Pub Date : 2024-09-23eCollection Date: 2024-01-01DOI: 10.2147/TACG.S472788
Omaima Abdel Majeed Mohamed Salih, Nahla Hashim Hassan Erwa, Abdelrahman Hamza Abdelmoneim, Hiba Awadelkareem Osman Fadl, Brigitte Glanzmann, Manasik Abdalla Babiker Osman, Monzir Ahmed Hassan Osman, Thuraya Mohamed Elshiekh Gasim, Alamin Mustafa
Introduction: Inborn errors of immunity (IEI) are disorders that present a health issue, especially in developing countries where there is a high rate of consanguineous marriages and an increasing rate of diagnosis. One of these disorders is Bare Lymphocyte Syndrome II (BLS II) which is a rare and genetically complex disease that has high morbidity and mortality. The exact genotypic and phenotypic characteristics are still poorly characterized especially in developing countries.
Case presentation: Here, we report the first case of BLS II in a seven-month-old Sudanese female with recurrent chest infections, dermatitis, persistent diarrhea, and failure to thrive. The patient's all four sisters and three paternal uncles died in early infancy. Laboratory investigations revealed low CD3+, CD4+, and CD8+ lymphocytes, along with normal CD19+ and CD16+ lymphocytes, and low serum IgM and IgA levels. Genetic analysis revealed two CIITA variants; c.2296C >G p. (Pro766Ala) and c.439+1G >A.
Conclusion: Further bioinformatics, immunological and clinical workups supported a pathogenic effect of both mutations affecting the function of CIITA protein, and suggesting a compound heterozygote mutation. The patient was started on prophylactic antibiotics and regular intravenous immunoglobulin replacement therapy. The prognosis of this disease is poor in most of the cases, with only a few reported cases surviving until adulthood.
导言:先天性免疫错误(IEI)是一种健康问题疾病,尤其是在近亲结婚率高且诊断率不断上升的发展中国家。裸淋巴细胞综合征 II(BLS II)就是其中之一,它是一种罕见的遗传性复杂疾病,发病率和死亡率都很高。其确切的基因型和表型特征仍不十分明确,尤其是在发展中国家:在此,我们报告了首例 BLS II 病例,患者是一名七个月大的苏丹女童,反复出现胸部感染、皮炎、持续腹泻和发育不良。患者的四个姐妹和三个叔伯均在婴儿期死亡。实验室检查发现,CD3+、CD4+和CD8+淋巴细胞偏低,CD19+和CD16+淋巴细胞正常,血清IgM和IgA水平偏低。基因分析发现了两个 CIITA 变体:c.2296C >G p. (Pro766Ala) 和 c.439+1G >A:结论:进一步的生物信息学、免疫学和临床检查证实,这两个变异影响了 CIITA 蛋白的功能,并表明这是一个复合杂合子变异。患者开始接受预防性抗生素和定期静脉注射免疫球蛋白替代治疗。大多数病例的预后较差,仅有少数病例存活至成年。
{"title":"Class II Transactivator Gene (<i>CIITA</i>) Variants Associated with Bare Lymphocyte Syndrome II in a Female Sudanese Patient.","authors":"Omaima Abdel Majeed Mohamed Salih, Nahla Hashim Hassan Erwa, Abdelrahman Hamza Abdelmoneim, Hiba Awadelkareem Osman Fadl, Brigitte Glanzmann, Manasik Abdalla Babiker Osman, Monzir Ahmed Hassan Osman, Thuraya Mohamed Elshiekh Gasim, Alamin Mustafa","doi":"10.2147/TACG.S472788","DOIUrl":"https://doi.org/10.2147/TACG.S472788","url":null,"abstract":"<p><strong>Introduction: </strong>Inborn errors of immunity (IEI) are disorders that present a health issue, especially in developing countries where there is a high rate of consanguineous marriages and an increasing rate of diagnosis. One of these disorders is Bare Lymphocyte Syndrome II (BLS II) which is a rare and genetically complex disease that has high morbidity and mortality. The exact genotypic and phenotypic characteristics are still poorly characterized especially in developing countries.</p><p><strong>Case presentation: </strong>Here, we report the first case of BLS II in a seven-month-old Sudanese female with recurrent chest infections, dermatitis, persistent diarrhea, and failure to thrive. The patient's all four sisters and three paternal uncles died in early infancy. Laboratory investigations revealed low CD3+, CD4+, and CD8+ lymphocytes, along with normal CD19+ and CD16+ lymphocytes, and low serum IgM and IgA levels. Genetic analysis revealed two <i>CIITA</i> variants; c.2296C >G p. (Pro766Ala) and c.439+1G >A.</p><p><strong>Conclusion: </strong>Further bioinformatics, immunological and clinical workups supported a pathogenic effect of both mutations affecting the function of CIITA protein, and suggesting a compound heterozygote mutation. The patient was started on prophylactic antibiotics and regular intravenous immunoglobulin replacement therapy. The prognosis of this disease is poor in most of the cases, with only a few reported cases surviving until adulthood.</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"133-141"},"PeriodicalIF":2.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142355930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12eCollection Date: 2024-01-01DOI: 10.2147/TACG.S487419
[This corrects the article DOI: 10.2147/TACG.S363685.].
[此处更正了文章 DOI:10.2147/TACG.S363685]。
{"title":"Erratum: Sturge-Weber Syndrome: A Review of Pathophysiology, Genetics, Clinical Features, and Current Management Approache [Corrigendum].","authors":"","doi":"10.2147/TACG.S487419","DOIUrl":"https://doi.org/10.2147/TACG.S487419","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.2147/TACG.S363685.].</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"131-132"},"PeriodicalIF":2.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: There are more than 6000 genetic syndromes, therefore the recognition of facial patterns may present a challenge for clinicians. The 22q11.2 deletion syndrome (22q11.2 DS) and Williams syndrome (WS) are two different genetic syndromes but share some common phenotypic traits and subtle facial dysmorphisms. Therefore, any tool that would help clinicians recognize genetic syndromes would likely result in a more accurate diagnosis.
Methods: The syndrome identification accuracy was compared between 2 different facial analysis algorithms (DeepGestalt and GestaltMatcher) of the Face2Gene (F2G) tool and a group of 9 clinicians with different levels of expertise before and after using F2G for a cohort of 64 Thai participants' frontal facial photos divided into 3 groups of 22q11.2 DS, WS and unaffected controls.
Results: The higher accuracy from the DeepGestalt algorithm than from clinicians was demonstrated, especially when comparing between the two syndromes. The accuracy was highest when clinicians use the tool combined with their own decision-making process. The tool's second algorithm, GestaltMatcher revealed clear separation among these three groups of photos.
Discussion: The result of F2G outperforming clinicians was not surprising. However, the highest increase in accuracy was with nondysmorphology clinicians using F2G.
Conclusion: Face2Gene would be a useful tool to help clinicians in facial recognition of genetic syndromes, before ordering specific tests to confirm the definite diagnosis.
{"title":"Comparison of the Accuracy in Provisional Diagnosis of 22q11.2 Deletion and Williams Syndromes by Facial Photos in Thai Population Between De-Identified Facial Program and Clinicians.","authors":"Nop Khongthon, Midi Theeraviwatwong, Khunton Wichajarn, Kitiwan Rojnueangnit","doi":"10.2147/TACG.S458400","DOIUrl":"10.2147/TACG.S458400","url":null,"abstract":"<p><strong>Introduction: </strong>There are more than 6000 genetic syndromes, therefore the recognition of facial patterns may present a challenge for clinicians. The 22q11.2 deletion syndrome (22q11.2 DS) and Williams syndrome (WS) are two different genetic syndromes but share some common phenotypic traits and subtle facial dysmorphisms. Therefore, any tool that would help clinicians recognize genetic syndromes would likely result in a more accurate diagnosis.</p><p><strong>Methods: </strong>The syndrome identification accuracy was compared between 2 different facial analysis algorithms (DeepGestalt and GestaltMatcher) of the Face2Gene (F2G) tool and a group of 9 clinicians with different levels of expertise before and after using F2G for a cohort of 64 Thai participants' frontal facial photos divided into 3 groups of 22q11.2 DS, WS and unaffected controls.</p><p><strong>Results: </strong>The higher accuracy from the DeepGestalt algorithm than from clinicians was demonstrated, especially when comparing between the two syndromes. The accuracy was highest when clinicians use the tool combined with their own decision-making process. The tool's second algorithm, GestaltMatcher revealed clear separation among these three groups of photos.</p><p><strong>Discussion: </strong>The result of F2G outperforming clinicians was not surprising. However, the highest increase in accuracy was with nondysmorphology clinicians using F2G.</p><p><strong>Conclusion: </strong>Face2Gene would be a useful tool to help clinicians in facial recognition of genetic syndromes, before ordering specific tests to confirm the definite diagnosis.</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"107-115"},"PeriodicalIF":2.6,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: CYP2C19 plays a major role in the metabolism of various drugs. The most common genetic variants were the CYP2C19*2 and *3 alleles (rs4244285 and rs4986893, non-functional variants). In previous studies, we found that genetic polymorphisms in CYP2C19 variants influenced the active metabolites of clopidogrel and caused major adverse cardiovascular and cerebrovascular effects. However, the distribution of CYP2C19 varies among ethnic groups and according to adverse drug reactions. This study aimed to investigate the frequency of CYP2C19 genetic polymorphisms in the Thai population and analyze the differences in the frequency of CYP2C19 genetic polymorphisms between Thai and other populations.
Methods: This study enrolled 211 unrelated healthy Thai individuals in total. We performed a real-time polymerase chain reaction to genotype CYP2C19*2 (681G > A) and CYP2C19*3 (636G > A).
Results: In the Thai population, the CYP2C19*1 allele was the most prevalent at 70.14%, while the CYP2C19*2 and *3 alleles were found at frequencies of 25.36% and 4.50%, respectively. Conversely, the CYP2C19*3 allele was not detected in Caucasian, Hispanic, African, Italian, Macedonian, Tanzanian, or North Indian populations. The phenotypic profile of this gene revealed that the frequency of intermediate metabolizers (IMs) is nearly equal to that of extensive metabolizers (EMs), at 42.65% and 48.82% respectively, with genotypes *1/*2 (36.02%) and *1/*3 (6.63%). Likewise, poor metabolizers (PMs) with genotypes *2/*2 (6.16%), *2/*3 (2.37%), and *3/*3 (<1%) are more prevalent in our population as well.
Conclusion: The distribution of CYP2C19 genotype and phenotype influenced by non-functional alleles has potential as a pharmacogenomics biomarker for precision medicine and is dependent on an ethnic-specific genetic variation database.
{"title":"The Diversity of <i>CYP2C19</i> Polymorphisms in the Thai Population: Implications for Precision Medicine.","authors":"Vorthunju Nakhonsri, Shobana John, Hathaichanok Panumasmontol, Manassanan Jantorn, Pongpipat Chanthot, Nuntachai Hanpramukkun, Supaporn Meelarp, Chonlaphat Sukasem, Sissades Tongsima, Sukhontha Hasatsri, Abhisit Prawang, Thanawat Thaingtamtanha, Natchaya Vanwong, Chalirmporn Atasilp, Monpat Chamnanphon, Pimonpan Jinda, Patompong Satapornpong","doi":"10.2147/TACG.S463965","DOIUrl":"10.2147/TACG.S463965","url":null,"abstract":"<p><strong>Introduction: </strong><i>CYP2C19</i> plays a major role in the metabolism of various drugs. The most common genetic variants were the <i>CYP2C19*2</i> and <i>*3</i> alleles (<i>rs4244285</i> and <i>rs4986893</i>, non-functional variants). In previous studies, we found that genetic polymorphisms in <i>CYP2C19</i> variants influenced the active metabolites of clopidogrel and caused major adverse cardiovascular and cerebrovascular effects. However, the distribution of <i>CYP2C19</i> varies among ethnic groups and according to adverse drug reactions. This study aimed to investigate the frequency of <i>CYP2C19</i> genetic polymorphisms in the Thai population and analyze the differences in the frequency of <i>CYP2C19</i> genetic polymorphisms between Thai and other populations.</p><p><strong>Methods: </strong>This study enrolled 211 unrelated healthy Thai individuals in total. We performed a real-time polymerase chain reaction to genotype <i>CYP2C19*2</i> (681G > A) and <i>CYP2C19*3</i> (636G > A).</p><p><strong>Results: </strong>In the Thai population, the <i>CYP2C19*1</i> allele was the most prevalent at 70.14%, while the <i>CYP2C19*2</i> and <i>*3</i> alleles were found at frequencies of 25.36% and 4.50%, respectively. Conversely, the <i>CYP2C19*3</i> allele was not detected in Caucasian, Hispanic, African, Italian, Macedonian, Tanzanian, or North Indian populations. The phenotypic profile of this gene revealed that the frequency of intermediate metabolizers (IMs) is nearly equal to that of extensive metabolizers (EMs), at 42.65% and 48.82% respectively, with genotypes <i>*1/*2</i> (36.02%) and <i>*1/*3</i> (6.63%). Likewise, poor metabolizers (PMs) with genotypes <i>*2/*2</i> (6.16%), <i>*2/*3</i> (2.37%), and <i>*3/*3</i> (<1%) are more prevalent in our population as well.</p><p><strong>Conclusion: </strong>The distribution of <i>CYP2C19</i> genotype and phenotype influenced by non-functional alleles has potential as a pharmacogenomics biomarker for precision medicine and is dependent on an ethnic-specific genetic variation database.</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"95-105"},"PeriodicalIF":2.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31eCollection Date: 2024-01-01DOI: 10.2147/TACG.S448084
Nan Du, Xiaolei Wang, Zhaohui Wang, Hongwei Liu, Hui Liu, Hongfang Duan, Shaozhi Zhao, Santasree Banerjee, Xinwen Zhang
Background: Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders involving peripheral nervous system. Charcot-Marie-Tooth disease 4B1 (CMT4B1) is a rare subtype of CMT. CMT4B1 is an axonal demyelinating polyneuropathy with an autosomal recessive mode of inheritance. Patients with CMT4B1 usually manifested with dysfunction of the motor and sensory systems which leads to gradual and progressive muscular weakness and atrophy, starting from the peroneal muscles and finally affecting the distal muscles. Germline mutations in MTMR2 gene causes CMT4B1.
Material and methods: In this study, we investigated a 4-year-old Chinese boy with gradual and progressive weakness and atrophy of both proximal and distal muscles. The proband's parents did not show any abnormalities. Whole-exome sequencing and Sanger sequencing were performed.
Results: Whole-exome sequencing identified a novel homozygous nonsense mutation (c.118A>T; p.Lys40*) in exon 2 of MTMR2 gene in the proband. This novel mutation leads to the formation of a truncated MTMR2 protein of 39 amino acids instead of the wild- type MTMR2 protein of 643 amino acids. This mutation is predicted to cause the complete loss of the PH-GRAM domain, phosphatase domain, coiled-coil domain, and PDZ-binding motif of the MTMR2 protein. Sanger sequencing revealed that the proband's parents carried the mutation in a heterozygous state. This mutation was absent in 100 healthy control individuals.
Conclusion: This study reports the first mutation in MTMR2 associated with CMT4B1 in a Chinese population. Our study also showed the importance of whole-exome sequencing in identifying candidate genes and disease-causing variants in patients with CMT4B1.
{"title":"Identification of a Novel Homozygous Mutation in <i>MTMR2</i> Gene Causes Very Rare Charcot-Marie-Tooth Disease Type 4B1.","authors":"Nan Du, Xiaolei Wang, Zhaohui Wang, Hongwei Liu, Hui Liu, Hongfang Duan, Shaozhi Zhao, Santasree Banerjee, Xinwen Zhang","doi":"10.2147/TACG.S448084","DOIUrl":"10.2147/TACG.S448084","url":null,"abstract":"<p><strong>Background: </strong>Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders involving peripheral nervous system. Charcot-Marie-Tooth disease 4B1 (CMT4B1) is a rare subtype of CMT. CMT4B1 is an axonal demyelinating polyneuropathy with an autosomal recessive mode of inheritance. Patients with CMT4B1 usually manifested with dysfunction of the motor and sensory systems which leads to gradual and progressive muscular weakness and atrophy, starting from the peroneal muscles and finally affecting the distal muscles. Germline mutations in <i>MTMR2</i> gene causes CMT4B1.</p><p><strong>Material and methods: </strong>In this study, we investigated a 4-year-old Chinese boy with gradual and progressive weakness and atrophy of both proximal and distal muscles. The proband's parents did not show any abnormalities. Whole-exome sequencing and Sanger sequencing were performed.</p><p><strong>Results: </strong>Whole-exome sequencing identified a novel homozygous nonsense mutation (c.118A>T; p.Lys40*) in exon 2 of <i>MTMR2</i> gene in the proband. This novel mutation leads to the formation of a truncated MTMR2 protein of 39 amino acids instead of the wild- type MTMR2 protein of 643 amino acids. This mutation is predicted to cause the complete loss of the PH-GRAM domain, phosphatase domain, coiled-coil domain, and PDZ-binding motif of the MTMR2 protein. Sanger sequencing revealed that the proband's parents carried the mutation in a heterozygous state. This mutation was absent in 100 healthy control individuals.</p><p><strong>Conclusion: </strong>This study reports the first mutation in <i>MTMR2</i> associated with CMT4B1 in a Chinese population. Our study also showed the importance of whole-exome sequencing in identifying candidate genes and disease-causing variants in patients with CMT4B1.</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"71-84"},"PeriodicalIF":3.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31eCollection Date: 2024-01-01DOI: 10.2147/TACG.S461674
Zhen Xu, Na Liu, Lu Gao, Dongyi Yu
Background: The potential causes of miscarriage are very complex, including genetic, immune, infectious, and endocrine factors. 50%-60% of miscarriages are caused by chromosomal abnormalities. Chromosomal microarray analysis (CMA) is a key tool in this context, capable of detecting not only copy number variations (CNV) but also loss of heterozygosity (LOH). CMA has been used as a tool to investigate the genetic reasons for miscarriage.
Methods: In our study, chromosomal microarray analysis (CMA) conducted 1220 miscarriage villous tissues. The results from this technology were used to identify the genetic reasons for miscarriage and evaluated strategies for subsequent pre-pregnancy planning.
Results: Here, the abnormality rate of miscarriage was 56.07%(684/1220). The aneuploidy rate accounted for 81.14%(555/684), and was significantly higher in group >35-year-old age. The second most common genetic reason for miscarriage was polyploidy, accounting for 10.09%(69/684). Additionally, we discovered loss of heterozygosity (LOH) in a small percentage of cases, accounting for 2.20%(15/684) reason for miscarriage genetic reasons, due to the advantage of CMA can detect isodisomy (a kind of uniparental disomy). 45 cases (6.58%) with copy number variants, which due to the CMA can detect copy number variations.
Conclusion: Our study indicated that miscarriage villous tissues should be performed genetic analysis, seek help from professional genetic counseling.
{"title":"Application of Chromosomal Microarray Analysis in Genetic Reasons of Miscarriage Tissues.","authors":"Zhen Xu, Na Liu, Lu Gao, Dongyi Yu","doi":"10.2147/TACG.S461674","DOIUrl":"10.2147/TACG.S461674","url":null,"abstract":"<p><strong>Background: </strong>The potential causes of miscarriage are very complex, including genetic, immune, infectious, and endocrine factors. 50%-60% of miscarriages are caused by chromosomal abnormalities. Chromosomal microarray analysis (CMA) is a key tool in this context, capable of detecting not only copy number variations (CNV) but also loss of heterozygosity (LOH). CMA has been used as a tool to investigate the genetic reasons for miscarriage.</p><p><strong>Methods: </strong>In our study, chromosomal microarray analysis (CMA) conducted 1220 miscarriage villous tissues. The results from this technology were used to identify the genetic reasons for miscarriage and evaluated strategies for subsequent pre-pregnancy planning.</p><p><strong>Results: </strong>Here, the abnormality rate of miscarriage was 56.07%(684/1220). The aneuploidy rate accounted for 81.14%(555/684), and was significantly higher in group >35-year-old age. The second most common genetic reason for miscarriage was polyploidy, accounting for 10.09%(69/684). Additionally, we discovered loss of heterozygosity (LOH) in a small percentage of cases, accounting for 2.20%(15/684) reason for miscarriage genetic reasons, due to the advantage of CMA can detect isodisomy (a kind of uniparental disomy). 45 cases (6.58%) with copy number variants, which due to the CMA can detect copy number variations.</p><p><strong>Conclusion: </strong>Our study indicated that miscarriage villous tissues should be performed genetic analysis, seek help from professional genetic counseling.</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"85-93"},"PeriodicalIF":3.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27eCollection Date: 2024-01-01DOI: 10.2147/TACG.S465244
Ying Wang, Shaohua Bi, Xiaoqing Shi, Liying Dai
Optical Genome Mapping (OGM) technology has garnered growing interest for the identification of chromosomal structural variations (SVs), particularly complex ones that are implicated in genetic diseases in humans. In this study, we performed genetic diagnostics on a neonatal patient who presented with feeding difficulties, hypotonia, and an atrial septal defect. We utilized a combination of trio-whole exome sequencing and OGM for our analysis. The results revealed an unbalanced translocation between maternal chromosomes 4 and 6 in the proband, ogm[GRch38]t(4:6)(q35.2;q25.3), resulting in a 2.8 Mb deletion at the 4q35 terminal and a 10.2 Mb duplication at the 6q25 terminal. In summary, this study highlights how OGM, in conjunction with other genetic approaches, can unveil the genetic etiology of complex clinical syndromes. Neonatal patients often exhibit low specific phenotypes, underlining the significance of SV detection.
{"title":"Optical Genome Mapping Identifies a Novel Unbalanced Translocation Between Chromosomes 4q and 6q Leading to Feeding Difficulties and Hypotonia in a Neonate: A Case Report.","authors":"Ying Wang, Shaohua Bi, Xiaoqing Shi, Liying Dai","doi":"10.2147/TACG.S465244","DOIUrl":"10.2147/TACG.S465244","url":null,"abstract":"<p><p>Optical Genome Mapping (OGM) technology has garnered growing interest for the identification of chromosomal structural variations (SVs), particularly complex ones that are implicated in genetic diseases in humans. In this study, we performed genetic diagnostics on a neonatal patient who presented with feeding difficulties, hypotonia, and an atrial septal defect. We utilized a combination of trio-whole exome sequencing and OGM for our analysis. The results revealed an unbalanced translocation between maternal chromosomes 4 and 6 in the proband, ogm[GRch38]t(4:6)(q35.2;q25.3), resulting in a 2.8 Mb deletion at the 4q35 terminal and a 10.2 Mb duplication at the 6q25 terminal. In summary, this study highlights how OGM, in conjunction with other genetic approaches, can unveil the genetic etiology of complex clinical syndromes. Neonatal patients often exhibit low specific phenotypes, underlining the significance of SV detection.</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"63-69"},"PeriodicalIF":3.1,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06eCollection Date: 2024-01-01DOI: 10.2147/TACG.S457634
Nguyen Thanh Tung, Trieu Tien Sang, Tran Van Khoa, Nguyen Van Phong, Tran Hoang Phuong
Background: Androgen resistance syndrome or androgen insensitivity syndrome (AIS - Androgen Insensitivity Syndrome, OMIM 300068) is an X-linked recessive genetic syndrome causing disorders of sexual development in males. This disease is caused by mutations in the AR gene located on the X chromosome, which encodes the protein that structures the androgen receptor, with the role of receiving androgens. Mutation of the AR gene causes complete or partial loss of androgen receptor function, thereby androgen not being obtained and exerting its effect on target organs, resulting in abnormalities of the male reproductive system due to this organ system, differentiating towards feminization under the influence of estrogen. Disease prevention can be achieved by using pre-implantation genetic diagnosis, which enables couples carrying the mutation to have healthy offspring.
Aim: To carry out preimplantation genetic diagnosis of androgen resistance syndrome.
Methods: Sanger sequencing was used to detect the mutation in the blood samples of the couple, their son, and 01 embryo that were biopsied on the fifth day based on the findings of next-generation sequencing (NGS) of the affected son. We combined Sanger sequencing and linkage analysis using short tandem repeats (STR) to provide diagnostic results.
Results: We performed preimplantation genetic diagnosis for AIS on an embryo from a couple who had previously had an affected son. Consequently, one healthy embryo was diagnosed without the variant NM_000044: c.796del (p.Asp266IlefsTer30).
Conclusion: We report on a novel variant (NM_000044: c.796del (p.Asp266IlefsTer30)) in the AR gene discovered in Vietnam. The developed protocol was helpful for the preimplantation genetic diagnosis process to help families with the monogenic disease of AIS but wish to have healthy children.
背景:雄激素抵抗综合征或雄激素不敏感综合征(AIS - Androgen Insensitivity Syndrome,OMIM 300068)是一种导致男性性发育障碍的 X 连锁隐性遗传综合征。这种疾病是由位于 X 染色体上的 AR 基因突变引起的,该基因编码雄激素受体结构蛋白,具有接收雄激素的作用。AR 基因的突变会导致雄激素受体功能的完全或部分丧失,从而无法获得雄激素并对靶器官产生作用,导致男性生殖系统出现异常,在雌激素的影响下向女性化分化。通过胚胎植入前遗传学诊断,可以预防疾病的发生,使携带突变基因的夫妇生育健康的后代:方法:根据受影响儿子的下一代测序(NGS)结果,使用桑格测序法检测这对夫妇的血液样本、他们的儿子和第五天活检的 01 个胚胎中的突变。我们结合桑格测序和使用短串联重复序列(STR)的关联分析提供诊断结果:结果:我们对一对夫妇的胚胎进行了 AIS 植入前遗传学诊断,这对夫妇曾有过一个受影响的儿子。结果:我们对一对曾有过患病儿子的夫妇的胚胎进行了 AIS 胚胎植入前遗传学诊断,结果诊断出一个健康胚胎没有 NM_000044:c.796del (p.Asp266IlefsTer30) 变异:我们报告了在越南发现的 AR 基因新型变异体(NM_000044: c.796del (p.Asp266IlefsTer30) )。所制定的方案有助于植入前遗传学诊断过程,帮助患有 AIS 单基因病但希望生下健康孩子的家庭。
{"title":"Preimplantation Genetic Diagnosis of Androgen Resistance Syndrome Caused by Mutation on the <i>AR</i> Gene in Vietnam.","authors":"Nguyen Thanh Tung, Trieu Tien Sang, Tran Van Khoa, Nguyen Van Phong, Tran Hoang Phuong","doi":"10.2147/TACG.S457634","DOIUrl":"10.2147/TACG.S457634","url":null,"abstract":"<p><strong>Background: </strong>Androgen resistance syndrome or androgen insensitivity syndrome (AIS - Androgen Insensitivity Syndrome, OMIM 300068) is an X-linked recessive genetic syndrome causing disorders of sexual development in males. This disease is caused by mutations in the AR gene located on the X chromosome, which encodes the protein that structures the androgen receptor, with the role of receiving androgens. Mutation of the AR gene causes complete or partial loss of androgen receptor function, thereby androgen not being obtained and exerting its effect on target organs, resulting in abnormalities of the male reproductive system due to this organ system, differentiating towards feminization under the influence of estrogen. Disease prevention can be achieved by using pre-implantation genetic diagnosis, which enables couples carrying the mutation to have healthy offspring.</p><p><strong>Aim: </strong>To carry out preimplantation genetic diagnosis of androgen resistance syndrome.</p><p><strong>Methods: </strong>Sanger sequencing was used to detect the mutation in the blood samples of the couple, their son, and 01 embryo that were biopsied on the fifth day based on the findings of next-generation sequencing (NGS) of the affected son. We combined Sanger sequencing and linkage analysis using short tandem repeats (STR) to provide diagnostic results.</p><p><strong>Results: </strong>We performed preimplantation genetic diagnosis for AIS on an embryo from a couple who had previously had an affected son. Consequently, one healthy embryo was diagnosed without the variant NM_000044: c.796del (p.Asp266IlefsTer30).</p><p><strong>Conclusion: </strong>We report on a novel variant (NM_000044: c.796del (p.Asp266IlefsTer30)) in the AR gene discovered in Vietnam. The developed protocol was helpful for the preimplantation genetic diagnosis process to help families with the monogenic disease of AIS but wish to have healthy children.</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"47-56"},"PeriodicalIF":3.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20eCollection Date: 2024-01-01DOI: 10.2147/TACG.S438135
Sebastian Ciro Acosta, Lorena Díaz-Ordóñez, Juan David Gutierrez-Medina, Yisther Katherine Silva-Cuero, Luis Guillermo Arango-Vélez, Andrés Octavio García-Trujillo, Harry Pachajoa
Mutations in the lecithin-cholesterol acyltransferase (LCAT) gene, which catalyzes the esterification of cholesterol, result in two types of autosomal recessive disorders: Familial LCAT deficiency (FLD) and Fish Eye Disease (FED). While both phenotypes are characterized by corneal opacities and different forms of dyslipidemia, such as low levels of high-density lipoprotein-cholesterol (HDL-C), FLD exhibits more severe clinical manifestations like splenomegaly, anemia, and renal failure. We describe the first clinically and genetically confirmed case of FLD in Colombia which corresponds to a 46-year-old woman with corneal opacity, hypothyroidism, and dyslipidemia, who does not have any manifestations of renal failure, with two pathogenic heterozygous missense variants in the LCAT gene: LCAT (NM_000229.2):c.803G>A (p.Arg268His) and LCAT (NM_000229.2):c.368G>C (p.Arg123Pro). In silico analysis of the mutations predicted the physicochemical properties of the mutated protein, causing instability and potentially decreased LCAT function. These compound mutations highlight the clinical heterogeneity of the phenotypes associated with LCAT gene mutations.
{"title":"Familial LCAT Deficiency and Low HDL-C Levels: In silico Characterization of Two Rare LCAT Missense Mutations.","authors":"Sebastian Ciro Acosta, Lorena Díaz-Ordóñez, Juan David Gutierrez-Medina, Yisther Katherine Silva-Cuero, Luis Guillermo Arango-Vélez, Andrés Octavio García-Trujillo, Harry Pachajoa","doi":"10.2147/TACG.S438135","DOIUrl":"https://doi.org/10.2147/TACG.S438135","url":null,"abstract":"<p><p>Mutations in the lecithin-cholesterol acyltransferase (<i>LCAT</i>) gene, which catalyzes the esterification of cholesterol, result in two types of autosomal recessive disorders: Familial <i>LCAT</i> deficiency (FLD) and Fish Eye Disease (FED). While both phenotypes are characterized by corneal opacities and different forms of dyslipidemia, such as low levels of high-density lipoprotein-cholesterol (HDL-C), FLD exhibits more severe clinical manifestations like splenomegaly, anemia, and renal failure. We describe the first clinically and genetically confirmed case of FLD in Colombia which corresponds to a 46-year-old woman with corneal opacity, hypothyroidism, and dyslipidemia, who does not have any manifestations of renal failure, with two pathogenic heterozygous missense variants in the <i>LCAT</i> gene: <i>LCAT</i> (NM_000229.2):c.803G>A (p.Arg268His) and <i>LCAT</i> (NM_000229.2):c.368G>C (p.Arg123Pro). In silico analysis of the mutations predicted the physicochemical properties of the mutated protein, causing instability and potentially decreased <i>LCAT</i> function. These compound mutations highlight the clinical heterogeneity of the phenotypes associated with <i>LCAT</i> gene mutations.</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"23-32"},"PeriodicalIF":3.1,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893891/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Congenital sucrase isomaltase deficiency (CSID) is in general a very rare disease. However, 2-3% of the Greenlandic population are homozygous (HO) carriers of an Arctic-specific loss-of-function (LoF) variant in the sucrase-isomaltase (SI) encoding gene, causing CSID. The condition is characterized by gastrointestinal symptoms such as stomachache, diarrhea, and weight loss when consuming sucrose, the most common dietary sugar. However, the awareness of the condition in the population and the healthcare system seems to be limited, potentially leading to a higher healthcare burden. Hence, we aimed to investigate whether HO-carriers visit the healthcare system more with gastrointestinal symptoms compared to the control groups by using registry data.
Methods: We performed a case-control study identifying cases and controls using genotype information from the 1999-2001 and 2005-2010 Greenlandic health population cohorts. The cases were defined as HO LoF SI-carriers and controls were defined as non-carriers and were matched (1:1) on sex, age, place of residence, and European genetic admixture. We used electronic medical records to assess the number of electronic medical record contacts (EMRc) related to gastrointestinal symptoms and the number of gastrointestinal-related diagnostic procedures.
Results: A total of 80 HO-carriers and 80 non-carriers were included. The HO-carriers had 19% more EMRc related to gastrointestinal symptoms (IRR, 1.19, 95% CI [1.02;1.40], p=0.02) and had a 41% higher incidence of gastrointestinal related diagnostic procedures compared to controls (IRR, 1.41, 95% CI [1.05-1.92], p=0.02). Only one HO-carrier was aware of the condition according to the electronic medical records.
Conclusion: HO-carriers of the LoF SI-variant had both significantly more gastrointestinal-related EMRc and significantly more diagnostic procedures conducted due to gastrointestinal symptoms. Only one HO-carrier was aware of the condition. Given the high prevalence of HO-carriers in the Greenlandic population, we anticipate that diagnosing more patients with CSID and providing dietary advice could potentially reduce symptom burden and healthcare visits among HO-carriers.
背景:先天性蔗糖异麦芽糖酶缺乏症(CSID先天性蔗糖异麦芽糖酶缺乏症(CSID)通常是一种非常罕见的疾病。然而,在格陵兰岛人口中,有 2%-3% 的人是蔗糖酶异麦芽糖酶(SI)编码基因北极特异性功能缺失(LoF)变异的同卵(HO)携带者,从而导致 CSID。这种疾病的特征是在摄入蔗糖(最常见的膳食糖)时出现胃痛、腹泻和体重减轻等胃肠道症状。然而,人们和医疗系统对该病的认识似乎有限,这可能导致医疗负担加重。因此,我们旨在通过登记数据,调查与对照组相比,HO 携带者是否会因胃肠道症状更多地前往医疗系统就诊:我们利用 1999-2001 年和 2005-2010 年格陵兰健康人群队列中的基因型信息,对病例和对照组进行了病例对照研究。病例被定义为 HO LoF SI 携带者,对照组被定义为非携带者,并在性别、年龄、居住地和欧洲基因混杂方面进行了配对(1:1)。我们使用电子病历来评估与胃肠道症状相关的电子病历接触次数(EMRc)以及与胃肠道相关的诊断程序次数:结果:共纳入80名HO携带者和80名非携带者。与对照组相比,HO携带者与胃肠道症状相关的EMRc增加了19%(IRR,1.19,95% CI [1.02;1.40],P=0.02),胃肠道相关诊断程序的发生率增加了41%(IRR,1.41,95% CI [1.05-1.92],P=0.02)。根据电子病历,只有一名HO携带者知道自己的病情:结论:LoF SI变异型的HO携带者与胃肠道相关的EMRc显著增加,因胃肠道症状而进行的诊断程序也显著增加。只有一名HO携带者意识到了这种情况。鉴于格陵兰岛人口中HO携带者的高发病率,我们预计,诊断更多的CSID患者并提供饮食建议有可能减轻HO携带者的症状负担和医疗就诊率。
{"title":"Healthcare Burden in Greenland of Gastrointestinal Symptoms in Adults with Inherited Loss of Sucrase-Isomaltase Function.","authors":"Kristine Andersen, Torben Hansen, Marit Eika Jørgensen, Ninna Senftleber","doi":"10.2147/TACG.S437484","DOIUrl":"10.2147/TACG.S437484","url":null,"abstract":"<p><strong>Background: </strong>Congenital sucrase isomaltase deficiency (CSID) is in general a very rare disease. However, 2-3% of the Greenlandic population are homozygous (HO) carriers of an Arctic-specific loss-of-function (LoF) variant in the sucrase-isomaltase (SI) encoding gene, causing CSID. The condition is characterized by gastrointestinal symptoms such as stomachache, diarrhea, and weight loss when consuming sucrose, the most common dietary sugar. However, the awareness of the condition in the population and the healthcare system seems to be limited, potentially leading to a higher healthcare burden. Hence, we aimed to investigate whether HO-carriers visit the healthcare system more with gastrointestinal symptoms compared to the control groups by using registry data.</p><p><strong>Methods: </strong>We performed a case-control study identifying cases and controls using genotype information from the 1999-2001 and 2005-2010 Greenlandic health population cohorts. The cases were defined as HO LoF <i>SI</i>-carriers and controls were defined as non-carriers and were matched (1:1) on sex, age, place of residence, and European genetic admixture. We used electronic medical records to assess the number of electronic medical record contacts (EMRc) related to gastrointestinal symptoms and the number of gastrointestinal-related diagnostic procedures.</p><p><strong>Results: </strong>A total of 80 HO-carriers and 80 non-carriers were included. The HO-carriers had 19% more EMRc related to gastrointestinal symptoms (IRR, 1.19, 95% CI [1.02;1.40], p=0.02) and had a 41% higher incidence of gastrointestinal related diagnostic procedures compared to controls (IRR, 1.41, 95% CI [1.05-1.92], p=0.02). Only one HO-carrier was aware of the condition according to the electronic medical records.</p><p><strong>Conclusion: </strong>HO-carriers of the LoF <i>SI-</i>variant had both significantly more gastrointestinal-related EMRc and significantly more diagnostic procedures conducted due to gastrointestinal symptoms. Only one HO-carrier was aware of the condition. Given the high prevalence of HO-carriers in the Greenlandic population, we anticipate that diagnosing more patients with CSID and providing dietary advice could potentially reduce symptom burden and healthcare visits among HO-carriers.</p>","PeriodicalId":39131,"journal":{"name":"Application of Clinical Genetics","volume":"17 ","pages":"15-21"},"PeriodicalIF":3.1,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}