首页 > 最新文献

Synchrotron Radiation News最新文献

英文 中文
Machine Learning 机器学习
Q3 Physics and Astronomy Pub Date : 2022-07-04 DOI: 10.1080/08940886.2022.2114736
Kanta Ono
W ith recent advances in machine learning technology, data-driven research is beginning to permeate natural science and engineering fields. Synchrotron radiation science is also expected to benefit significantly from machine learning. The progress of these studies will make it possible to observe materials that could not be observed in the past or to perform synchrotron radiation measurements and detailed data analysis much more efficiently than before, leading to more effective use of limited beamtime. In addition, machine learning has the potential to bring about advanced and more efficient research through software without the need for major hardware upgrades at synchrotron radiation facilities. The encounter between machine learning and materials science has opened up a new academic field called materials informatics. Especially in the last decades, the progress has been remarkable, and the concept of informatics has been incorporated into all areas of materials science, from material design and material synthesis to measurement and analysis. The rise of materials informatics was due to advances in information science in terms of both hardware and software; namely, the dramatic development of computing power and artificial intelligence technologies such as machine learning, which have made it possible to handle large volumes of complex data that were difficult to handle in the past. In addition, it is now possible to extract useful information and new knowledge from the data, bringing about changes in various fields. Furthermore, machine learning technology has become much easier than in the past, thanks not only to simple programming languages such as Python but also to open source platforms on which an ecosystem for data analysis has been built. Taking synchrotron radiation experiments as an example, the measurement space to be explored in experiments is extremely wide. In order to extract knowledge from complex data analysis, it is necessary to efficiently search a high-dimensional search space consisting of an enormous number of parameters to find the optimal solution. Parameter search in such a highdimensional space, which skilled experts conventionally conduct based on tacit knowledge such as intuition and experience, poses problems such as bottlenecks to automation, human bias, and poor reproducibility, and requires a new research methodology that will fundamentally change conventional research methods. The wide range of new developments in the combination of synchrotron radiation and machine learning discussed in this special issue will extend synchrotron radiation experiments to more advanced measurements, bring about more efficient and automated synchrotron radiation experiments, and increase the amount of information obtained from these experiments. We hope these efforts will contribute significantly to further developing and revitalizing the synchrotron radiation community and opening up new research fields. n Kanta Ono Guest Edit
随着最近机器学习技术的进步,数据驱动的研究开始渗透到自然科学和工程领域。同步辐射科学也有望从机器学习中获益良多。这些研究的进展将使观察过去无法观察到的材料成为可能,或者比以前更有效地进行同步辐射测量和详细数据分析,从而更有效地利用有限的光束时间。此外,机器学习有可能通过软件带来更先进、更高效的研究,而无需对同步辐射设施进行重大的硬件升级。机器学习与材料科学的相遇开辟了一个新的学术领域——材料信息学。特别是在过去的几十年里,进展是显著的,信息学的概念已经被纳入材料科学的各个领域,从材料设计和材料合成到测量和分析。材料信息学的兴起是由于信息科学在硬件和软件方面的进步;也就是说,计算能力和机器学习等人工智能技术的急剧发展,使处理过去难以处理的大量复杂数据成为可能。此外,现在可以从数据中提取有用的信息和新的知识,带来各个领域的变化。此外,机器学习技术已经变得比过去容易得多,这不仅要感谢Python等简单的编程语言,还要感谢开源平台,在这些平台上建立了一个数据分析生态系统。以同步辐射实验为例,实验中有待探索的测量空间是极其广阔的。为了从复杂的数据分析中提取知识,需要在由大量参数组成的高维搜索空间中进行高效搜索,以找到最优解。在这样的高维空间中,熟练的专家通常基于直觉和经验等隐性知识进行参数搜索,存在自动化瓶颈、人为偏见和可重复性差等问题,需要一种新的研究方法,从根本上改变传统的研究方法。本期特刊讨论的同步辐射与机器学习相结合的广泛新发展将把同步辐射实验扩展到更先进的测量,带来更高效和自动化的同步辐射实验,并增加从这些实验中获得的信息量。我们希望这些努力将为进一步发展和振兴同步辐射学界和开辟新的研究领域作出重大贡献。n kananta Ono客座编辑大阪大学,大阪,日本ono@ap.eng.osaka-u.ac.jp同步辐射新闻ISSN 0894-0886出版双月刊。代码:SRN EFR
{"title":"Machine Learning","authors":"Kanta Ono","doi":"10.1080/08940886.2022.2114736","DOIUrl":"https://doi.org/10.1080/08940886.2022.2114736","url":null,"abstract":"W ith recent advances in machine learning technology, data-driven research is beginning to permeate natural science and engineering fields. Synchrotron radiation science is also expected to benefit significantly from machine learning. The progress of these studies will make it possible to observe materials that could not be observed in the past or to perform synchrotron radiation measurements and detailed data analysis much more efficiently than before, leading to more effective use of limited beamtime. In addition, machine learning has the potential to bring about advanced and more efficient research through software without the need for major hardware upgrades at synchrotron radiation facilities. The encounter between machine learning and materials science has opened up a new academic field called materials informatics. Especially in the last decades, the progress has been remarkable, and the concept of informatics has been incorporated into all areas of materials science, from material design and material synthesis to measurement and analysis. The rise of materials informatics was due to advances in information science in terms of both hardware and software; namely, the dramatic development of computing power and artificial intelligence technologies such as machine learning, which have made it possible to handle large volumes of complex data that were difficult to handle in the past. In addition, it is now possible to extract useful information and new knowledge from the data, bringing about changes in various fields. Furthermore, machine learning technology has become much easier than in the past, thanks not only to simple programming languages such as Python but also to open source platforms on which an ecosystem for data analysis has been built. Taking synchrotron radiation experiments as an example, the measurement space to be explored in experiments is extremely wide. In order to extract knowledge from complex data analysis, it is necessary to efficiently search a high-dimensional search space consisting of an enormous number of parameters to find the optimal solution. Parameter search in such a highdimensional space, which skilled experts conventionally conduct based on tacit knowledge such as intuition and experience, poses problems such as bottlenecks to automation, human bias, and poor reproducibility, and requires a new research methodology that will fundamentally change conventional research methods. The wide range of new developments in the combination of synchrotron radiation and machine learning discussed in this special issue will extend synchrotron radiation experiments to more advanced measurements, bring about more efficient and automated synchrotron radiation experiments, and increase the amount of information obtained from these experiments. We hope these efforts will contribute significantly to further developing and revitalizing the synchrotron radiation community and opening up new research fields. n Kanta Ono Guest Edit","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":" ","pages":"2 - 2"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46673263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical Layout and Endstation Concept for the Enhanced Liquid Interface Spectroscopy and Analysis (ELISA) Beamline at BESSY-II BESSY-II增强型液体界面光谱与分析(ELISA)光束线的光学布局和终点概念
Q3 Physics and Astronomy Pub Date : 2022-05-04 DOI: 10.1080/08940886.2022.2082213
S. Vadilonga, P. Dumas, U. Schade, K. Holldack, K. Hinrichs, G. Reichardt, T. Gerber, Antje Vollmer, J. Hofmann, Holger Oertel, B. Rech, R. Schlögl, J. Viefhaus, H. Bluhm
Liquid-vapor and liquid-solid interfaces drive numerous important processes in the environment and technology, such as the sequestra-tion of CO 2 by the oceans, the uptake and release of trace gases by aerosol droplets, the corrosion of metals, and reactions in electrochemical energy conversion and storage devices. Our understanding of the physical and chemical properties of liquid interfaces under realistic en-vironmental and operating conditions on the molecular scale still falls short of what has been achieved for solid-vapor interfaces over the past decades. This limitation hampers the development of, e.g., more precise climate models and electrochemical devices with increased efficiency. The main reason for this situation is the often greater difficulty in (1) the preparation of liquid interfaces (compared to solids) with controlled properties and (2) their investigation with high interface specificity under realistic conditions. This is partly due to the spatial fluctuations in the position of the interface and the fast diffusion from the interface into the bulk and vice versa (liquid-vapor), as well as
液-汽和液-固界面驱动着环境和技术中的许多重要过程,如海洋对二氧化碳的螯合、气溶胶液滴对微量气体的吸收和释放、金属的腐蚀以及电化学能量转换和存储设备中的反应。我们在分子尺度上对现实环境和操作条件下液体界面的物理和化学性质的理解仍然达不到过去几十年来对固体-蒸汽界面的理解。这种限制阻碍了例如更精确的气候模型和具有更高效率的电化学设备的开发。这种情况的主要原因是:(1)制备具有受控性质的液体界面(与固体相比)和(2)在现实条件下研究具有高界面特异性的液体界面往往更困难。这在一定程度上是由于界面位置的空间波动和从界面到本体的快速扩散,反之亦然(液体蒸汽),以及
{"title":"Optical Layout and Endstation Concept for the Enhanced Liquid Interface Spectroscopy and Analysis (ELISA) Beamline at BESSY-II","authors":"S. Vadilonga, P. Dumas, U. Schade, K. Holldack, K. Hinrichs, G. Reichardt, T. Gerber, Antje Vollmer, J. Hofmann, Holger Oertel, B. Rech, R. Schlögl, J. Viefhaus, H. Bluhm","doi":"10.1080/08940886.2022.2082213","DOIUrl":"https://doi.org/10.1080/08940886.2022.2082213","url":null,"abstract":"Liquid-vapor and liquid-solid interfaces drive numerous important processes in the environment and technology, such as the sequestra-tion of CO 2 by the oceans, the uptake and release of trace gases by aerosol droplets, the corrosion of metals, and reactions in electrochemical energy conversion and storage devices. Our understanding of the physical and chemical properties of liquid interfaces under realistic en-vironmental and operating conditions on the molecular scale still falls short of what has been achieved for solid-vapor interfaces over the past decades. This limitation hampers the development of, e.g., more precise climate models and electrochemical devices with increased efficiency. The main reason for this situation is the often greater difficulty in (1) the preparation of liquid interfaces (compared to solids) with controlled properties and (2) their investigation with high interface specificity under realistic conditions. This is partly due to the spatial fluctuations in the position of the interface and the fast diffusion from the interface into the bulk and vice versa (liquid-vapor), as well as","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"67 - 72"},"PeriodicalIF":0.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49398463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Developments in APXPS at the Shanghai Synchrotron Radiation Facility 上海同步辐射设施APXPS的最新进展
Q3 Physics and Astronomy Pub Date : 2022-05-04 DOI: 10.1080/08940886.2022.2082178
Hui Zhang, Xiaobao Li, Yi Yu, Zhi Liu
After 50 years of effort, near-ambient or ambient pressure X-ray photoelectron spectroscopy (NAP-XPS or APXPS) has become a useful tool for studying gas and liquid molecules in environmental science The developments of new-generation synchrotron radiation in recent decades—e.g., more brilliant light, tighter spot size, and well-controlled polarization—have further improved the quality of APXPS studies and enabled their applications in various fields, especially in ca-talysis and material science. Currently, there are more than 20 APXPS endstations built in synchrotron radiation facilities worldwide. In the near future, some APXPS endstations will be upgraded or have been proposed for upgrades, while a few new ones are under construction. This success of APXPS is realized not by the sole improvement of instrumentation, but also through interactions between the desire to explore new scientific phenomena and advanced techniques. Tender X-ray APXPS is a good example of how scientific desire to study the electrochemical liquid-solid interfaces has driven the development of experimental tools.
经过50年的努力,近环境或环境压力X射线光电子能谱(NAP-XPS或APXPS)已成为环境科学中研究气体和液体分子的有用工具。近几十年来,新一代同步辐射的发展——例如,更明亮的光、更紧密的光斑尺寸,以及良好控制的极化——进一步提高了APXPS研究的质量,并使其能够在各个领域应用,特别是在催化分析和材料科学中。目前,全世界有20多个APXPS端站建在同步辐射设施中。在不久的将来,一些APXPS端站将升级或已被提议升级,而一些新的端站正在建设中。APXPS的这一成功不仅是通过仪器的改进实现的,还通过探索新科学现象的愿望和先进技术之间的相互作用实现的。Tender X-ray APXPS是一个很好的例子,说明研究电化学液固界面的科学愿望如何推动了实验工具的发展。
{"title":"Recent Developments in APXPS at the Shanghai Synchrotron Radiation Facility","authors":"Hui Zhang, Xiaobao Li, Yi Yu, Zhi Liu","doi":"10.1080/08940886.2022.2082178","DOIUrl":"https://doi.org/10.1080/08940886.2022.2082178","url":null,"abstract":"After 50 years of effort, near-ambient or ambient pressure X-ray photoelectron spectroscopy (NAP-XPS or APXPS) has become a useful tool for studying gas and liquid molecules in environmental science The developments of new-generation synchrotron radiation in recent decades—e.g., more brilliant light, tighter spot size, and well-controlled polarization—have further improved the quality of APXPS studies and enabled their applications in various fields, especially in ca-talysis and material science. Currently, there are more than 20 APXPS endstations built in synchrotron radiation facilities worldwide. In the near future, some APXPS endstations will be upgraded or have been proposed for upgrades, while a few new ones are under construction. This success of APXPS is realized not by the sole improvement of instrumentation, but also through interactions between the desire to explore new scientific phenomena and advanced techniques. Tender X-ray APXPS is a good example of how scientific desire to study the electrochemical liquid-solid interfaces has driven the development of experimental tools.","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"26 - 30"},"PeriodicalIF":0.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42247608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Berlin Joint Lab for Electrochemical Interfaces, BElChem: A Facility for In-situ and Operando NAP-XPS and NAP-HAXPES Studies of Electrochemical Interfaces at BESSY II 柏林电化学界面联合实验室,BElChem:BESSY II电化学界面的原位和操作NAP-XPS和NAP-HAXPES研究设施
Q3 Physics and Astronomy Pub Date : 2022-05-04 DOI: 10.1080/08940886.2022.2082209
D. Starr, M. Hävecker, A. Knop‐Gericke, M. Favaro, S. Vadilonga, M. Mertin, G. Reichardt, J. Schmidt, F. Siewert, R. Schulz, J. Viefhaus, C. Jung, R. van de Krol
Vol. 35, No. 3, 2022, Synchrotron radiation newS Technical RepoRT The Berlin Joint Lab for Electrochemical Interfaces, BElChem: A Facility for In-situ and Operando NAP-XPS and NAP-HAXPES Studies of Electrochemical Interfaces at BESSY II DaviD E. Starr,1 MichaEl hävEckEr,2,3 axEl knop-GErickE,2,3 Marco Favaro,1 SiMonE vaDilonGa,1 MarcEl MErtin,1 GErD rEicharDt,1 Jan-SiMon SchMiDt,1 Frank SiEwErt,1 robErt Schulz,1 JEnS viEFhauS,1 chriStian JunG,1 anD roEl van DE krol1 1Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany 2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 3Max-Planck-Institut für Chemische Energiekonversion, Mülheim, Germany Introduction The Berlin Joint Lab for Electrochemical Interfaces (BElChem) is located at the BESSY II synchrotron in Berlin, Germany, and co-run by the Fritz-Haber-Institut, the Max-Planck-Institut of Chemical Energy Conversion and the Helmholtz-Zentrum Berlin. BElChem focuses on providing a molecular-level description of (photo)electrochemical interfaces that are of high relevance for solar fuel production and renewable energy storage. The CO 2 reduction reaction (CO2RR) and the oxygen evolution reaction (OER) are of particular current interest. In BElChem, near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and near-ambient pressure hard X-ray photoelectron spectroscopy (NAP-HAXPES) will be used for the in-situ and operando interrogation of the electronic structure and chemical composition of catalytically active solid/gas and solid/liquid interfaces. BElChem will also enable heterogeneous catalytic reactions, such as oxidation and hydrogenation reactions, to be investigated. The BElChem facility consists of two beamlines with two endstations in two separate hutches and an additional sample preparation/ chemical lab. One beamline, the undulator beamline U49/2 PGM (plane grating monochromator), covers the soft X-ray energy range, whereas the other dipole magnet sourced beamline, BElChem-DCM, with a double crystal monochromator (DCM), covers the tender X-ray energy range. Combined, the BElChem beamlines cover a photon energy range nominally from 90 eV to 10 keV. Each endstation has its own electron spectrometer. The endstation frame is composed of two separate parts. On one part, the electron spectrometer is mounted and, on the other, the analysis chamber is mounted. This allows the easy exchange of experimental modules and the ability for users of BElChem to provide tailor-made modules targeting the sample environment relevant for their in-situ or operando measurement. The BElChem facility provides the opportunity to study electrochemical interfaces with two general approaches. Due to the high surface sensitivity and short mean free paths of low kinetic energy photoelectrons generated with soft X-rays, a suitable method to explore the electrode/electrolyte interface with XPS during a (photo)electrochemical reaction is needed. At BElChem, these types of measurem
第35卷,2022年第3期,同步辐射新技术报告柏林电化学界面联合实验室,BElChem:BESSY II DaviD E.Starr电化学界面原位和操作NAP-XPS和NAP-HAXPES研究设施,1 Michal hävEcker2,3 axEl knop GErickE,2,3 Marco Favaro,1 robErt Schulz,1 JEnS viEFhauS,1 chriStian JunG,1 anD roEl van DE krol1 1Helmholtz Zentrum Berlin für Materialien anD Energie GmbH,德国柏林2弗里茨-哈伯研究所,德国柏林3马克斯-普朗克化学能源研究所,Mülheim,德国简介柏林电化学界面联合实验室(BElChem)位于德国柏林的BESSY II同步加速器,由Fritz Haber研究所、Max Planck化学能转换研究所和Helmholtz Zentrum Berlin共同运营。BElChem专注于提供与太阳能燃料生产和可再生能源存储高度相关的(光)电化学界面的分子水平描述。CO2还原反应(CO2RR)和析氧反应(OER)是当前特别感兴趣的。在BElChem中,近环境压力X射线光电子能谱(NAP-XPS)和近环境压力硬X射线光电子谱(NAP-HAXPES)将用于对催化活性固体/气体和固体/液体界面的电子结构和化学成分的原位和操作性询问。BElChem还将使多相催化反应,如氧化和氢化反应,得以研究。BElChem设施由两条光束线和一个额外的样品制备/化学实验室组成,两条光束线上有两个端站,一条光束线是波荡器光束线U49/2 PGM(平面光栅单色仪),覆盖软X射线能量范围,而另一条偶极磁源光束线BElChem-DCM,带有一个单晶单色仪(DCM),涵盖了微弱的X射线能量范围。结合起来,BElChem束线覆盖了名义上从90eV到10keV的光子能量范围。每个端站都有自己的电子光谱仪。端站框架由两个独立的部分组成。一部分安装电子光谱仪,另一部分安装分析室。这使得实验模块的交换变得容易,并且BElChem的用户能够提供针对与其原位或操作测量相关的样本环境的定制模块。BElChem设施提供了用两种通用方法研究电化学界面的机会。由于软X射线产生的低动能光电子具有高表面灵敏度和短平均自由程,因此需要一种在(光)电化学反应过程中用XPS探索电极/电解质界面的合适方法。在BElChem,这些类型的测量是使用专用的电化学电池或装置进行的,通常使用具有开口或覆盖石墨烯的孔阵列的薄膜,将电化学电池与真空环境分离。不同类型的细胞是可用的,哪种细胞最合适将取决于样品的性质和所需的实验条件[1]。使用软X射线可以产生比软X射线具有更高动能的光电子,有助于对掩埋界面的研究。在BElCem DCM束线上,使用两种方法来研究带电的固体/液体界面。通过浸拉法,几十纳米量级的电解质薄膜覆盖在电极表面,并使用嫩X射线光电发射来研究掩埋的固体/电解质界面[1,2]。(照片)电化学反应也可以使用三电极H电池进行原位研究[3]。NAPHAXPES测量是这样进行的,使得X射线激发和电子检测都通过薄电解质膜发生。在这两种情况下,同时检测电极的活性、产物分析以及测量电极的化学成分和电子结构使得能够建立结构-功能关系。
{"title":"The Berlin Joint Lab for Electrochemical Interfaces, BElChem: A Facility for In-situ and Operando NAP-XPS and NAP-HAXPES Studies of Electrochemical Interfaces at BESSY II","authors":"D. Starr, M. Hävecker, A. Knop‐Gericke, M. Favaro, S. Vadilonga, M. Mertin, G. Reichardt, J. Schmidt, F. Siewert, R. Schulz, J. Viefhaus, C. Jung, R. van de Krol","doi":"10.1080/08940886.2022.2082209","DOIUrl":"https://doi.org/10.1080/08940886.2022.2082209","url":null,"abstract":"Vol. 35, No. 3, 2022, Synchrotron radiation newS Technical RepoRT The Berlin Joint Lab for Electrochemical Interfaces, BElChem: A Facility for In-situ and Operando NAP-XPS and NAP-HAXPES Studies of Electrochemical Interfaces at BESSY II DaviD E. Starr,1 MichaEl hävEckEr,2,3 axEl knop-GErickE,2,3 Marco Favaro,1 SiMonE vaDilonGa,1 MarcEl MErtin,1 GErD rEicharDt,1 Jan-SiMon SchMiDt,1 Frank SiEwErt,1 robErt Schulz,1 JEnS viEFhauS,1 chriStian JunG,1 anD roEl van DE krol1 1Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany 2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 3Max-Planck-Institut für Chemische Energiekonversion, Mülheim, Germany Introduction The Berlin Joint Lab for Electrochemical Interfaces (BElChem) is located at the BESSY II synchrotron in Berlin, Germany, and co-run by the Fritz-Haber-Institut, the Max-Planck-Institut of Chemical Energy Conversion and the Helmholtz-Zentrum Berlin. BElChem focuses on providing a molecular-level description of (photo)electrochemical interfaces that are of high relevance for solar fuel production and renewable energy storage. The CO 2 reduction reaction (CO2RR) and the oxygen evolution reaction (OER) are of particular current interest. In BElChem, near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and near-ambient pressure hard X-ray photoelectron spectroscopy (NAP-HAXPES) will be used for the in-situ and operando interrogation of the electronic structure and chemical composition of catalytically active solid/gas and solid/liquid interfaces. BElChem will also enable heterogeneous catalytic reactions, such as oxidation and hydrogenation reactions, to be investigated. The BElChem facility consists of two beamlines with two endstations in two separate hutches and an additional sample preparation/ chemical lab. One beamline, the undulator beamline U49/2 PGM (plane grating monochromator), covers the soft X-ray energy range, whereas the other dipole magnet sourced beamline, BElChem-DCM, with a double crystal monochromator (DCM), covers the tender X-ray energy range. Combined, the BElChem beamlines cover a photon energy range nominally from 90 eV to 10 keV. Each endstation has its own electron spectrometer. The endstation frame is composed of two separate parts. On one part, the electron spectrometer is mounted and, on the other, the analysis chamber is mounted. This allows the easy exchange of experimental modules and the ability for users of BElChem to provide tailor-made modules targeting the sample environment relevant for their in-situ or operando measurement. The BElChem facility provides the opportunity to study electrochemical interfaces with two general approaches. Due to the high surface sensitivity and short mean free paths of low kinetic energy photoelectrons generated with soft X-rays, a suitable method to explore the electrode/electrolyte interface with XPS during a (photo)electrochemical reaction is needed. At BElChem, these types of measurem","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"54 - 60"},"PeriodicalIF":0.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42696051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Versatile Soft X-Ray (VerSoX) Beamline at Diamond Light Source 钻石光源的多功能软X射线(VerSoX)光束线
Q3 Physics and Astronomy Pub Date : 2022-05-04 DOI: 10.1080/08940886.2022.2082181
D. Grinter, F. Venturini, P. Ferrer, M. V. van Spronsen, Rosa Arrigo, W. Quevedo Garzon, Kanak Roy, A. Large, Santosh Kumar, Georg Held
39 Technical RepoRT The Versatile Soft X-ray (VerSoX) Beamline at Diamond Light Source DaviD C. Grinter,1 FeDeriCa venturini,1 Pilar Ferrer,1 Matthijs a. van sPronsen,1 rosa arriGo,1,2 Wilson QueveDo Garzon,1,3 KanaK roy,1 alexanDer i. larGe,1 santosh KuMar,1 anD GeorG helD1 1Diamond Light Source Ltd, Oxfordshire, UK 2School of Science, Engineering and Environment, University of Salford, Manchester, UK 3Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany Georg Held georg.held@diamond.ac.uk
39钻石光源的通用软x射线(VerSoX)光束线技术报告DaviD C. Grinter,1 FeDeriCa venturini,1 Pilar Ferrer,1 Matthijs a. van sPronsen,1 rosa arriGo,1,2 Wilson QueveDo Garzon,1,3 KanaK roy,1 alexanDer i. larGe,1 santosh KuMar,1 anD GeorG helD1 1Diamond光源有限公司,牛牛郡,英国2科学、工程与环境学院,曼彻斯特索尔福德大学,英国3柏林helmholtz - centrum f材料与能源中心,柏林,德国乔治·赫尔德georg.held@diamond.ac.uk
{"title":"The Versatile Soft X-Ray (VerSoX) Beamline at Diamond Light Source","authors":"D. Grinter, F. Venturini, P. Ferrer, M. V. van Spronsen, Rosa Arrigo, W. Quevedo Garzon, Kanak Roy, A. Large, Santosh Kumar, Georg Held","doi":"10.1080/08940886.2022.2082181","DOIUrl":"https://doi.org/10.1080/08940886.2022.2082181","url":null,"abstract":"39 Technical RepoRT The Versatile Soft X-ray (VerSoX) Beamline at Diamond Light Source DaviD C. Grinter,1 FeDeriCa venturini,1 Pilar Ferrer,1 Matthijs a. van sPronsen,1 rosa arriGo,1,2 Wilson QueveDo Garzon,1,3 KanaK roy,1 alexanDer i. larGe,1 santosh KuMar,1 anD GeorG helD1 1Diamond Light Source Ltd, Oxfordshire, UK 2School of Science, Engineering and Environment, University of Salford, Manchester, UK 3Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany Georg Held georg.held@diamond.ac.uk","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"39 - 47"},"PeriodicalIF":0.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43257867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Ambient Pressure X-Ray Photoelectron Spectroscopy at the IOS (23-ID-2) Beamline at the National Synchrotron Light Source II 国家同步加速器光源II IOS(23-ID-2)光束的环境压力X射线光电子能谱
Q3 Physics and Astronomy Pub Date : 2022-05-04 DOI: 10.1080/08940886.2022.2082180
I. Waluyo, A. Hunt
Introduction Studying energy materials under realistic operating conditions is necessary to reveal chemical and electronic properties as well as fundamental processes that determine the functional properties of the materials. This has been the driving force for the development of various in-situ and operando experimental techniques. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) has emerged as one of the most powerful tools for the in-situ investigation of the surfaces and interfaces of such energy materials, on which the critical surface processes and reactions occur, thanks to its inherent surface sensitivity, elemental specificity, and sensitivity to different chemical environments. The ability to perform AP-XPS experiments at pressures ranging from the typical tens of millibars to a few bars [1] has enabled scientists to close the so-called “pressure gap” between real industrial processes and surface science experiments typically performed under ultra-high vacuum (UHV) conditions. As a result, AP-XPS instruments have proliferated around the world in the past two decades, starting at synchrotron light sources, followed by lab-based instruments [2]. As one of the newest and brightest synchrotron light sources in the world, the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office Of Science user facility located at DOE’s Brookhaven National Laboratory (BNL), offers new and exciting opportunities for energy research using in-situ and operando X-ray techniques, including AP-XPS [3]. The In situ and Operando Soft Xray Spectroscopy beamline (IOS, 23-ID-2) [4], formerly called CSX2, was part of the first group of beamlines to open to general users at NSLS-II, where the AP-XPS user program has been thriving since 2016. In this technical report, we present a description of the current state of the IOS beamline and AP-XPS endstation, examples of recent scientific highlights, as well as an overview of future developments.
引言在现实操作条件下研究能源材料对于揭示材料的化学和电子特性以及决定材料功能特性的基本过程是必要的。这一直是各种原位和操作性实验技术发展的驱动力。环境压力X射线光电子能谱(AP-XPS)由于其固有的表面敏感性、元素特异性和对不同化学环境的敏感性,已成为原位研究此类能源材料表面和界面的最有力工具之一,在这些材料上发生了关键的表面过程和反应。在典型的几十毫巴到几巴的压力下进行AP-XPS实验的能力[1]使科学家能够缩小实际工业过程与通常在超高真空(UHV)条件下进行的表面科学实验之间的所谓“压力差距”。因此,AP-XPS仪器在过去二十年中在世界各地激增,首先是同步加速器光源,其次是实验室仪器[2]。作为世界上最新、最亮的同步加速器光源之一,国家同步加速器光源II(NSLS-II)是美国能源部(DOE)科学办公室的用户设施,位于DOE的布鲁克黑文国家实验室(BNL),为使用原位和操作X射线技术(包括AP-XPS[3])进行能源研究提供了新的令人兴奋的机会。原位和操作软X射线光谱束线(IOS,23-ID-2)[4],以前称为CSX2,是NSLS-II向普通用户开放的第一组束线的一部分,AP-XPS用户计划自2016年以来一直蓬勃发展。在本技术报告中,我们介绍了IOS波束线和AP-XPS端站的现状,最近科学亮点的例子,以及未来发展的概述。
{"title":"Ambient Pressure X-Ray Photoelectron Spectroscopy at the IOS (23-ID-2) Beamline at the National Synchrotron Light Source II","authors":"I. Waluyo, A. Hunt","doi":"10.1080/08940886.2022.2082180","DOIUrl":"https://doi.org/10.1080/08940886.2022.2082180","url":null,"abstract":"Introduction Studying energy materials under realistic operating conditions is necessary to reveal chemical and electronic properties as well as fundamental processes that determine the functional properties of the materials. This has been the driving force for the development of various in-situ and operando experimental techniques. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) has emerged as one of the most powerful tools for the in-situ investigation of the surfaces and interfaces of such energy materials, on which the critical surface processes and reactions occur, thanks to its inherent surface sensitivity, elemental specificity, and sensitivity to different chemical environments. The ability to perform AP-XPS experiments at pressures ranging from the typical tens of millibars to a few bars [1] has enabled scientists to close the so-called “pressure gap” between real industrial processes and surface science experiments typically performed under ultra-high vacuum (UHV) conditions. As a result, AP-XPS instruments have proliferated around the world in the past two decades, starting at synchrotron light sources, followed by lab-based instruments [2]. As one of the newest and brightest synchrotron light sources in the world, the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office Of Science user facility located at DOE’s Brookhaven National Laboratory (BNL), offers new and exciting opportunities for energy research using in-situ and operando X-ray techniques, including AP-XPS [3]. The In situ and Operando Soft Xray Spectroscopy beamline (IOS, 23-ID-2) [4], formerly called CSX2, was part of the first group of beamlines to open to general users at NSLS-II, where the AP-XPS user program has been thriving since 2016. In this technical report, we present a description of the current state of the IOS beamline and AP-XPS endstation, examples of recent scientific highlights, as well as an overview of future developments.","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"31 - 38"},"PeriodicalIF":0.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43464996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Sixteenth International Conference on Surface X-Ray and Neutron Scattering (SXNS16) 第十六届国际表面X射线和中子散射会议(SXNS16)
Q3 Physics and Astronomy Pub Date : 2022-05-04 DOI: 10.1080/08940886.2022.2082218
Thomas Arnold, A. Terry, E. Blackburn, U. Hejral, Zsuzsa Heyels, Andrew R. McCluskey, T. Nylander, Max Wolff
{"title":"The Sixteenth International Conference on Surface X-Ray and Neutron Scattering (SXNS16)","authors":"Thomas Arnold, A. Terry, E. Blackburn, U. Hejral, Zsuzsa Heyels, Andrew R. McCluskey, T. Nylander, Max Wolff","doi":"10.1080/08940886.2022.2082218","DOIUrl":"https://doi.org/10.1080/08940886.2022.2082218","url":null,"abstract":"","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"73 - 74"},"PeriodicalIF":0.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47756572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Experimental Platform for Operando Structural and Chemical Characterization at the ALS 一种新的肌萎缩性侧索硬化症结构和化学表征实验平台
Q3 Physics and Astronomy Pub Date : 2022-05-04 DOI: 10.1080/08940886.2022.2082211
H. Kersell, S. Dhuey, D. Kumar, S. Nemšák
61 Technical RepoRT A New Experimental Platform for Operando Structural and Chemical Characterization at the ALS H. Kersell,1,2 s. DHuey,3 D. Kumar,4 anD s. nemsaK1 1Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA 2School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA 3Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA 4Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, California, USA
61技术报告ALS的操作结构和化学表征的新实验平台H.Kersell,1,2 s.DHuey,3 D.Kumar,4 an D.s.nemsaK1高级光源,劳伦斯伯克利国家实验室,美国加利福尼亚州伯克利2俄勒冈州立大学化学、生物和环境工程学院,美国俄勒冈州科瓦利斯3分子铸造厂,劳伦斯伯克利国家实验室,美国加利福尼亚州伯克利4能源研究应用高等数学中心,劳伦斯伯克利国家实验所,美国加州伯克利
{"title":"A New Experimental Platform for Operando Structural and Chemical Characterization at the ALS","authors":"H. Kersell, S. Dhuey, D. Kumar, S. Nemšák","doi":"10.1080/08940886.2022.2082211","DOIUrl":"https://doi.org/10.1080/08940886.2022.2082211","url":null,"abstract":"61 Technical RepoRT A New Experimental Platform for Operando Structural and Chemical Characterization at the ALS H. Kersell,1,2 s. DHuey,3 D. Kumar,4 anD s. nemsaK1 1Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA 2School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA 3Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA 4Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, California, USA","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"61 - 66"},"PeriodicalIF":0.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42253757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials Science Research by Ambient Pressure X-ray Photoelectron Spectroscopy Systems at Synchrotron Radiation Facilities in Japan: Applications in Energy, Catalysis, and Sensors 日本同步辐射设施环境压力x射线光电子能谱系统的材料科学研究:在能源、催化和传感器方面的应用
Q3 Physics and Astronomy Pub Date : 2022-05-04 DOI: 10.1080/08940886.2022.2082168
Susumu Yamamoto, Y. Takagi, T. Koitaya, R. Toyoshima, M. Horio, I. Matsuda, H. Kondoh, T. Yokoyama, J. Yoshinobu
19 Technical RepoRT Materials Science Research by Ambient Pressure X-ray Photoelectron Spectroscopy Systems at Synchrotron Radiation Facilities in Japan: Applications in Energy, Catalysis, and Sensors SuSumu Yamamoto,1,2 YaSumaSa takagi,3 takanori koitaYa,4 rYo toYoShima,5 maSafumi horio,6 iwao matSuda,6 hiroShi kondoh,5 toShihiko YokoYama,4 and Jun YoShinobu5 1International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Miyagi, Japan 2Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan 3Center for Synchotron Radiation Research, Japan Synchrotron Radiation Research Institute, Hyogo, Japan 4Department of Materials Molecular Science, Institute for Molecular Science, Aichi, Japan 5Department of Chemistry, Keio University, Kanagawa, Japan 6The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan
日本同步辐射设施环境压力x射线光电子能谱系统的材料科学研究:能源、催化和传感器的应用:山本进,1,2高木安正,3小谷孝则,4丰岛良,5堀尾正文,6松田岩夫,6近藤宏,5横山俊彦,4吉野俊5 1日本宫城东北大学智能同步辐射创新国际中心2日本宫城东北大学先进材料多学科研究中心3日本同步辐射研究所同步辐射研究中心,日本同步辐射研究所,4日本爱知县分子科学研究所材料分子科学系5日本神奈川庆应义塾大学化学系6日本千叶东京大学固体物理研究所
{"title":"Materials Science Research by Ambient Pressure X-ray Photoelectron Spectroscopy Systems at Synchrotron Radiation Facilities in Japan: Applications in Energy, Catalysis, and Sensors","authors":"Susumu Yamamoto, Y. Takagi, T. Koitaya, R. Toyoshima, M. Horio, I. Matsuda, H. Kondoh, T. Yokoyama, J. Yoshinobu","doi":"10.1080/08940886.2022.2082168","DOIUrl":"https://doi.org/10.1080/08940886.2022.2082168","url":null,"abstract":"19 Technical RepoRT Materials Science Research by Ambient Pressure X-ray Photoelectron Spectroscopy Systems at Synchrotron Radiation Facilities in Japan: Applications in Energy, Catalysis, and Sensors SuSumu Yamamoto,1,2 YaSumaSa takagi,3 takanori koitaYa,4 rYo toYoShima,5 maSafumi horio,6 iwao matSuda,6 hiroShi kondoh,5 toShihiko YokoYama,4 and Jun YoShinobu5 1International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Miyagi, Japan 2Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan 3Center for Synchotron Radiation Research, Japan Synchrotron Radiation Research Institute, Hyogo, Japan 4Department of Materials Molecular Science, Institute for Molecular Science, Aichi, Japan 5Department of Chemistry, Keio University, Kanagawa, Japan 6The Institute for Solid State Physics, The University of Tokyo, Chiba, Japan","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"19 - 25"},"PeriodicalIF":0.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48797297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Operando X-ray Photoelectron Spectroscopy for High-Pressure Catalysis Research Using the POLARIS Endstation 使用POLARIS终端进行高压催化研究的操作X射线光电子能谱
Q3 Physics and Astronomy Pub Date : 2022-05-04 DOI: 10.1080/08940886.2022.2078580
David Degerman, P. Amann, Christopher M. Goodwin, P. Lömker, Hsin‐Yi Wang, M. Soldemo, M. Shipilin, C. Schlueter, Anders Nilsson
11 Technical RepoRT Operando X-ray Photoelectron Spectroscopy for High-Pressure Catalysis Research Using the POLARIS Endstation DaviD Degerman,1 Peter amann,1,2 ChristoPher m. gooDwin,1 PatriCk Lömker,1,3 hsin-Yi wang,1,4 markus soLDemo,5 mikhaiL shiPiLin,1 ChristoPh sChLueter,3 anD anDers niLsson1 1Department of Physics, Stockholm University, AlbaNova University Center, Stockholm, Sweden 2Scienta Omicron AB, Uppsala, Sweden 3Photon Science, Deutches Elektronen Synchrotron DESY, Hamburg, Germany 4Enerpoly AB, Stockholm, Sweden 5PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA David Degerman david.degerman@fysik.su.se
11利用POLARIS终端进行高压催化研究的x射线光电子能谱技术报告DaviD Degerman,1 Peter amann,1,2 ChristoPher m. gooDwin,1 PatriCk Lömker,1,3 hsin-Yi wang,1,4 markus soLDemo,5 mikhaiL shiPiLin,1 ChristoPh sChLueter,3 anD anDers niLsson1斯德哥尔摩大学物理系,瑞典斯德哥尔摩阿尔巴诺瓦大学中心2瑞典乌普萨拉scienta Omicron AB 3光子科学,德国电子同步加速器DESY,汉堡5脉冲研究所,SLAC国家加速器实验室,门洛帕克,加利福尼亚,美国大卫·德格曼david.degerman@fysik.su.se
{"title":"Operando X-ray Photoelectron Spectroscopy for High-Pressure Catalysis Research Using the POLARIS Endstation","authors":"David Degerman, P. Amann, Christopher M. Goodwin, P. Lömker, Hsin‐Yi Wang, M. Soldemo, M. Shipilin, C. Schlueter, Anders Nilsson","doi":"10.1080/08940886.2022.2078580","DOIUrl":"https://doi.org/10.1080/08940886.2022.2078580","url":null,"abstract":"11 Technical RepoRT Operando X-ray Photoelectron Spectroscopy for High-Pressure Catalysis Research Using the POLARIS Endstation DaviD Degerman,1 Peter amann,1,2 ChristoPher m. gooDwin,1 PatriCk Lömker,1,3 hsin-Yi wang,1,4 markus soLDemo,5 mikhaiL shiPiLin,1 ChristoPh sChLueter,3 anD anDers niLsson1 1Department of Physics, Stockholm University, AlbaNova University Center, Stockholm, Sweden 2Scienta Omicron AB, Uppsala, Sweden 3Photon Science, Deutches Elektronen Synchrotron DESY, Hamburg, Germany 4Enerpoly AB, Stockholm, Sweden 5PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA David Degerman david.degerman@fysik.su.se","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"11 - 18"},"PeriodicalIF":0.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44033229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Synchrotron Radiation News
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1