Pub Date : 2024-01-01DOI: 10.1007/978-3-031-62036-2_17
Javier Rey-Barroso, Ophélie Dufrançais, Christel Vérollet
Tunneling nanotubes (TNTs) are cellular connections, which represent a novel route for cell-to-cell communication. Strong evidence points to a role for TNTs in the intercellular transfer of signals, molecules, organelles, and pathogens, involving them in many cellular functions. In myeloid cells (e.g., monocytes/macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions, by favoring material and pathogen transfer, as well as cell fusion. This chapter addresses the complexity of the definition and characterization of TNTs in myeloid cells, the different processes involved in their formation, their existence in vivo, and finally their function(s) in health and infectious diseases, with the example of HIV-1 infection.
{"title":"Tunneling Nanotubes in Myeloid Cells: Perspectives for Health and Infectious Diseases.","authors":"Javier Rey-Barroso, Ophélie Dufrançais, Christel Vérollet","doi":"10.1007/978-3-031-62036-2_17","DOIUrl":"10.1007/978-3-031-62036-2_17","url":null,"abstract":"<p><p>Tunneling nanotubes (TNTs) are cellular connections, which represent a novel route for cell-to-cell communication. Strong evidence points to a role for TNTs in the intercellular transfer of signals, molecules, organelles, and pathogens, involving them in many cellular functions. In myeloid cells (e.g., monocytes/macrophages, dendritic cells, and osteoclasts), intercellular communication via TNT contributes to their differentiation and immune functions, by favoring material and pathogen transfer, as well as cell fusion. This chapter addresses the complexity of the definition and characterization of TNTs in myeloid cells, the different processes involved in their formation, their existence in vivo, and finally their function(s) in health and infectious diseases, with the example of HIV-1 infection.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1007/978-3-031-62036-2_15
Sanyukta Padmanabhan, Karina Deniz, Akshat Sarkari, Emil Lou
Tunneling nanotubes (TNTs) are thin, membranous protrusions that connect cells and allow for the transfer of various molecules, including proteins, organelles, and genetic material. TNTs have been implicated in a wide range of biological processes, including intercellular communication, drug resistance, and viral transmission. In cancer, they have been investigated more deeply over the past decade for their potentially pivotal role in tumor progression and metastasis. TNTs, as cell contact-dependent protrusions that form at short and long distances, enable the exchange of signaling molecules and cargo between cancer cells, facilitating communication and coordination of their actions. This coordination induces a synchronization that is believed to mediate the TNT-directed evolution of drug resistance by allowing cancer cells to coordinate, including through direct expulsion of chemotherapeutic drugs to neighboring cells. Despite advances in the overall field of TNT biology since the first published report of their existence in 2004 (Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH, Science. 303:1007-10, 2004), the mechanisms of formation and components vital for the function of TNTs are complex and not yet fully understood. However, several factors have been implicated in their regulation, including actin polymerization, microtubule dynamics, and signaling pathways. The discovery of TNT-specific components that are necessary and sufficient for their formation, maintenance, and action opens a new potential avenue for drug discovery in cancer. Thus, targeting TNTs may offer a promising therapeutic strategy for cancer treatment. By disrupting TNT formation or function, it may be possible to inhibit tumor growth and metastasis and overcome drug resistance.
{"title":"Tunneling Nanotubes: Implications for Chemoresistance.","authors":"Sanyukta Padmanabhan, Karina Deniz, Akshat Sarkari, Emil Lou","doi":"10.1007/978-3-031-62036-2_15","DOIUrl":"10.1007/978-3-031-62036-2_15","url":null,"abstract":"<p><p>Tunneling nanotubes (TNTs) are thin, membranous protrusions that connect cells and allow for the transfer of various molecules, including proteins, organelles, and genetic material. TNTs have been implicated in a wide range of biological processes, including intercellular communication, drug resistance, and viral transmission. In cancer, they have been investigated more deeply over the past decade for their potentially pivotal role in tumor progression and metastasis. TNTs, as cell contact-dependent protrusions that form at short and long distances, enable the exchange of signaling molecules and cargo between cancer cells, facilitating communication and coordination of their actions. This coordination induces a synchronization that is believed to mediate the TNT-directed evolution of drug resistance by allowing cancer cells to coordinate, including through direct expulsion of chemotherapeutic drugs to neighboring cells. Despite advances in the overall field of TNT biology since the first published report of their existence in 2004 (Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH, Science. 303:1007-10, 2004), the mechanisms of formation and components vital for the function of TNTs are complex and not yet fully understood. However, several factors have been implicated in their regulation, including actin polymerization, microtubule dynamics, and signaling pathways. The discovery of TNT-specific components that are necessary and sufficient for their formation, maintenance, and action opens a new potential avenue for drug discovery in cancer. Thus, targeting TNTs may offer a promising therapeutic strategy for cancer treatment. By disrupting TNT formation or function, it may be possible to inhibit tumor growth and metastasis and overcome drug resistance.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1007/978-3-031-39027-2_8
Hisato Kondoh
Encountering a developmental process confined to a limited time window or a restricted embryonic area, one may deem that the mechanism to activate the process occurs with such precision in temporal and spatial terms. However, in many instances, the activation mechanism is initiated in a broad time and space, but the mechanism is actuated only when repressive mechanisms are lifted. Thus, the operation of repressive processes is essential for precise developmental regulation. Repressive regulations occur at various levels. The following representative repressive regulations and their consequences at various levels will be discussed: intercellular signaling, epigenetic regulation, transcriptional regulation, and posttranscriptional regulation.
{"title":"The Significance of Repressive Processes in Developmental Regulation.","authors":"Hisato Kondoh","doi":"10.1007/978-3-031-39027-2_8","DOIUrl":"10.1007/978-3-031-39027-2_8","url":null,"abstract":"<p><p>Encountering a developmental process confined to a limited time window or a restricted embryonic area, one may deem that the mechanism to activate the process occurs with such precision in temporal and spatial terms. However, in many instances, the activation mechanism is initiated in a broad time and space, but the mechanism is actuated only when repressive mechanisms are lifted. Thus, the operation of repressive processes is essential for precise developmental regulation. Repressive regulations occur at various levels. The following representative repressive regulations and their consequences at various levels will be discussed: intercellular signaling, epigenetic regulation, transcriptional regulation, and posttranscriptional regulation.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140176944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-06573-6_7
Daniel Jeffery, Marina Lochhead, Geneviève Almouzni
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
{"title":"CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States.","authors":"Daniel Jeffery, Marina Lochhead, Geneviève Almouzni","doi":"10.1007/978-3-031-06573-6_7","DOIUrl":"https://doi.org/10.1007/978-3-031-06573-6_7","url":null,"abstract":"<p><p>Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40672122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-06573-6_23
Yuanjian Huang, Shengzhe Zhang, Jae-Il Park
Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.
{"title":"Nuclear Actin Dynamics in Gene Expression, DNA Repair, and Cancer.","authors":"Yuanjian Huang, Shengzhe Zhang, Jae-Il Park","doi":"10.1007/978-3-031-06573-6_23","DOIUrl":"https://doi.org/10.1007/978-3-031-06573-6_23","url":null,"abstract":"<p><p>Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9677682/pdf/nihms-1850266.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40673015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-06573-6_19
Alexandria J Cockrell, Jennifer L Gerton
Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.
{"title":"Nucleolar Organizer Regions as Transcription-Based Scaffolds of Nucleolar Structure and Function.","authors":"Alexandria J Cockrell, Jennifer L Gerton","doi":"10.1007/978-3-031-06573-6_19","DOIUrl":"https://doi.org/10.1007/978-3-031-06573-6_19","url":null,"abstract":"<p><p>Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40673082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-06573-6_10
Jordi Ribas-Maynou, Hieu Nguyen, Hongwen Wu, W Steven Ward
Sperm nuclei present a highly organized and condensed chromatin due to the interchange of histones by protamines during spermiogenesis. This high DNA condensation leads to almost inert chromatin, with the impossibility of conducting gene transcription as in most other somatic cells. The major chromosomal structure responsible for DNA condensation is the formation of protamine-DNA toroids containing 25-50 kilobases of DNA. These toroids are connected by toroid linker regions (TLR), which attach them to the nuclear matrix, as matrix attachment regions (MAR) do in somatic cells. Despite this high degree of condensation, evidence shows that sperm chromatin contains vulnerable elements that can be degraded even in fully condensed chromatin, which may correspond to chromatin regions that transfer functionality to the zygote at fertilization. This chapter covers an updated review of our model for sperm chromatin structure and its potential functional elements that affect embryo development.
{"title":"Functional Aspects of Sperm Chromatin Organization.","authors":"Jordi Ribas-Maynou, Hieu Nguyen, Hongwen Wu, W Steven Ward","doi":"10.1007/978-3-031-06573-6_10","DOIUrl":"https://doi.org/10.1007/978-3-031-06573-6_10","url":null,"abstract":"<p><p>Sperm nuclei present a highly organized and condensed chromatin due to the interchange of histones by protamines during spermiogenesis. This high DNA condensation leads to almost inert chromatin, with the impossibility of conducting gene transcription as in most other somatic cells. The major chromosomal structure responsible for DNA condensation is the formation of protamine-DNA toroids containing 25-50 kilobases of DNA. These toroids are connected by toroid linker regions (TLR), which attach them to the nuclear matrix, as matrix attachment regions (MAR) do in somatic cells. Despite this high degree of condensation, evidence shows that sperm chromatin contains vulnerable elements that can be degraded even in fully condensed chromatin, which may correspond to chromatin regions that transfer functionality to the zygote at fertilization. This chapter covers an updated review of our model for sperm chromatin structure and its potential functional elements that affect embryo development.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671218/pdf/nihms-1849442.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40672121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-06573-6_21
Paulina Nastały, Paolo Maiuri
Polarity is an intrinsic and fundamental property of unicellular organisms and, as well, of single cells in multicellular ones. It can be defined as asymmetric cell organization that is self-reinforced and maintained by appropriate signaling. While cellular polarity is widely studied at the membrane and cytoplasmic level, if and how it is transmitted to the nucleus is still a matter of research and discussion. However, there is growing evidence of polarity transmission from the cell to the nucleus. In this chapter, we discuss recent reports on nuclear polarity and involvement of potential molecular players including emerin, nesprins, and nuclear F-actin which may play a significant role in establishment of this phenomenon.
{"title":"Cellular Polarity Transmission to the Nucleus.","authors":"Paulina Nastały, Paolo Maiuri","doi":"10.1007/978-3-031-06573-6_21","DOIUrl":"https://doi.org/10.1007/978-3-031-06573-6_21","url":null,"abstract":"<p><p>Polarity is an intrinsic and fundamental property of unicellular organisms and, as well, of single cells in multicellular ones. It can be defined as asymmetric cell organization that is self-reinforced and maintained by appropriate signaling. While cellular polarity is widely studied at the membrane and cytoplasmic level, if and how it is transmitted to the nucleus is still a matter of research and discussion. However, there is growing evidence of polarity transmission from the cell to the nucleus. In this chapter, we discuss recent reports on nuclear polarity and involvement of potential molecular players including emerin, nesprins, and nuclear F-actin which may play a significant role in establishment of this phenomenon.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40673011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-06573-6_14
Ewa Borsuk, Julia Michalkiewicz, Jacek Z Kubiak, Malgorzata Kloc
Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.
{"title":"Histone Modifications in Mouse Pronuclei and Consequences for Embryo Development.","authors":"Ewa Borsuk, Julia Michalkiewicz, Jacek Z Kubiak, Malgorzata Kloc","doi":"10.1007/978-3-031-06573-6_14","DOIUrl":"https://doi.org/10.1007/978-3-031-06573-6_14","url":null,"abstract":"<p><p>Epigenetic marks, such as DNA methylation and posttranslational modifications of core histones, are the key regulators of gene expression. In the mouse, many of these marks are erased during gamete formation and must be introduced de novo after fertilization. Some of them appear synchronously, but the others are deposited asynchronously and/or remain differently distributed on maternal and paternal chromatin. Although the mechanisms regulating these processes are not entirely understandable, it is commonly accepted that epigenetic reprogramming occurring during the first cell cycle of a mouse embryo is crucial for its further development. This chapter focuses on selected epigenetic modifications, such as DNA methylation, the introduction of histone variants, histones acetylation, phosphorylation, and methylation. Properly depositing these marks on maternal and paternal chromatin is crucial for normal embryonic development.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40673077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-06573-6_4
Tobias A Knoch
What holds together the world in its innermost, what life is, how it emerges, functions, and evolves, has not only been an epic matter of endless romantic sunset poetry and philosophy, but also manifests explicitly in its perhaps most central organization unit-genomes. Their 3D architecture and dynamics, including the interaction networks of regulatory elements, obviously co-evolved as inseparable systems allowing the physical storage, expression, and replication of genetic information. Since we were able to fill finally the much-debated centennial gaps in their 3D architecture and dynamics, now entire new perspectives open beyond epigenetics reaching as far as a general understanding of living systems: besides the previously known DNA double helix and nucleosome structure, the latter compact into a chromatin quasi-fibre folded into stable loops forming stable multi-loop aggregates/rosettes connected by linkers, creating hence the again already known chromosome arms and entire chromosomes forming the cell nucleus. Instantly and for the first time this leads now to a consistent and cross-proven systems statistical mechanics genomics framework elucidating genome intrinsic function and regulation including various components. It balances stability/flexibility ensuring genome integrity, enabling expression/regulation of genetic information, as well as genome replication/spread. Furthermore, genotype and phenotype are multiplisticly entangled being evolutionarily the outcome of both Darwinian natural selection and Lamarckian self-referenced manipulation-all embedded in even broader genome ecology (autopoietic) i(!)n- and environmental scopes. This allows formulating new meta-level functional semantics of genomics, i.e. notions as communication of genes, genomes, and information networks, architectural and dynamic spaces for creativity and innovation, or genomes as central geno-/phenotype entanglements. Beyond and most fundamentally, the paradoxical-seeming local equilibrium substance stability in its entity though far from a universal heat-death-like equilibrium is solved, and system irreversibility, time directionality, and thus the emergence of existence are clarified. Consequently, real deep understandings of genomes, life, and complex systems in general appear in evolutionary perspectives as well as from systems analyses, via system damage/disease (its repair/cure and manipulation) as far as the understanding of extraterrestrial life, the de novo creation and thus artificial life, and even the raison d'etre.
{"title":"How Genomes Emerge, Function, and Evolve: Living Systems Emergence-Genotype-Phenotype-Multilism-Genome/Systems Ecology.","authors":"Tobias A Knoch","doi":"10.1007/978-3-031-06573-6_4","DOIUrl":"https://doi.org/10.1007/978-3-031-06573-6_4","url":null,"abstract":"<p><p>What holds together the world in its innermost, what life is, how it emerges, functions, and evolves, has not only been an epic matter of endless romantic sunset poetry and philosophy, but also manifests explicitly in its perhaps most central organization unit-genomes. Their 3D architecture and dynamics, including the interaction networks of regulatory elements, obviously co-evolved as inseparable systems allowing the physical storage, expression, and replication of genetic information. Since we were able to fill finally the much-debated centennial gaps in their 3D architecture and dynamics, now entire new perspectives open beyond epigenetics reaching as far as a general understanding of living systems: besides the previously known DNA double helix and nucleosome structure, the latter compact into a chromatin quasi-fibre folded into stable loops forming stable multi-loop aggregates/rosettes connected by linkers, creating hence the again already known chromosome arms and entire chromosomes forming the cell nucleus. Instantly and for the first time this leads now to a consistent and cross-proven systems statistical mechanics genomics framework elucidating genome intrinsic function and regulation including various components. It balances stability/flexibility ensuring genome integrity, enabling expression/regulation of genetic information, as well as genome replication/spread. Furthermore, genotype and phenotype are multiplisticly entangled being evolutionarily the outcome of both Darwinian natural selection and Lamarckian self-referenced manipulation-all embedded in even broader genome ecology (autopoietic) i(!)n- and environmental scopes. This allows formulating new meta-level functional semantics of genomics, i.e. notions as communication of genes, genomes, and information networks, architectural and dynamic spaces for creativity and innovation, or genomes as central geno-/phenotype entanglements. Beyond and most fundamentally, the paradoxical-seeming local equilibrium substance stability in its entity though far from a universal heat-death-like equilibrium is solved, and system irreversibility, time directionality, and thus the emergence of existence are clarified. Consequently, real deep understandings of genomes, life, and complex systems in general appear in evolutionary perspectives as well as from systems analyses, via system damage/disease (its repair/cure and manipulation) as far as the understanding of extraterrestrial life, the de novo creation and thus artificial life, and even the raison d'etre.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40474096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}