首页 > 最新文献

Proceedings of International Conference on Computer Aided Design最新文献

英文 中文
Hierarchical statistical characterization of mixed-signal circuits using behavioral modeling 使用行为建模的混合信号电路的分层统计表征
Pub Date : 1900-01-01 DOI: 10.5555/244522.244835
E. Felt, S. Zanella, C. Guardiani, A. Sangiovanni-Vincentelli
A methodology for hierarchical statistical circuit characterization which does not rely upon circuit-level Monte Carlo simulation is presented. The methodology uses principal component analysis, response surface methodology, and statistics to directly calculate the statistical distributions of higher-level parameters from the distributions of lower-level parameters. We have used the methodology to characterize a folded cascode operational amplifier and a phase-locked loop. This methodology permits the statistical characterization of large analog and mixed-signal systems, many of which are extremely time-consuming or impossible to characterize using existing methods.
提出了一种不依赖于电路级蒙特卡罗仿真的分层统计电路表征方法。该方法采用主成分分析法、响应面法和统计学方法,直接从低层参数的分布计算出高层参数的统计分布。我们已经使用该方法来表征折叠级联运算放大器和锁相环。该方法允许对大型模拟和混合信号系统进行统计表征,其中许多系统使用现有方法非常耗时或不可能进行表征。
{"title":"Hierarchical statistical characterization of mixed-signal circuits using behavioral modeling","authors":"E. Felt, S. Zanella, C. Guardiani, A. Sangiovanni-Vincentelli","doi":"10.5555/244522.244835","DOIUrl":"https://doi.org/10.5555/244522.244835","url":null,"abstract":"A methodology for hierarchical statistical circuit characterization which does not rely upon circuit-level Monte Carlo simulation is presented. The methodology uses principal component analysis, response surface methodology, and statistics to directly calculate the statistical distributions of higher-level parameters from the distributions of lower-level parameters. We have used the methodology to characterize a folded cascode operational amplifier and a phase-locked loop. This methodology permits the statistical characterization of large analog and mixed-signal systems, many of which are extremely time-consuming or impossible to characterize using existing methods.","PeriodicalId":408850,"journal":{"name":"Proceedings of International Conference on Computer Aided Design","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116084968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 69
Hierarchical partitioning 分层分区
Pub Date : 1900-01-01 DOI: 10.5555/244522.244861
D. Behrens, K. Harbich, E. Barke
Partitioning of digital circuits has become a key problem area during the last five years. Benefits from new technologies like Multi-Chip-Modules or logic emulation strongly depend on partitioning results. Most published approaches are based on abstract graph models constructed from flat netlists, which consider only connectivity information. The approach presented in this paper uses information on design hierarchy in order to improve partitioning results and reduce problem complexity. Designs up to 150 k gates have been successfully partitioned by descending and ascending the hierarchy. Compared to. Standard k-way iterative improvement partitioning approach results are improved by up to 65% and runtimes are decreased by up to 99%.
近五年来,数字电路的划分已成为一个关键问题。多芯片模块或逻辑仿真等新技术的好处很大程度上取决于分区结果。大多数已发表的方法都是基于从平面网络列表构建的抽象图模型,它只考虑连接信息。本文提出的方法利用设计层次的信息来改善划分结果,降低问题的复杂性。高达150k门的设计已经成功地通过下降和上升的层次结构进行了划分。相比。标准k-way迭代改进划分方法的结果提高了65%,运行时间减少了99%。
{"title":"Hierarchical partitioning","authors":"D. Behrens, K. Harbich, E. Barke","doi":"10.5555/244522.244861","DOIUrl":"https://doi.org/10.5555/244522.244861","url":null,"abstract":"Partitioning of digital circuits has become a key problem area during the last five years. Benefits from new technologies like Multi-Chip-Modules or logic emulation strongly depend on partitioning results. Most published approaches are based on abstract graph models constructed from flat netlists, which consider only connectivity information. The approach presented in this paper uses information on design hierarchy in order to improve partitioning results and reduce problem complexity. Designs up to 150 k gates have been successfully partitioned by descending and ascending the hierarchy. Compared to. Standard k-way iterative improvement partitioning approach results are improved by up to 65% and runtimes are decreased by up to 99%.","PeriodicalId":408850,"journal":{"name":"Proceedings of International Conference on Computer Aided Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122891497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1129
期刊
Proceedings of International Conference on Computer Aided Design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1