Cell sorting is an important technology that is widely used for medical diagnosis in hospitals and cell engineering research. Among cell sorting technology, dielectrophoresis (DEP) is one of the most promising approaches for manipulating and separating biological particles because this phenomena requires no labeling procedure with a fluorescent dye or magnetic beads. In this study, we developed a precise cell sorting system by evaluating the DEP force with a liquid flow system. The DEP forces acting on a cell or polystyrene microbead (cell simulant) were characterized using a microfluidic chamber containing an electrode-array and fluid-induced shear forces. On the basis of this characterization, separation of the cells and microbeads was performed using our novel DEP cell sorting system. As a result, the living cells were trapped by the DEP force on the electrode arrays, whereas the beads passed the electrode array. In conclusion, the DEP force combined with fluidinduced shear force could separate the living cells from cell simulants.
{"title":"Discrimination methodology of living-cells and microbeads using dielectrophoresis and fluid-induced shear force","authors":"Yuta Ojima, S. Miyata","doi":"10.17106/JBR.29.42","DOIUrl":"https://doi.org/10.17106/JBR.29.42","url":null,"abstract":"Cell sorting is an important technology that is widely used for medical diagnosis in hospitals and cell engineering research. Among cell sorting technology, dielectrophoresis (DEP) is one of the most promising approaches for manipulating and separating biological particles because this phenomena requires no labeling procedure with a fluorescent dye or magnetic beads. In this study, we developed a precise cell sorting system by evaluating the DEP force with a liquid flow system. The DEP forces acting on a cell or polystyrene microbead (cell simulant) were characterized using a microfluidic chamber containing an electrode-array and fluid-induced shear forces. On the basis of this characterization, separation of the cells and microbeads was performed using our novel DEP cell sorting system. As a result, the living cells were trapped by the DEP force on the electrode arrays, whereas the beads passed the electrode array. In conclusion, the DEP force combined with fluidinduced shear force could separate the living cells from cell simulants.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"18 1","pages":"42-50"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17106/JBR.29.42","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68196139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: To develop a prototype device that allows direct observation of the deformation of individual red blood cells (RBCs) in an oscillating shear flow field. Method: A counter-oscillation mechanism composed of two parallel glass plates was constructed to keep RBCs floating at the centerline of a 30 μm fluid gap. RBCs in the suspension fluid were observed using a high-speed camera with 40-fold magnification. Results: RBCs remained within the camera’s field of view when exposed to a shear force field that oscillated at 2 Hz. Moreover, glutaraldehyde-treated, hardened RBCs always tumbled and low-density RBCs had a larger elongation than high-density RBCs when exposed to the same shear field. Conclusion: The feasibility of this counter-oscillating mechanism for evaluating RBC deformability has been demonstrated.
{"title":"Feasibility study of a sinusoidal shear flow generator for using counter-oscillating flow fields in monitoring of individual red blood cells under shear flow conditions","authors":"N. Watanabe, Tatsuya Tsuzuki, Yusuke Suzuki","doi":"10.17106/JBR.29.36","DOIUrl":"https://doi.org/10.17106/JBR.29.36","url":null,"abstract":"Aim: To develop a prototype device that allows direct observation of the deformation of individual red blood cells (RBCs) in an oscillating shear flow field. Method: A counter-oscillation mechanism composed of two parallel glass plates was constructed to keep RBCs floating at the centerline of a 30 μm fluid gap. RBCs in the suspension fluid were observed using a high-speed camera with 40-fold magnification. Results: RBCs remained within the camera’s field of view when exposed to a shear force field that oscillated at 2 Hz. Moreover, glutaraldehyde-treated, hardened RBCs always tumbled and low-density RBCs had a larger elongation than high-density RBCs when exposed to the same shear field. Conclusion: The feasibility of this counter-oscillating mechanism for evaluating RBC deformability has been demonstrated.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"29 1","pages":"36-41"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17106/JBR.29.36","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68195846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"For the “Special Issue on The 37th Annual Meeting of Japanese Society of Biorheology”","authors":"T. Ohashi","doi":"10.17106/JBR.29.1","DOIUrl":"https://doi.org/10.17106/JBR.29.1","url":null,"abstract":"","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"29 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68195389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The molecular investigation on the structure-function relationship of hemoglobin carried out in the Postgraduate School of Nara Medical College has been systematically and fortunately developed to those on the oxygen delivery from blood to peripheral tissues in microcirculatory system in Medical School, Ehime University. Microcirculatory system contributes to the delivery of essential substrates such as oxygen and nutrients to tissues, and to the removal of by-products accumulated in the tissues, mainly through capillaries with the surface area of more than 6,000 m2. Therefore, the function of microcirculation is critical for all organs in living body. Particularly, rheological properties of blood are fundamentally important for understanding the function of the microcirculation. The International Society of Biorheology and the Japanese Society of Biorheology have played an important role in the fields of microcirculation and hemorheology. The activity of the International Society of Biorheology has been universally introduced together that of the International Society of Clinical Hemorheology [O’Rear E, et al: The International Society of Biorheology. Rheology Bulletin. 73: 9–11, 2004]. The microcirculation is particularly influenced by the flow behavior of erythrocytes, because the cells occupy nearly half of blood volume [1, 2]. I have exhaustively analyzed rheological properties of erythrocytes in micro-to macro level for understanding the relationship between blood flow in microcirculatory system and oxygen transport from erythrocytes to tissues [3, 4]. The erythrocytes deform under high shear force to reduce their flow resistance by lessening their hydrodynamic effective volume. On the other hand, the erythrocytes aggregate under low shear force, and increase the flow resistance in the microcirculatory system. Thus the flow behavior of erythrocytes and their aggregates in microcirculatory system seems to affect the oxygen transport. Under strong gravitational field, flow of erythrocytes in a blood vessel occasionally deviates from the central axis to the wall, and the cells accumulate. In this essay, I describe mainly about the effect of erythrocyte aggregation/accumulation on the flow behavior of the cells and the oxygen release from the cells, because such conditions seem to be more commonly encountered in clinical medicine and under various physical circumstances.
奈良医科大学研究生院开展的关于血红蛋白结构-功能关系的分子研究已经系统而幸运地发展到爱媛大学医学院关于血液向微循环系统外周组织输送氧气的研究。微循环系统主要通过表面积超过6000平方米的毛细血管,将氧气和营养物质等基本底物输送到组织中,并清除组织中积累的副产物。因此,微循环的功能对生物体的所有器官都至关重要。特别是,血液的流变特性对于理解微循环的功能至关重要。国际生物流变学会和日本生物流变学会在微循环和血液流变学领域发挥了重要作用。国际生物流变学会的活动与国际临床血液流变学会的活动被普遍介绍[O 'Rear E, et al: The International Society of Biorheology]。流变学通报,23(3):998 - 998。微循环尤其受红细胞流动行为的影响,因为红细胞占据了近一半的血容量[1,2]。我详尽地分析了红细胞从微观到宏观的流变特性,以了解微循环系统血流与红细胞向组织输送氧的关系[3,4]。红细胞在高剪切力作用下变形,通过减小其流体动力有效体积来减小其流动阻力。另一方面,红细胞在低剪切力下聚集,增加了微循环系统的流动阻力。因此,红细胞及其聚集体在微循环系统中的流动行为似乎影响着氧的运输。在强引力场作用下,红细胞在血管内的流动偶有偏离中轴向管壁的现象,细胞聚集。在这篇文章中,我主要描述红细胞聚集/积累对细胞流动行为和细胞氧释放的影响,因为这种情况似乎在临床医学和各种物理情况下更常见。
{"title":"Erythrocyte rheology and oxygen transfer in microcirculatory system","authors":"N. Maeda","doi":"10.17106/JBR.29.2","DOIUrl":"https://doi.org/10.17106/JBR.29.2","url":null,"abstract":"The molecular investigation on the structure-function relationship of hemoglobin carried out in the Postgraduate School of Nara Medical College has been systematically and fortunately developed to those on the oxygen delivery from blood to peripheral tissues in microcirculatory system in Medical School, Ehime University. Microcirculatory system contributes to the delivery of essential substrates such as oxygen and nutrients to tissues, and to the removal of by-products accumulated in the tissues, mainly through capillaries with the surface area of more than 6,000 m2. Therefore, the function of microcirculation is critical for all organs in living body. Particularly, rheological properties of blood are fundamentally important for understanding the function of the microcirculation. The International Society of Biorheology and the Japanese Society of Biorheology have played an important role in the fields of microcirculation and hemorheology. The activity of the International Society of Biorheology has been universally introduced together that of the International Society of Clinical Hemorheology [O’Rear E, et al: The International Society of Biorheology. Rheology Bulletin. 73: 9–11, 2004]. The microcirculation is particularly influenced by the flow behavior of erythrocytes, because the cells occupy nearly half of blood volume [1, 2]. I have exhaustively analyzed rheological properties of erythrocytes in micro-to macro level for understanding the relationship between blood flow in microcirculatory system and oxygen transport from erythrocytes to tissues [3, 4]. The erythrocytes deform under high shear force to reduce their flow resistance by lessening their hydrodynamic effective volume. On the other hand, the erythrocytes aggregate under low shear force, and increase the flow resistance in the microcirculatory system. Thus the flow behavior of erythrocytes and their aggregates in microcirculatory system seems to affect the oxygen transport. Under strong gravitational field, flow of erythrocytes in a blood vessel occasionally deviates from the central axis to the wall, and the cells accumulate. In this essay, I describe mainly about the effect of erythrocyte aggregation/accumulation on the flow behavior of the cells and the oxygen release from the cells, because such conditions seem to be more commonly encountered in clinical medicine and under various physical circumstances.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"29 1","pages":"2-5"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17106/JBR.29.2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68195945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaoyi Chen, A. Morita, I. Sukmana, Eijiro Maeda, T. Ohashi
This study was performed to develop a new experimental device with a fibrin gel-microgroove structure for study of microvascularization by endothelial cells (ECs). The effects of the width of microgrooves, initial cell seeding density and a supplementation of vascular endothelial growth factor (VEGF) on in vitro microvasculaization of ECs were examined. ECs were cultured in a fibrin gel formed on a polydimethylsiloxane microgroove substrate, with the microgroove width of 50, 100, 150 and 200 μm. ECs were elongated and sprouted within the gel in all the four types of microgrooves. In addition, multicellular network by connected cell branches were frequently observed in 100μm microgrooves. Both high initial cell density and VEGF demonstrated significant promotional effects on morphology changes. The findings indicate that microgroove structure serves as a geometrical constraint for ECs, with a promotional effect on angiogenic responses of ECs, and thus, it can be used as an experimental model in the study of in vitro vascularization.
{"title":"Development of fibrin gel-microgroove model for microvascularization by endothelial cells","authors":"Shaoyi Chen, A. Morita, I. Sukmana, Eijiro Maeda, T. Ohashi","doi":"10.17106/JBR.29.19","DOIUrl":"https://doi.org/10.17106/JBR.29.19","url":null,"abstract":"This study was performed to develop a new experimental device with a fibrin gel-microgroove structure for study of microvascularization by endothelial cells (ECs). The effects of the width of microgrooves, initial cell seeding density and a supplementation of vascular endothelial growth factor (VEGF) on in vitro microvasculaization of ECs were examined. ECs were cultured in a fibrin gel formed on a polydimethylsiloxane microgroove substrate, with the microgroove width of 50, 100, 150 and 200 μm. ECs were elongated and sprouted within the gel in all the four types of microgrooves. In addition, multicellular network by connected cell branches were frequently observed in 100μm microgrooves. Both high initial cell density and VEGF demonstrated significant promotional effects on morphology changes. The findings indicate that microgroove structure serves as a geometrical constraint for ECs, with a promotional effect on angiogenic responses of ECs, and thus, it can be used as an experimental model in the study of in vitro vascularization.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"29 1","pages":"19-23"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68195870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The vascular endothelial surface glycocalyx layer consists of fibrous glycoproteins with a thickness of several hundred nanometers to a few microns. The present study focuses on the function of the glycocalyx layer as a modulator of permeability in water transport across the blood vessel wall. A particulate layer model is developed to analyze the fluid permeation through the glycocalyx layer, which has periodic fibrous structures and finite thickness. Theoretical and numerical computations of the permeation resistance across the layer are performed based on the Stokesian dynamics approach. The results show that the resistance near the ends of the layer is affected considerably by the anisotropy of adjacent particle configurations. We describe such an end effect on the permeability in relation to the layer thickness and particle spacing ratio. It is suggested that the variations in thickness or fiber spacing in the glycocalyx layer could significantly alter its fluid permeation properties.
{"title":"Fluid permeability of fibrous layers with finite thickness","authors":"R. Otomo, M. Sugihara-Seki","doi":"10.17106/JBR.29.11","DOIUrl":"https://doi.org/10.17106/JBR.29.11","url":null,"abstract":"The vascular endothelial surface glycocalyx layer consists of fibrous glycoproteins with a thickness of several hundred nanometers to a few microns. The present study focuses on the function of the glycocalyx layer as a modulator of permeability in water transport across the blood vessel wall. A particulate layer model is developed to analyze the fluid permeation through the glycocalyx layer, which has periodic fibrous structures and finite thickness. Theoretical and numerical computations of the permeation resistance across the layer are performed based on the Stokesian dynamics approach. The results show that the resistance near the ends of the layer is affected considerably by the anisotropy of adjacent particle configurations. We describe such an end effect on the permeability in relation to the layer thickness and particle spacing ratio. It is suggested that the variations in thickness or fiber spacing in the glycocalyx layer could significantly alter its fluid permeation properties.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"29 1","pages":"11-14"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17106/JBR.29.11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68195526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Efremov, R. Lakshmanan, B. Byrne, Sinead M. Cullen, A. Killard
Quartz crystal microbalance (QCM) is a sensitive technique for real-time monitoring of cell adsorption, aggregation and cell-to-surface interaction processes. However, cell adhesion time courses are usually considered as merely qualitative, being presented in terms of QCM resonant frequency shift and/or changes in the dissipation parameter, the precise physical meanings of which are not derived. In the present study, a model of cell adhesion to the QCM sensor surface was proposed. The main output parameter of the model is the rigid mass density, Mr, being related to QCM resonant frequency and dissipation with a simple expression. From this, it can be determined that Mr is the mass density of the layer formed by all directly adhered parts of the cell, being rigidly coupled to the sensor surface. We postulate that the Mr(t) value is proportional to the number of cells adhered by the time t, and that the coefficient of this proportionality is strongly dependent on cell-to-surface interaction forces.
{"title":"Modelling of blood component flexibility using quartz crystal microbalance","authors":"V. Efremov, R. Lakshmanan, B. Byrne, Sinead M. Cullen, A. Killard","doi":"10.17106/JBR.28.45","DOIUrl":"https://doi.org/10.17106/JBR.28.45","url":null,"abstract":"Quartz crystal microbalance (QCM) is a sensitive technique for real-time monitoring of cell adsorption, aggregation and cell-to-surface interaction processes. However, cell adhesion time courses are usually considered as merely qualitative, being presented in terms of QCM resonant frequency shift and/or changes in the dissipation parameter, the precise physical meanings of which are not derived. In the present study, a model of cell adhesion to the QCM sensor surface was proposed. The main output parameter of the model is the rigid mass density, Mr, being related to QCM resonant frequency and dissipation with a simple expression. From this, it can be determined that Mr is the mass density of the layer formed by all directly adhered parts of the cell, being rigidly coupled to the sensor surface. We postulate that the Mr(t) value is proportional to the number of cells adhered by the time t, and that the coefficient of this proportionality is strongly dependent on cell-to-surface interaction forces.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"56 1","pages":"45-54"},"PeriodicalIF":0.0,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17106/JBR.28.45","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68195560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"For the \"Special Issue on the 36th Annual Meeting of Japanese Society of Biorheology\"","authors":"T. Ohashi","doi":"10.17106/JBR.28.1","DOIUrl":"https://doi.org/10.17106/JBR.28.1","url":null,"abstract":"","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"28 1","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68194801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Many food products based on gelatin contain sugar. Although the effect of sugars on physical properties of gelatin gels has been intensively investigated, aging of gelatin gels containing sugars has not been studied in detail. In the present study, vacuum-ultraviolet circular dichroism (VUVCD) was applied to the study of the aging of gelatin gels with and without sugars and the aging process measured by VUVCD was compared with that measured by rheology and polarimetry. The storage modulus G’ and reduced ellipticity θ/θ0 in the aging process were correlated with each other, indicating VUVCD is a useful tool for detecting the conformation change of gelatin molecules. On the other hand, the behavior of optical rotation Δα was different with that of either G’ or θ/θ0, suggesting that the optical rotation does not represent the conformation change accurately in the case of gelatin gels containing sugars. The relationship between G’ and a fraction χ of helix amount estimated from VUVCD data showed that the critical helix fraction χc for gelation is slightly increased by the addition of sugars, suggesting a change in the network structure.
{"title":"Effect of sugars on aging of gelatin gels by vacuum-ultraviolet circular dichroism and rheological measurements","authors":"Y. Maki, Shoichi Watabe, T. Dobashi, K. Matsuo","doi":"10.17106/JBR.28.38","DOIUrl":"https://doi.org/10.17106/JBR.28.38","url":null,"abstract":"Many food products based on gelatin contain sugar. Although the effect of sugars on physical properties of gelatin gels has been intensively investigated, aging of gelatin gels containing sugars has not been studied in detail. In the present study, vacuum-ultraviolet circular dichroism (VUVCD) was applied to the study of the aging of gelatin gels with and without sugars and the aging process measured by VUVCD was compared with that measured by rheology and polarimetry. The storage modulus G’ and reduced ellipticity θ/θ0 in the aging process were correlated with each other, indicating VUVCD is a useful tool for detecting the conformation change of gelatin molecules. On the other hand, the behavior of optical rotation Δα was different with that of either G’ or θ/θ0, suggesting that the optical rotation does not represent the conformation change accurately in the case of gelatin gels containing sugars. The relationship between G’ and a fraction χ of helix amount estimated from VUVCD data showed that the critical helix fraction χc for gelation is slightly increased by the addition of sugars, suggesting a change in the network structure.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"34 1","pages":"38-44"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68195539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}