46 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoporous structured MoS2 as an electron transport layer for efficient and stable perovskite solar cells 介孔结构 MoS2 作为电子传输层用于高效稳定的过氧化物太阳能电池
IF 38.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-07 DOI: 10.1038/s41565-024-01799-8
Donghwan Koo, Yunseong Choi, Ungsoo Kim, Jihyun Kim, Jihyung Seo, Eunbin Son, Hanul Min, Joohoon Kang, Hyesung Park

Mesoporous structured electron transport layers (ETLs) in perovskite solar cells (PSCs) have an increased surface contact with the perovskite layer, enabling effective charge separation and extraction, and high-efficiency devices. However, the most widely used ETL material in PSCs, TiO2, requires a sintering temperature of more than 500 °C and undergoes photocatalytic reaction under incident illumination that limits operational stability. Recent efforts have focused on finding alternative ETL materials, such as SnO2. Here we propose mesoporous MoS2 as an efficient and stable ETL material. The MoS2 interlayer increases the surface contact area with the adjacent perovskite layer, improving charge transfer dynamics between the two layers. In addition, the matching between the MoS2 and the perovskite lattices facilitates preferential growth of perovskite crystals with low residual strain, compared with TiO2. Using mesoporous structured MoS2 as ETL, we obtain PSCs with 25.7% (0.08 cm2, certified 25.4%) and 22.4% (1.00 cm2) efficiencies. Under continuous illumination, our cell remains stable for more than 2,000 h, demonstrating improved photostability with respect to TiO2.

过氧化物太阳能电池(PSCs)中的介孔结构电子传输层(ETLs)增加了与过氧化物层的表面接触,从而实现了有效的电荷分离和萃取以及高效设备。然而,PSC 中最广泛使用的 ETL 材料 TiO2 需要 500 °C 以上的烧结温度,并且在入射光下会发生光催化反应,从而限制了运行稳定性。最近,人们致力于寻找替代 ETL 材料,如二氧化锡。在此,我们提出介孔 MoS2 作为一种高效稳定的 ETL 材料。MoS2 夹层增加了与相邻过氧化物层的表面接触面积,改善了两层之间的电荷转移动力学。此外,与二氧化钛相比,MoS2 和过氧化物晶格之间的匹配有利于低残余应变过氧化物晶体的优先生长。利用介孔结构 MoS2 作为 ETL,我们获得了效率分别为 25.7% (0.08 平方厘米,认证为 25.4%)和 22.4% (1.00 平方厘米)的 PSC。在连续光照条件下,我们的电池可保持稳定 2,000 小时以上,这表明与 TiO2 相比,我们的电池具有更好的光稳定性。
{"title":"Mesoporous structured MoS2 as an electron transport layer for efficient and stable perovskite solar cells","authors":"Donghwan Koo, Yunseong Choi, Ungsoo Kim, Jihyun Kim, Jihyung Seo, Eunbin Son, Hanul Min, Joohoon Kang, Hyesung Park","doi":"10.1038/s41565-024-01799-8","DOIUrl":"https://doi.org/10.1038/s41565-024-01799-8","url":null,"abstract":"<p>Mesoporous structured electron transport layers (ETLs) in perovskite solar cells (PSCs) have an increased surface contact with the perovskite layer, enabling effective charge separation and extraction, and high-efficiency devices. However, the most widely used ETL material in PSCs, TiO<sub>2</sub>, requires a sintering temperature of more than 500 °C and undergoes photocatalytic reaction under incident illumination that limits operational stability. Recent efforts have focused on finding alternative ETL materials, such as SnO<sub>2</sub>. Here we propose mesoporous MoS<sub>2</sub> as an efficient and stable ETL material. The MoS<sub>2</sub> interlayer increases the surface contact area with the adjacent perovskite layer, improving charge transfer dynamics between the two layers. In addition, the matching between the MoS<sub>2</sub> and the perovskite lattices facilitates preferential growth of perovskite crystals with low residual strain, compared with TiO<sub>2</sub>. Using mesoporous structured MoS<sub>2</sub> as ETL, we obtain PSCs with 25.7% (0.08 cm<sup>2</sup>, certified 25.4%) and 22.4% (1.00 cm<sup>2</sup>) efficiencies. Under continuous illumination, our cell remains stable for more than 2,000 h, demonstrating improved photostability with respect to TiO<sub>2</sub>.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"7 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Electrocatalytic Properties of meso- Perfluorinated Metallo Corroles for the Reduction of CO2 (Eur. J. Inorg. Chem. 28/2024) 封面:用于还原 CO2 的介-全氟金属环的电催化特性(Eur.)
IF 2.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-04 DOI: 10.1002/ejic.202482801
Chanjuan Zhang, Paul-Gabriel Julliard, Diana Dragoe, Ally Aukauloo, Gabriel Canard

The Front Cover shows the electrocatalytic activity of a cobalt corrole for CO2 reduction. In their Research Article, A. Aukauloo, G. Canard and co-workers report how they designed an electron-deficient A2B-type corrole featuring two −CF3 groups and a cyanobenzene at the meso positions, along with its cobalt complex. When adsorbed on a carbon electrode, the A2B cobalt corrole exhibited excellent catalytic performance for CO production and demonstrated the ability to convert CO2 to methanol.

封面显示了钴珊瑚还原二氧化碳的电催化活性。在研究文章中,A. Aukauloo、G. Canard 及其合作者报告了他们如何设计出一种缺电子 A2B 型珊瑚及其钴络合物,这种珊瑚的中位具有两个 -CF3 基团和一个氰基苯。当吸附在碳电极上时,A2B 型钴珊瑚表现出卓越的催化性能,不仅能催化 CO2 生成甲醇,还能将 CO2 转化为甲醇。
{"title":"Front Cover: Electrocatalytic Properties of meso- Perfluorinated Metallo Corroles for the Reduction of CO2 (Eur. J. Inorg. Chem. 28/2024)","authors":"Chanjuan Zhang,&nbsp;Paul-Gabriel Julliard,&nbsp;Diana Dragoe,&nbsp;Ally Aukauloo,&nbsp;Gabriel Canard","doi":"10.1002/ejic.202482801","DOIUrl":"https://doi.org/10.1002/ejic.202482801","url":null,"abstract":"<p><b>The Front Cover</b> shows the electrocatalytic activity of a cobalt corrole for CO<sub>2</sub> reduction. In their Research Article, A. Aukauloo, G. Canard and co-workers report how they designed an electron-deficient A<sub>2</sub>B-type corrole featuring two −CF<sub>3</sub> groups and a cyanobenzene at the <i>meso</i> positions, along with its cobalt complex. When adsorbed on a carbon electrode, the A<sub>2</sub>B cobalt corrole exhibited excellent catalytic performance for CO production and demonstrated the ability to convert CO<sub>2</sub> to methanol.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"27 28","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejic.202482801","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Performance of the Metal Organic Framework CPO-27 for Toxic Gas Capture (NO2) 高性能金属有机框架 CPO-27 用于有毒气体捕集(二氧化氮)
IF 2.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-04 DOI: 10.1002/ejic.202400253
Jannes Beihsner, Dr. Steffen Hausdorf, Prof. Dr. Ing. Jens Friedrich, Prof. Dr. Stefan Kaskel

Metal-organic frameworks of the CPO-27 (MOF-74) series are known for their high adsorption capacities for nitrogen oxides. On the other hand, significantly varying and partly contradictory results were reported regarding their stability to moisture. This aspect has hampered the use of these MOFs in air filtration applications. Here, we show that the stability of CPO-27 materials towards moisture and CO2 crucially depends on the synthesis parameters. By precisely adjusting the synthetic parameter-property relationship, it is possible to prepare a highly stable CPO-27(Ni) MOF by a simple precipitation in water. To demonstrate the capacity for NO2, breakthrough experiments were performed under dry and wet conditions (55% relative humidity). Extremely high values of nearly 0.74 g/g in dry conditions and 1.23 g/g under wet conditions were achieved. These results pave the way for the toxicologically safe and cost-effective preparation of a moisture-stable CPO-27(Ni), bridging the gap to a potential industrial application of the material for the selective adsorption of toxic gases, such as NO2.

CPO-27 (MOF-74) 系列金属有机框架因其对氮氧化物的高吸附能力而闻名。另一方面,关于它们对湿气的稳定性的报道却大相径庭,而且部分结果相互矛盾。这阻碍了这些 MOFs 在空气过滤领域的应用。在这里,我们发现 CPO-27 材料对湿气和二氧化碳的稳定性主要取决于合成参数。通过精确调整合成参数与性能之间的关系,可以在水中通过简单沉淀制备出高度稳定的 CPO-27(Ni)MOF。为了证明其对二氧化氮的能力,在干燥和潮湿条件下(相对湿度 55%)进行了突破实验。在干燥和潮湿条件下,分别达到了近 0.74 g/g 和 1.23 g/g 的极高值。这些结果为制备毒理学上安全且成本效益高的湿稳定 CPO-27(Ni)铺平了道路,为该材料在选择性吸附有毒气体(如 NO2)方面的潜在工业应用架起了桥梁。
{"title":"High Performance of the Metal Organic Framework CPO-27 for Toxic Gas Capture (NO2)","authors":"Jannes Beihsner,&nbsp;Dr. Steffen Hausdorf,&nbsp;Prof. Dr. Ing. Jens Friedrich,&nbsp;Prof. Dr. Stefan Kaskel","doi":"10.1002/ejic.202400253","DOIUrl":"https://doi.org/10.1002/ejic.202400253","url":null,"abstract":"<p>Metal-organic frameworks of the CPO-27 (MOF-74) series are known for their high adsorption capacities for nitrogen oxides. On the other hand, significantly varying and partly contradictory results were reported regarding their stability to moisture. This aspect has hampered the use of these MOFs in air filtration applications. Here, we show that the stability of CPO-27 materials towards moisture and CO<sub>2</sub> crucially depends on the synthesis parameters. By precisely adjusting the synthetic parameter-property relationship, it is possible to prepare a highly stable CPO-27(Ni) MOF by a simple precipitation in water. To demonstrate the capacity for NO<sub>2</sub>, breakthrough experiments were performed under dry and wet conditions (55% relative humidity). Extremely high values of nearly 0.74 g/g in dry conditions and 1.23 g/g under wet conditions were achieved. These results pave the way for the toxicologically safe and cost-effective preparation of a moisture-stable CPO-27(Ni), bridging the gap to a potential industrial application of the material for the selective adsorption of toxic gases, such as NO<sub>2</sub>.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"27 29","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejic.202400253","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing nanotheranostics with machine learning 利用机器学习设计纳米otheranostics
IF 38.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-03 DOI: 10.1038/s41565-024-01753-8
Lang Rao, Yuan Yuan, Xi Shen, Guocan Yu, Xiaoyuan Chen

The inherent limits of traditional diagnoses and therapies have driven the development and application of emerging nanotechnologies for more effective and safer management of diseases, herein referred to as ‘nanotheranostics’. Although many important technological successes have been achieved in this field, widespread adoption of nanotheranostics as a new paradigm is hindered by specific obstacles, including time-consuming synthesis of nanoparticles, incomplete understanding of nano–bio interactions, and challenges regarding chemistry, manufacturing and the controls required for clinical translation and commercialization. As a key branch of artificial intelligence, machine learning (ML) provides a set of tools capable of performing time-consuming and result-perception tasks, thus offering unique opportunities for nanotheranostics. This Review summarizes the progress and challenges in this emerging field of ML-aided nanotheranostics, and discusses the opportunities in developing next-generation nanotheranostics with reliable datasets and advanced ML models to offer better clinical benefits to patients.

传统诊断和治疗方法的固有局限性推动了新兴纳米技术的开发和应用,以更有效、更安全地治疗疾病。尽管在这一领域已经取得了许多重要的技术成就,但纳米otheranostics 作为一种新范例的广泛应用仍受到一些特定障碍的阻碍,包括纳米粒子的合成耗时,对纳米生物相互作用的理解不全面,以及临床转化和商业化所需的化学、制造和控制方面的挑战。作为人工智能的一个重要分支,机器学习(ML)提供了一套能够执行耗时和结果感知任务的工具,从而为纳米otheranostics 提供了独特的机遇。本综述总结了机器学习辅助纳米otheranostics 这一新兴领域的进展和挑战,并讨论了利用可靠的数据集和先进的机器学习模型开发下一代纳米otheranostics 的机遇,以便为患者提供更好的临床益处。
{"title":"Designing nanotheranostics with machine learning","authors":"Lang Rao, Yuan Yuan, Xi Shen, Guocan Yu, Xiaoyuan Chen","doi":"10.1038/s41565-024-01753-8","DOIUrl":"https://doi.org/10.1038/s41565-024-01753-8","url":null,"abstract":"<p>The inherent limits of traditional diagnoses and therapies have driven the development and application of emerging nanotechnologies for more effective and safer management of diseases, herein referred to as ‘nanotheranostics’. Although many important technological successes have been achieved in this field, widespread adoption of nanotheranostics as a new paradigm is hindered by specific obstacles, including time-consuming synthesis of nanoparticles, incomplete understanding of nano–bio interactions, and challenges regarding chemistry, manufacturing and the controls required for clinical translation and commercialization. As a key branch of artificial intelligence, machine learning (ML) provides a set of tools capable of performing time-consuming and result-perception tasks, thus offering unique opportunities for nanotheranostics. This Review summarizes the progress and challenges in this emerging field of ML-aided nanotheranostics, and discusses the opportunities in developing next-generation nanotheranostics with reliable datasets and advanced ML models to offer better clinical benefits to patients.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"42 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
European Respiratory Society International Congress 2024 欧洲呼吸学会 2024 年国际大会
IF 76.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-03 DOI: 10.1016/s2213-2600(24)00322-9
Priya Venkatesan
No Abstract
无摘要
{"title":"European Respiratory Society International Congress 2024","authors":"Priya Venkatesan","doi":"10.1016/s2213-2600(24)00322-9","DOIUrl":"https://doi.org/10.1016/s2213-2600(24)00322-9","url":null,"abstract":"No Abstract","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"222 1","pages":""},"PeriodicalIF":76.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards shorter, safer, flexible, and more effective treatment regimens for drug-resistant tuberculosis 为耐药性结核病制定更短、更安全、更灵活、更有效的治疗方案
IF 76.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-01 DOI: 10.1016/s2213-2600(24)00300-x
Keertan Dheda, Christoph Lange
No Abstract
无摘要
{"title":"Towards shorter, safer, flexible, and more effective treatment regimens for drug-resistant tuberculosis","authors":"Keertan Dheda, Christoph Lange","doi":"10.1016/s2213-2600(24)00300-x","DOIUrl":"https://doi.org/10.1016/s2213-2600(24)00300-x","url":null,"abstract":"No Abstract","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"47 1","pages":""},"PeriodicalIF":76.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery 硅氧烷包裹脂质纳米颗粒的组合设计可增强细胞内处理能力,实现组织特异性 mRNA 治疗递送
IF 38.3 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-01 DOI: 10.1038/s41565-024-01747-6
Lulu Xue, Gan Zhao, Ningqiang Gong, Xuexiang Han, Sarah J. Shepherd, Xinhong Xiong, Zebin Xiao, Rohan Palanki, Junchao Xu, Kelsey L. Swingle, Claude C. Warzecha, Rakan El-Mayta, Vivek Chowdhary, Il-Chul Yoon, Jingcheng Xu, Jiaxi Cui, Yi Shi, Mohamad-Gabriel Alameh, Karin Wang, Lili Wang, Darrin J. Pochan, Drew Weissman, Andrew E. Vaughan, James M. Wilson, Michael J. Mitchell

Systemic delivery of messenger RNA (mRNA) for tissue-specific targeting using lipid nanoparticles (LNPs) holds great therapeutic potential. Nevertheless, how the structural characteristics of ionizable lipids (lipidoids) impact their capability to target cells and organs remains unclear. Here we engineered a class of siloxane-based ionizable lipids with varying structures and formulated siloxane-incorporated LNPs (SiLNPs) to control in vivo mRNA delivery to the liver, lung and spleen in mice. The siloxane moieties enhance cellular internalization of mRNA-LNPs and improve their endosomal escape capacity, augmenting their mRNA delivery efficacy. Using organ-specific SiLNPs to deliver gene editing machinery, we achieve robust gene knockout in the liver of wild-type mice and in the lungs of both transgenic GFP and Lewis lung carcinoma (LLC) tumour-bearing mice. Moreover, we showed effective recovery from viral infection-induced lung damage by delivering angiogenic factors with lung-targeted Si5-N14 LNPs. We envision that our SiLNPs will aid in the clinical translation of mRNA therapeutics for next-generation tissue-specific protein replacement therapies, regenerative medicine and gene editing.

利用脂质纳米颗粒(LNPs)系统输送信使 RNA(mRNA)以实现组织特异性靶向具有巨大的治疗潜力。然而,可电离脂质(类脂质)的结构特征如何影响其靶向细胞和器官的能力仍不清楚。在这里,我们设计了一类结构各异的硅氧烷基可离子化脂质,并配制了硅氧烷包合 LNPs(SiLNPs),以控制体内 mRNA 向小鼠肝脏、肺脏和脾脏的递送。硅氧烷分子能增强 mRNA-LNPs 的细胞内化,提高其内逸能力,从而增强其 mRNA 递送功效。利用器官特异性 SiLNPs 传递基因编辑机制,我们在野生型小鼠的肝脏以及转基因 GFP 和路易斯肺癌(LLC)肿瘤小鼠的肺部实现了强大的基因敲除。此外,我们还利用肺靶向 Si5-N14 LNPs 释放血管生成因子,显示了病毒感染引起的肺损伤的有效恢复。我们设想,我们的 SiLNPs 将有助于 mRNA 疗法的临床转化,用于下一代组织特异性蛋白质替代疗法、再生医学和基因编辑。
{"title":"Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery","authors":"Lulu Xue, Gan Zhao, Ningqiang Gong, Xuexiang Han, Sarah J. Shepherd, Xinhong Xiong, Zebin Xiao, Rohan Palanki, Junchao Xu, Kelsey L. Swingle, Claude C. Warzecha, Rakan El-Mayta, Vivek Chowdhary, Il-Chul Yoon, Jingcheng Xu, Jiaxi Cui, Yi Shi, Mohamad-Gabriel Alameh, Karin Wang, Lili Wang, Darrin J. Pochan, Drew Weissman, Andrew E. Vaughan, James M. Wilson, Michael J. Mitchell","doi":"10.1038/s41565-024-01747-6","DOIUrl":"https://doi.org/10.1038/s41565-024-01747-6","url":null,"abstract":"<p>Systemic delivery of messenger RNA (mRNA) for tissue-specific targeting using lipid nanoparticles (LNPs) holds great therapeutic potential. Nevertheless, how the structural characteristics of ionizable lipids (lipidoids) impact their capability to target cells and organs remains unclear. Here we engineered a class of siloxane-based ionizable lipids with varying structures and formulated siloxane-incorporated LNPs (SiLNPs) to control in vivo mRNA delivery to the liver, lung and spleen in mice. The siloxane moieties enhance cellular internalization of mRNA-LNPs and improve their endosomal escape capacity, augmenting their mRNA delivery efficacy. Using organ-specific SiLNPs to deliver gene editing machinery, we achieve robust gene knockout in the liver of wild-type mice and in the lungs of both transgenic GFP and Lewis lung carcinoma (LLC) tumour-bearing mice. Moreover, we showed effective recovery from viral infection-induced lung damage by delivering angiogenic factors with lung-targeted Si<sub>5</sub>-N14 LNPs. We envision that our SiLNPs will aid in the clinical translation of mRNA therapeutics for next-generation tissue-specific protein replacement therapies, regenerative medicine and gene editing.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"37 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-interleukin-4 receptor therapy for COPD with dupilumab? 用杜匹单抗抗白细胞介素-4受体治疗慢性阻塞性肺病?
IF 76.2 4区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-01 DOI: 10.1016/s2213-2600(24)00266-2
J Christian Virchow
No Abstract
无摘要
{"title":"Anti-interleukin-4 receptor therapy for COPD with dupilumab?","authors":"J Christian Virchow","doi":"10.1016/s2213-2600(24)00266-2","DOIUrl":"https://doi.org/10.1016/s2213-2600(24)00266-2","url":null,"abstract":"No Abstract","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"39 1","pages":""},"PeriodicalIF":76.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Inorganic Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1