Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.719143
J. Buhler, Y. Prior
{"title":"Backscattering-CARS on CVC Diamond","authors":"J. Buhler, Y. Prior","doi":"10.1109/CLEOE.1998.719143","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.719143","url":null,"abstract":"","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124644690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.718880
C.V. Kopylov, M. Hennecke, E. Pfeifer, W. Fuchs, Karl-Heinz Bechstein
Tuneable single-frequency lasers are decisive components of absolute distance interferometers for high-precision distance measuring without any ambiguity. Due to the noise they create, tuneable VIS diode lasers with an external resonator are no longer applied for measuring distances up to 100 m with acceptable measuring intervals of a few seconds. Therefore a tuneable single frequency VIS microcrystal laser, continuously tuneable over 200 GHz, was developed and tested as part of an interferometer. Nd-doped laser crystals were used for the laser and, by doubling the intracavity frequency with a KTP, a wavelength of 532 nm was reached The semi-monolithical arrangement was pumped longitudinally with a laser diode. In order to achieve a stable Single Longitudinal Mode Operation with Nd:YVO4- and Nd:LSB (NdxLa1-xSc3(BO3)4) crystals in a compact design, an Intracavity Solid State Etalon was implemented for the frequency selection This was achieved with an etalon with a Free Spectral Range of 1000 GHz and a reflectivity of 30 % for an Nd:YVO4 crystal with a thickness of 0,2 mm, that is, for an Nd:LSB crystal with a thickness of 0,3 mm at a reflectivity of 40 %. The selectivity was chosen in such a way that, due to the inertia of the homogeneously expanded medium, tuneable frequency regions of 60 GHz were shown with a stationary etalon only by changing the resonator length (see fig. 1). Scan rates of > 100 Hz were achieved in the interferometer set up by means of a sinus-formed external drive. The instantaneous frequency of the interference signal, identical with the instantaneous change of the laser frequency, follows the drive signal without delay (see fig. 2). This is of great importance for the driver electronics of the measuring system mentioned above. In order to achieve a tuneable frequency region of > 200 GHz, it was necessary to vary the etalon as well. It was the first time that a continuous variation over 240 GHz, i. e. covering half of the linewidth of the Nd:YVO4 crystal, were proved for a diode-pumped solid state laser. The tuning range was only limited by the mechanical resonator driver In principle it should be possible to vary over an even larger region using an Nd:LSB crystal with a greater linewidth that is with frequency doubling nearly 2000 GHz.
{"title":"Single-Mode Diode-Pumped Micro-Crystal Laser Continuously Tuneable Over 200 GHz in the Visible Spectral Region","authors":"C.V. Kopylov, M. Hennecke, E. Pfeifer, W. Fuchs, Karl-Heinz Bechstein","doi":"10.1109/CLEOE.1998.718880","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.718880","url":null,"abstract":"Tuneable single-frequency lasers are decisive components of absolute distance interferometers for high-precision distance measuring without any ambiguity. Due to the noise they create, tuneable VIS diode lasers with an external resonator are no longer applied for measuring distances up to 100 m with acceptable measuring intervals of a few seconds. Therefore a tuneable single frequency VIS microcrystal laser, continuously tuneable over 200 GHz, was developed and tested as part of an interferometer. Nd-doped laser crystals were used for the laser and, by doubling the intracavity frequency with a KTP, a wavelength of 532 nm was reached The semi-monolithical arrangement was pumped longitudinally with a laser diode. In order to achieve a stable Single Longitudinal Mode Operation with Nd:YVO4- and Nd:LSB (NdxLa1-xSc3(BO3)4) crystals in a compact design, an Intracavity Solid State Etalon was implemented for the frequency selection This was achieved with an etalon with a Free Spectral Range of 1000 GHz and a reflectivity of 30 % for an Nd:YVO4 crystal with a thickness of 0,2 mm, that is, for an Nd:LSB crystal with a thickness of 0,3 mm at a reflectivity of 40 %. The selectivity was chosen in such a way that, due to the inertia of the homogeneously expanded medium, tuneable frequency regions of 60 GHz were shown with a stationary etalon only by changing the resonator length (see fig. 1). Scan rates of > 100 Hz were achieved in the interferometer set up by means of a sinus-formed external drive. The instantaneous frequency of the interference signal, identical with the instantaneous change of the laser frequency, follows the drive signal without delay (see fig. 2). This is of great importance for the driver electronics of the measuring system mentioned above. In order to achieve a tuneable frequency region of > 200 GHz, it was necessary to vary the etalon as well. It was the first time that a continuous variation over 240 GHz, i. e. covering half of the linewidth of the Nd:YVO4 crystal, were proved for a diode-pumped solid state laser. The tuning range was only limited by the mechanical resonator driver In principle it should be possible to vary over an even larger region using an Nd:LSB crystal with a greater linewidth that is with frequency doubling nearly 2000 GHz.","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"173 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129410464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.718971
P. Glas, M. Naumann, A. Schirrmacher, T. Pertsch
An attractive candidate for performing atom guidance is the evanescent field at the border of a dielectric light guide since providing a short range (repulsive) potential. In contrast to passive hollow capillaries, we have realised a lasing one made up from highly doped phosphate glass. Compared to its passive counterpart, the laser capillary has the big advantage that the in-coupled light being spectrally removed from the atomic transition of the atoms to be manipulated is used for pumping the laser. The capillary had a diameter of 70 μm possessing a protection coating. The bore diameter was 11 pm. The doping concentration amounted to 2·1020 cm-3 Nd3+. The capillary length was 1.6 cm (7 cm), butt coupled mirrors form the resonator. The capillary could be illuminated side-on or end-on with pump radiation for the active ions delivered by a diode laser at λ=805 nm. The output mirror had a transmission of < 1% to realise a high intracavity power being desirable to create a strong optical potential necessary in evanescent waveguiding of atoms. The near field distribution is shown in Fig.1. To proof the reaction of the evanescent field on an absorptive disturbance we have filled the capillary with an ir-dye (concentration ~0.07 g/1) finding a strongly modulated (mode locked) output when pulsing the diode laser, Fig.2. (The transverse damping distance in the dye solution is only ~0.3 μm). For an empty capillary the emission gets stationary after some typical relaxation oscillations. To estimate the optical potential we have made a numerical analysis of the laser field distribution in the hollow waveguide. Fig.3 shows the mode field at λ=780 nm in the capillary. We have calculated the optical potential U(r) to guide 85Rb atoms with an intra fiber power of 2 W. The frequency detuning from the atomic resonance is 10 GHz, the saturation intensity of the atomic transition is 1.8 mW/cm The optical barrier as a function of distance from the inner surface in terms of temperature is shown in Fig.1c (inset). The realisation of active atomic waveguides may stimulate interesting studies in atom optics, near field optics and cavity QED.
{"title":"A Neodymium Doped Hollow Optical Fiber Laser for Applications in Sensing and Laser Guided Atoms","authors":"P. Glas, M. Naumann, A. Schirrmacher, T. Pertsch","doi":"10.1109/CLEOE.1998.718971","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.718971","url":null,"abstract":"An attractive candidate for performing atom guidance is the evanescent field at the border of a dielectric light guide since providing a short range (repulsive) potential. In contrast to passive hollow capillaries, we have realised a lasing one made up from highly doped phosphate glass. Compared to its passive counterpart, the laser capillary has the big advantage that the in-coupled light being spectrally removed from the atomic transition of the atoms to be manipulated is used for pumping the laser. The capillary had a diameter of 70 μm possessing a protection coating. The bore diameter was 11 pm. The doping concentration amounted to 2·1020 cm-3 Nd3+. The capillary length was 1.6 cm (7 cm), butt coupled mirrors form the resonator. The capillary could be illuminated side-on or end-on with pump radiation for the active ions delivered by a diode laser at λ=805 nm. The output mirror had a transmission of < 1% to realise a high intracavity power being desirable to create a strong optical potential necessary in evanescent waveguiding of atoms. The near field distribution is shown in Fig.1. To proof the reaction of the evanescent field on an absorptive disturbance we have filled the capillary with an ir-dye (concentration ~0.07 g/1) finding a strongly modulated (mode locked) output when pulsing the diode laser, Fig.2. (The transverse damping distance in the dye solution is only ~0.3 μm). For an empty capillary the emission gets stationary after some typical relaxation oscillations. To estimate the optical potential we have made a numerical analysis of the laser field distribution in the hollow waveguide. Fig.3 shows the mode field at λ=780 nm in the capillary. We have calculated the optical potential U(r) to guide 85Rb atoms with an intra fiber power of 2 W. The frequency detuning from the atomic resonance is 10 GHz, the saturation intensity of the atomic transition is 1.8 mW/cm The optical barrier as a function of distance from the inner surface in terms of temperature is shown in Fig.1c (inset). The realisation of active atomic waveguides may stimulate interesting studies in atom optics, near field optics and cavity QED.","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129478224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.718895
A. Helmy, B. Ooi, F. Camacho, A. C. Bryce, J. Aitchison, Richard M. De La Rue, J. Marsh
Direct modulation of laser diodes can reach frequencies as high as 33 GHz1 sacrificing, however, other performance aspects such as operating power, optical loss, linewidth, and chirp. A better approach is to use external interferometric modulators, which can provide lower insertion losses than electroabsorption modulators,2 and also allow the chirp level to be engineered to suit the associated optical link. Although integration is feasible using etch and regrowth techniques to realise the material composition variation required between the laser and the modulator, such techniques have major limitations.3 An alternative, more elegant, solution has become feasible due to recent advances in the process of quantum well intermixing (QWI).
{"title":"Mach-Zehnder Modulators Monolithically Integrated with Fabry-Perot Laser Diodes in GaAs/AIGaAs Using Impurity-Free Vacancy Disordering","authors":"A. Helmy, B. Ooi, F. Camacho, A. C. Bryce, J. Aitchison, Richard M. De La Rue, J. Marsh","doi":"10.1109/CLEOE.1998.718895","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.718895","url":null,"abstract":"Direct modulation of laser diodes can reach frequencies as high as 33 GHz1 sacrificing, however, other performance aspects such as operating power, optical loss, linewidth, and chirp. A better approach is to use external interferometric modulators, which can provide lower insertion losses than electroabsorption modulators,2 and also allow the chirp level to be engineered to suit the associated optical link. Although integration is feasible using etch and regrowth techniques to realise the material composition variation required between the laser and the modulator, such techniques have major limitations.3 An alternative, more elegant, solution has become feasible due to recent advances in the process of quantum well intermixing (QWI).","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"9 8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128298236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.718867
V. Kabelka, A. Masalov, S. Nikitin, H. Milchberg
A frequency tracer (FT) based on noncollinear second harmonic generation autocorrelator for two-dimensional time-frequency imaging of a single femtosecond light pulse without using a spectral apparatus [1] had implemented for a first time. An experimental test of frequency tracer has been performed by measuring the instantaneous frequency of femtosecond pulses produced by a chirped pulse amplification Ti:sapphire laser system. In a normal operation the system is able to produce pulses up to 1.5 mJ energy and about 90 fs duration FWHM. The frequency traces were collected for pulses at different compressor grating separations. Experimental data on the linear chirp and pulse duration have been checked against a simple model, where the shape of the gausian pulse changes due to propagation through a dispersive path between pair of diffraction grating in a compressor. Detuning of the grating separation from its optimal value results in quadratic (in terms of frequency) phase shift of spectral components of output pulse. The data on chirp and pulse duration versus grating separation are in a good agreement with the estimations of dispersions at the system output. The registered images shown not only linear chirp of pulses (which was measured unambiguously) but also the fourth order phase distortion (cubic chirp). We prove by numerical calculations that images produced by the frequency tracer have simple intuitive meaning: the frequency trace is formed by maxima of two-dimensional image and does not require any iterative retrieval algorithm for visualising the phase distortions [2]. The calculations show that the second-harmonic frequency tracer allows to measure the even-order phase distortions of femtosecond light pulses: chirp, fourth-order, etc. These distortions include the phase self-modulation (Kerr-nonlinear contribution) of symmetric pulse.
{"title":"Tracing the Phase Distortion of a Single Femtosecond Light Pulse","authors":"V. Kabelka, A. Masalov, S. Nikitin, H. Milchberg","doi":"10.1109/CLEOE.1998.718867","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.718867","url":null,"abstract":"A frequency tracer (FT) based on noncollinear second harmonic generation autocorrelator for two-dimensional time-frequency imaging of a single femtosecond light pulse without using a spectral apparatus [1] had implemented for a first time. An experimental test of frequency tracer has been performed by measuring the instantaneous frequency of femtosecond pulses produced by a chirped pulse amplification Ti:sapphire laser system. In a normal operation the system is able to produce pulses up to 1.5 mJ energy and about 90 fs duration FWHM. The frequency traces were collected for pulses at different compressor grating separations. Experimental data on the linear chirp and pulse duration have been checked against a simple model, where the shape of the gausian pulse changes due to propagation through a dispersive path between pair of diffraction grating in a compressor. Detuning of the grating separation from its optimal value results in quadratic (in terms of frequency) phase shift of spectral components of output pulse. The data on chirp and pulse duration versus grating separation are in a good agreement with the estimations of dispersions at the system output. The registered images shown not only linear chirp of pulses (which was measured unambiguously) but also the fourth order phase distortion (cubic chirp). We prove by numerical calculations that images produced by the frequency tracer have simple intuitive meaning: the frequency trace is formed by maxima of two-dimensional image and does not require any iterative retrieval algorithm for visualising the phase distortions [2]. The calculations show that the second-harmonic frequency tracer allows to measure the even-order phase distortions of femtosecond light pulses: chirp, fourth-order, etc. These distortions include the phase self-modulation (Kerr-nonlinear contribution) of symmetric pulse.","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128343820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.719244
A. Podoleanu, M. Seeger, D. Jackson
The detection of reflective interfaces in a multilayer object using Coherence Radar [1] is limited by the dynamic range of the analogue CCD camera and the analogue to digital (A/D) converter or frame grabber [2]. In this paper, we describe a new differential detection method for Coherence Radar which significantly reduces the required dynamic range of the A/D converter.
{"title":"CCD Based Low-Coherence Interferometry Using Balanced Detection","authors":"A. Podoleanu, M. Seeger, D. Jackson","doi":"10.1109/CLEOE.1998.719244","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.719244","url":null,"abstract":"The detection of reflective interfaces in a multilayer object using Coherence Radar [1] is limited by the dynamic range of the analogue CCD camera and the analogue to digital (A/D) converter or frame grabber [2]. In this paper, we describe a new differential detection method for Coherence Radar which significantly reduces the required dynamic range of the A/D converter.","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"1993 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128621504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.718914
M. Deneva, M. Nenchev, R. Barbé, J. Keller
Passiw self-injection locking (PSIL) laser spectral control yields efliciency close to thal in the oplimiied xion-selective cavity and avoids the optical damage ofthe selectors [1,2] Its principle lies in the spectrally selective re-injection in the cairity of a pall of the output beam I" SIIDI (theov, experiment) that such control entails 8s addition the principle of novel technique for producinq in a purcly optical and simple manner hish power unidirectional ring l a w generatm Mhich is spectrally fixed at a chosen reference atomic absorption lux Such lasers are of interest as wavelength standards. in laser isotope reparation and In DIAL lidars We use the unbalance between two competitiw wavelength scanned passive selfinjections, that is produced by the absorption at the reference line (Fig 1 J In a faur-mirror ring cur Ti:AI?O> laser cavity (AI' pumping. output mirror M 4 with RzO9S). the first passive self-injection enforces the oscillation in the counter clockwise directed wave in the Ti A207 crystal (CCW-wave, output p o w r Pccw. tofal generated power in both 9'" . . . waves Plot) It is icalired by the 4% reflection back of the clockwcse (CWi wave output light uimg the wedged glass plate Mr The second self-injection i s realized by rn,ieition of the CW output beam parsing through Mr intu the ring ca:ty in the CV wave This injection is ,ia the optical line formed by the Faraday Isolator F1 (Glan piisnr G: . polarization medium P,W, second Glan prism G 2 , tranbnussion iii GIG: direction). the rem-reflrctmg mirror M a . and the intermediate miim M i A half-wave plate (h:? plate between M-I and hll ) ensures the full reflection by the prism G i ofthe CCW output beam out of the optical line (Output?.) The selection of the wavelength of the reinjections (the same far both beams) and the tuning are realized by the interference wedge (IN' between hh and M r J A medium with thc reference line AM is placed betueen GI and Mr The ratio ofthe powers of the twu re-injected beams ( d e d by adjustment of Mi) i s chosen to ensure unidirectional E o ' p operation in C W direction beyond the absorption line ; When the wavelength is tuned to the reference linc, due to P the absorption. this ratio is inverted and the laser oscillates 7 uni-directionally in opposite (CCW) direction at the d '' wavelengh of thc re-injection (Output 2) If the watelengh of the re-injection is scanned repeatedly around the reference Ime. the ring laser producer from its Output 2 pulsed emission spectrally fixed at the reference line The repetition rate and the pulse length are determined by the repelition rate and the speed of the scanning. respectively During the locked generation AM is practically not illurmnated. The theoretical analysis gives a considerable narrowing ofthe locked line m comparison with the line-width of the absorption. In the experimental check (Fig 2) with lid":YAG crystal as AM (absorption line 798,s nm), 5 Hz repetition rale, 0.2 W aver output power. IW ms
{"title":"Undirectional Ring Ti/sup 3+/: AL/sub 2/O/sub 3/ Laser Operation at the Wavelength of an Atomic Absorption Line Using Bi-Directional Passive Self-Injection","authors":"M. Deneva, M. Nenchev, R. Barbé, J. Keller","doi":"10.1109/CLEOE.1998.718914","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.718914","url":null,"abstract":"Passiw self-injection locking (PSIL) laser spectral control yields efliciency close to thal in the oplimiied xion-selective cavity and avoids the optical damage ofthe selectors [1,2] Its principle lies in the spectrally selective re-injection in the cairity of a pall of the output beam I\" SIIDI (theov, experiment) that such control entails 8s addition the principle of novel technique for producinq in a purcly optical and simple manner hish power unidirectional ring l a w generatm Mhich is spectrally fixed at a chosen reference atomic absorption lux Such lasers are of interest as wavelength standards. in laser isotope reparation and In DIAL lidars We use the unbalance between two competitiw wavelength scanned passive selfinjections, that is produced by the absorption at the reference line (Fig 1 J In a faur-mirror ring cur Ti:AI?O> laser cavity (AI' pumping. output mirror M 4 with RzO9S). the first passive self-injection enforces the oscillation in the counter clockwise directed wave in the Ti A207 crystal (CCW-wave, output p o w r Pccw. tofal generated power in both 9'\" . . . waves Plot) It is icalired by the 4% reflection back of the clockwcse (CWi wave output light uimg the wedged glass plate Mr The second self-injection i s realized by rn,ieition of the CW output beam parsing through Mr intu the ring ca:ty in the CV wave This injection is ,ia the optical line formed by the Faraday Isolator F1 (Glan piisnr G: . polarization medium P,W, second Glan prism G 2 , tranbnussion iii GIG: direction). the rem-reflrctmg mirror M a . and the intermediate miim M i A half-wave plate (h:? plate between M-I and hll ) ensures the full reflection by the prism G i ofthe CCW output beam out of the optical line (Output?.) The selection of the wavelength of the reinjections (the same far both beams) and the tuning are realized by the interference wedge (IN' between hh and M r J A medium with thc reference line AM is placed betueen GI and Mr The ratio ofthe powers of the twu re-injected beams ( d e d by adjustment of Mi) i s chosen to ensure unidirectional E o ' p operation in C W direction beyond the absorption line ; When the wavelength is tuned to the reference linc, due to P the absorption. this ratio is inverted and the laser oscillates 7 uni-directionally in opposite (CCW) direction at the d '' wavelengh of thc re-injection (Output 2) If the watelengh of the re-injection is scanned repeatedly around the reference Ime. the ring laser producer from its Output 2 pulsed emission spectrally fixed at the reference line The repetition rate and the pulse length are determined by the repelition rate and the speed of the scanning. respectively During the locked generation AM is practically not illurmnated. The theoretical analysis gives a considerable narrowing ofthe locked line m comparison with the line-width of the absorption. In the experimental check (Fig 2) with lid\":YAG crystal as AM (absorption line 798,s nm), 5 Hz repetition rale, 0.2 W aver output power. IW ms","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127051601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.719029
S. Bonnefont, S. Mariojouls, O. Gilard, C. Vergnenègre, F. Lozes-Dupuy
Considerable progress in high-power diffraction-limited sources has been made owing to the use of flared semiconductor laser amplifiers. The broadening of the gain electrode along the length of the amplifier allows the wave spreading while maintaining its amplification level, and reduces the beam filamentation phenomenon. Diffraction-limited powers as high as 1 W CW have been demonstrated from such devices, however thermal effects can strongly influence their performance.
由于采用了喇叭半导体激光放大器,在高功率衍射限制源方面取得了相当大的进展。增益电极沿放大器长度的加宽允许波在保持其放大水平的同时传播,并减少了光束细丝现象。这种器件的衍射极限功率高达1 W CW,但热效应会强烈影响其性能。
{"title":"Analysis of Thermal Effects in Flared Semiconductor Laser Amplifiers","authors":"S. Bonnefont, S. Mariojouls, O. Gilard, C. Vergnenègre, F. Lozes-Dupuy","doi":"10.1109/CLEOE.1998.719029","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.719029","url":null,"abstract":"Considerable progress in high-power diffraction-limited sources has been made owing to the use of flared semiconductor laser amplifiers. The broadening of the gain electrode along the length of the amplifier allows the wave spreading while maintaining its amplification level, and reduces the beam filamentation phenomenon. Diffraction-limited powers as high as 1 W CW have been demonstrated from such devices, however thermal effects can strongly influence their performance.","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127284381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.718934
W. Sibbett
Although ultrashort-pulse lasers have been around since the first demonstration of the modelocking technique in the mid-1960s, the practicality of the more versatile versions of such lasers has tended to be the main limitation to their applicability. The availability in research years of solid-state broad-bandwidth vibronic gain media has also enlarged greatly the scientific and technological potential of modelocked lasers that are compatible with the femtosecond time domain. This latter situation not only opens up exciting possibilities for the development of sources of optical pulses towards the single-cycle, but the addition of appropriate amplification schemes also means that access can now be gained into a fascinating new world relating to the interaction of ultrahigh-intensity light pulses with matter.
{"title":"Ultrashort-Pulse Lasers: Their Coming of Age","authors":"W. Sibbett","doi":"10.1109/CLEOE.1998.718934","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.718934","url":null,"abstract":"Although ultrashort-pulse lasers have been around since the first demonstration of the modelocking technique in the mid-1960s, the practicality of the more versatile versions of such lasers has tended to be the main limitation to their applicability. The availability in research years of solid-state broad-bandwidth vibronic gain media has also enlarged greatly the scientific and technological potential of modelocked lasers that are compatible with the femtosecond time domain. This latter situation not only opens up exciting possibilities for the development of sources of optical pulses towards the single-cycle, but the addition of appropriate amplification schemes also means that access can now be gained into a fascinating new world relating to the interaction of ultrahigh-intensity light pulses with matter.","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127542180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1998-09-14DOI: 10.1109/CLEOE.1998.718986
N. Traynor, L. Lefort, S. Alam, G. Biffi, A. Grudinin, G. W. Ross, D. Hanna
Recent progress in fabrication of PPLN offers new effects, the observation of which is very difficult in traditional materials. So far the main activity has been focussed on efficient second harmonic generation and parametric oscillation. Here we present results on strong nonlinear interactions in PPLN, which have to date received little attention, but offer very interesting applications requiring relatively low powers.
{"title":"Strong Self-Phase Modulation in Periodically Poled Lithium Niobate Under Subpicosecond Pump Pulses","authors":"N. Traynor, L. Lefort, S. Alam, G. Biffi, A. Grudinin, G. W. Ross, D. Hanna","doi":"10.1109/CLEOE.1998.718986","DOIUrl":"https://doi.org/10.1109/CLEOE.1998.718986","url":null,"abstract":"Recent progress in fabrication of PPLN offers new effects, the observation of which is very difficult in traditional materials. So far the main activity has been focussed on efficient second harmonic generation and parametric oscillation. Here we present results on strong nonlinear interactions in PPLN, which have to date received little attention, but offer very interesting applications requiring relatively low powers.","PeriodicalId":404067,"journal":{"name":"CLEO/Europe Conference on Lasers and Electro-Optics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127222628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}