首页 > 最新文献

Progress in Energy and Combustion Science最新文献

英文 中文
Molecular dynamics modeling in catalyst layer development for PEM fuel cell PEM燃料电池催化剂层开发中的分子动力学建模
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2025-01-16 DOI: 10.1016/j.pecs.2025.101220
Linhao Fan , Jiaqi Wang , Daniela Fernanda Ruiz Diaz , Lincai Li , Yun Wang , Kui Jiao
Catalyst layers (CLs) are a key component of proton exchange membrane (PEM) fuel cells, where electrochemical reactions occur. The future development of catalysts, catalyst supports, ionomer electrolytes, and CL architectures, along with their preparation, is of great importance for achieving high-performance and low-cost PEM fuel cells. Developing novel CLs involves complex multi-parameter optimization, posing significant challenges for time-consuming experiments. Due to CL's nanoscale structures, molecular dynamics (MD) simulation is an appropriate method to investigate transport and structural characteristics in CLs, playing an crucial role in CL development. This review aims at the fundamentals of MD simulations, overview of MD simulations in CL applications, latest developments of catalysts, catalyst support, ionomer materials, CL architectures, and roles of MD in CL development, as well as associated challenges and prospects. This review is invaluable for guiding researchers in understanding the mechanisms of transport and structural evolution mechanisms in CLs and developing novel CLs through MD modeling.
催化层(CLs)是质子交换膜(PEM)燃料电池的关键组成部分,是发生电化学反应的地方。催化剂、催化剂载体、离子电解质和CL结构的未来发展及其制备对于实现高性能、低成本的PEM燃料电池至关重要。开发新型CLs涉及复杂的多参数优化,对耗时的实验提出了重大挑战。由于CL的纳米级结构,分子动力学(MD)模拟是研究CL的运输和结构特征的合适方法,在CL的发展中起着至关重要的作用。本文综述了分子动力学模拟的基本原理,分子动力学模拟在CL中的应用概况,催化剂的最新进展,催化剂载体,离聚体材料,分子动力学结构,分子动力学在CL中的作用,以及相关的挑战和前景。这一综述对于指导研究人员理解CLs的转运机制和结构演化机制,以及通过MD模型开发新型CLs具有重要的指导意义。
{"title":"Molecular dynamics modeling in catalyst layer development for PEM fuel cell","authors":"Linhao Fan ,&nbsp;Jiaqi Wang ,&nbsp;Daniela Fernanda Ruiz Diaz ,&nbsp;Lincai Li ,&nbsp;Yun Wang ,&nbsp;Kui Jiao","doi":"10.1016/j.pecs.2025.101220","DOIUrl":"10.1016/j.pecs.2025.101220","url":null,"abstract":"<div><div>Catalyst layers (CLs) are a key component of proton exchange membrane (PEM) fuel cells, where electrochemical reactions occur. The future development of catalysts, catalyst supports, ionomer electrolytes, and CL architectures, along with their preparation, is of great importance for achieving high-performance and low-cost PEM fuel cells. Developing novel CLs involves complex multi-parameter optimization, posing significant challenges for time-consuming experiments. Due to CL's nanoscale structures, molecular dynamics (MD) simulation is an appropriate method to investigate transport and structural characteristics in CLs, playing an crucial role in CL development. This review aims at the fundamentals of MD simulations, overview of MD simulations in CL applications, latest developments of catalysts, catalyst support, ionomer materials, CL architectures, and roles of MD in CL development, as well as associated challenges and prospects. This review is invaluable for guiding researchers in understanding the mechanisms of transport and structural evolution mechanisms in CLs and developing novel CLs through MD modeling.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"108 ","pages":"Article 101220"},"PeriodicalIF":32.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143097630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in combustion science related to hydrogen safety 与氢安全相关的燃烧科学新进展
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-12-16 DOI: 10.1016/j.pecs.2024.101202
Jennifer X. Wen , Ethan S. Hecht , Remy Mevel
Hydrogen is a key pillar in the global Net Zero strategy. Rapid scaling up of hydrogen production, transport, distribution and utilization is expected. This entails that hydrogen, which is traditionally an industrial gas, will come into proximity of populated urban areas and in some situations handled by the untrained public. To realize all their benefits, hydrogen and its technologies must be safely developed and deployed. The specific properties of hydrogen involving wide flammability range, low ignition energy and fast flame speed implies that any accidental release of hydrogen can be easily ignited. Comparing with conventional fuels, combustion systems fueled by hydrogen are also more prone to flame instability and abnormal combustion. This paper aims to provide a comprehensive review about combustion research related to hydrogen safety. It starts with a brief introduction which includes some overview about risk analysis, codes and standards. The core content covers ignition, fire, explosions and deflagration to detonation transition (DDT). Considering that DDT leads to detonation, and that detonation may also be induced directly under special circumstances, the subject of detonation is also included for completeness. The review covers laboratory, medium and large-scale experiments, as well as theoretical analysis and numerical simulation results. While highlights are provided at the end of each section, the paper closes with some concluding remarks highlighting the achievements and key knowledge gaps.
氢是全球净零排放战略的关键支柱。预计氢的生产、运输、分配和利用将迅速扩大规模。这意味着传统上作为工业气体的氢气将进入人口稠密的城市地区附近,并且在某些情况下由未经培训的公众处理。为了实现所有这些好处,氢及其技术必须安全开发和部署。氢的可燃性范围大,点火能量低,火焰速度快,这意味着任何意外释放的氢都很容易被点燃。与传统燃料相比,氢燃料的燃烧系统也更容易出现火焰不稳定和异常燃烧。本文综述了与氢安全相关的燃烧研究进展。首先是一个简短的介绍,包括一些关于风险分析、规范和标准的概述。核心内容包括点火、火灾、爆炸和爆燃到爆轰过渡(DDT)。考虑到滴滴涕引起爆轰,而且在特殊情况下也可能直接诱发爆轰,为完整起见,还包括爆轰的主题。综述包括实验室实验、中、大规模实验、理论分析和数值模拟结果。虽然在每个部分的末尾都提供了重点,但本文以一些结束语结束,强调了取得的成就和关键的知识差距。
{"title":"Recent advances in combustion science related to hydrogen safety","authors":"Jennifer X. Wen ,&nbsp;Ethan S. Hecht ,&nbsp;Remy Mevel","doi":"10.1016/j.pecs.2024.101202","DOIUrl":"10.1016/j.pecs.2024.101202","url":null,"abstract":"<div><div>Hydrogen is a key pillar in the global Net Zero strategy. Rapid scaling up of hydrogen production, transport, distribution and utilization is expected. This entails that hydrogen, which is traditionally an industrial gas, will come into proximity of populated urban areas and in some situations handled by the untrained public. To realize all their benefits, hydrogen and its technologies must be safely developed and deployed. The specific properties of hydrogen involving wide flammability range, low ignition energy and fast flame speed implies that any accidental release of hydrogen can be easily ignited. Comparing with conventional fuels, combustion systems fueled by hydrogen are also more prone to flame instability and abnormal combustion. This paper aims to provide a comprehensive review about combustion research related to hydrogen safety. It starts with a brief introduction which includes some overview about risk analysis, codes and standards. The core content covers ignition, fire, explosions and deflagration to detonation transition (DDT). Considering that DDT leads to detonation, and that detonation may also be induced directly under special circumstances, the subject of detonation is also included for completeness. The review covers laboratory, medium and large-scale experiments, as well as theoretical analysis and numerical simulation results. While highlights are provided at the end of each section, the paper closes with some concluding remarks highlighting the achievements and key knowledge gaps.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"107 ","pages":"Article 101202"},"PeriodicalIF":32.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143172309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Working fluid and system optimisation of organic Rankine cycles via computer-aided molecular design: A review 基于计算机辅助分子设计的有机朗肯循环工作流体和系统优化研究进展
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-12-05 DOI: 10.1016/j.pecs.2024.101201
Christos N. Markides , André Bardow , Michel De Paepe , Carlo De Servi , Joachim Groß , Andrew J. Haslam , Steven Lecompte , Athanasios I. Papadopoulos , Oyeniyi A. Oyewunmi , Panos Seferlis , Johannes Schilling , Patrick Linke , Hua Tian , Gequn Shu
Organic Rankine cycle (ORC) systems are a class of distributed power-generation systems that are suitable for the efficient conversion of low-to-medium temperature thermal energy to useful power. These versatile systems have significant potential to contribute in diverse ways to future clean and sustainable energy systems through, e.g., deployment for waste-heat recovery in industrial facilities, but also the utilisation of renewable-heat sources, thereby improving energy access and living standards, while reducing primary energy consumption and the associated emissions. The energetic and economic performance, but also environmental sustainability of ORC systems, all depend strongly on the working fluid employed, and therefore a significant effort has been made in recent years to select, but also to design novel working fluids for ORC systems. In this context, computer-aided molecular design (CAMD) techniques have emerged as highly promising approaches with which to explore the key role of working fluids, and present an opportunity, by focusing on the design of new eco-friendly fluids with low environmental footprints, to identify alternatives to traditional refrigerants with improved characteristics. In this review article, an overview of working-fluid and system optimisation methodologies that can be used for the design and operation of next-generation ORC systems is provided. With reference to wide-ranging applications from waste-heat recovery in industrial and automotive applications, to biomass, geothermal and solar-energy conversion and/or storage, this review represents a comprehensive, forward-looking exposition of the application of CAMD to the design of ORC technology.
有机朗肯循环(ORC)系统是一类适用于将中低温热能高效转化为有用电能的分布式发电系统。这些多功能系统具有巨大的潜力,可以通过各种方式为未来的清洁和可持续能源系统作出贡献,例如在工业设施中部署废热回收,以及利用可再生热源,从而改善能源获取和生活水平,同时减少初级能源消耗和相关排放。ORC系统的节能和经济性能以及环境可持续性都很大程度上取决于所使用的工作流体,因此近年来人们在选择和设计ORC系统的新型工作流体方面做出了重大努力。在这种背景下,计算机辅助分子设计(CAMD)技术已经成为一种非常有前途的方法,用于探索工作流体的关键作用,并通过专注于设计低环境足迹的新型环保流体,提供了一个机会,以确定具有改进特性的传统制冷剂的替代品。在这篇综述文章中,概述了可用于下一代ORC系统设计和运行的工作流体和系统优化方法。从工业和汽车应用的废热回收到生物质、地热和太阳能转换和/或储存的广泛应用,本文综述了CAMD在ORC技术设计中的应用的全面、前瞻性的阐述。
{"title":"Working fluid and system optimisation of organic Rankine cycles via computer-aided molecular design: A review","authors":"Christos N. Markides ,&nbsp;André Bardow ,&nbsp;Michel De Paepe ,&nbsp;Carlo De Servi ,&nbsp;Joachim Groß ,&nbsp;Andrew J. Haslam ,&nbsp;Steven Lecompte ,&nbsp;Athanasios I. Papadopoulos ,&nbsp;Oyeniyi A. Oyewunmi ,&nbsp;Panos Seferlis ,&nbsp;Johannes Schilling ,&nbsp;Patrick Linke ,&nbsp;Hua Tian ,&nbsp;Gequn Shu","doi":"10.1016/j.pecs.2024.101201","DOIUrl":"10.1016/j.pecs.2024.101201","url":null,"abstract":"<div><div>Organic Rankine cycle (ORC) systems are a class of distributed power-generation systems that are suitable for the efficient conversion of low-to-medium temperature thermal energy to useful power. These versatile systems have significant potential to contribute in diverse ways to future clean and sustainable energy systems through, <em>e.g.</em>, deployment for waste-heat recovery in industrial facilities, but also the utilisation of renewable-heat sources, thereby improving energy access and living standards, while reducing primary energy consumption and the associated emissions. The energetic and economic performance, but also environmental sustainability of ORC systems, all depend strongly on the working fluid employed, and therefore a significant effort has been made in recent years to select, but also to design novel working fluids for ORC systems. In this context, computer-aided molecular design (CAMD) techniques have emerged as highly promising approaches with which to explore the key role of working fluids, and present an opportunity, by focusing on the design of new eco-friendly fluids with low environmental footprints, to identify alternatives to traditional refrigerants with improved characteristics. In this review article, an overview of working-fluid and system optimisation methodologies that can be used for the design and operation of next-generation ORC systems is provided. With reference to wide-ranging applications from waste-heat recovery in industrial and automotive applications, to biomass, geothermal and solar-energy conversion and/or storage, this review represents a comprehensive, forward-looking exposition of the application of CAMD to the design of ORC technology.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"107 ","pages":"Article 101201"},"PeriodicalIF":32.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143172308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turbulent combustion modeling for internal combustion engine CFD: A review 内燃机 CFD 的湍流燃烧建模:综述
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-11-06 DOI: 10.1016/j.pecs.2024.101200
S. Posch , C. Gößnitzer , M. Lang , R. Novella , H. Steiner , A. Wimmer
The modeling of combustion or, to be exact, turbulent combustion using numerical simulation has become state-of-the-art in the process of developing internal combustion engines (ICE). Since the combustion regimes that occur fundamentally differ depending on the combustion concept used, several turbulent combustion models have been developed to meet the respective requirements. The selection of appropriate combustion models is crucial to accurately reflect the physical processes, specifically considering the mixing conditions and the effects of turbulence on the mean reaction rate. This review provides an overview of turbulent combustion models for use in ICE computational fluid dynamics. After a brief introduction to the basic aspects of ICE combustion simulation, the underlying governing equations and the required physical background are outlined. Next, the relevant turbulent combustion models for ICE application and their mathematical formulations are aggregated to enable the discussion of relevant model parameters and characteristics. A comprehensive review of application cases with respect to ICE technologies, namely spark ignition and compression ignition, is given. Furthermore, recent advances and future prospects in terms of the integration of future fuels, the enhancement of turbulent combustion models to meet future engine technologies and the use of machine learning techniques to advance turbulent combustion simulation in the context of ICE are discussed.
在开发内燃机(ICE)的过程中,利用数值模拟建立燃烧模型或确切地说是湍流燃烧模型已成为最先进的技术。由于采用的燃烧概念不同,发生的燃烧状态也有本质区别,因此已开发出多种湍流燃烧模型来满足各自的要求。选择合适的燃烧模型对于准确反映物理过程至关重要,特别是要考虑混合条件和湍流对平均反应速率的影响。本综述概述了用于 ICE 计算流体动力学的湍流燃烧模型。在简要介绍了 ICE 燃烧模拟的基本方面后,概述了基本控制方程和所需的物理背景。接下来,汇总了用于内燃机车的相关湍流燃烧模型及其数学公式,以便对相关模型参数和特征进行讨论。全面回顾了内燃机技术(即火花点火和压缩点火)的应用案例。此外,还讨论了集成未来燃料、增强湍流燃烧模型以满足未来发动机技术以及使用机器学习技术推进内燃机引擎湍流燃烧模拟等方面的最新进展和未来前景。
{"title":"Turbulent combustion modeling for internal combustion engine CFD: A review","authors":"S. Posch ,&nbsp;C. Gößnitzer ,&nbsp;M. Lang ,&nbsp;R. Novella ,&nbsp;H. Steiner ,&nbsp;A. Wimmer","doi":"10.1016/j.pecs.2024.101200","DOIUrl":"10.1016/j.pecs.2024.101200","url":null,"abstract":"<div><div>The modeling of combustion or, to be exact, turbulent combustion using numerical simulation has become state-of-the-art in the process of developing internal combustion engines (ICE). Since the combustion regimes that occur fundamentally differ depending on the combustion concept used, several turbulent combustion models have been developed to meet the respective requirements. The selection of appropriate combustion models is crucial to accurately reflect the physical processes, specifically considering the mixing conditions and the effects of turbulence on the mean reaction rate. This review provides an overview of turbulent combustion models for use in ICE computational fluid dynamics. After a brief introduction to the basic aspects of ICE combustion simulation, the underlying governing equations and the required physical background are outlined. Next, the relevant turbulent combustion models for ICE application and their mathematical formulations are aggregated to enable the discussion of relevant model parameters and characteristics. A comprehensive review of application cases with respect to ICE technologies, namely spark ignition and compression ignition, is given. Furthermore, recent advances and future prospects in terms of the integration of future fuels, the enhancement of turbulent combustion models to meet future engine technologies and the use of machine learning techniques to advance turbulent combustion simulation in the context of ICE are discussed.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"106 ","pages":"Article 101200"},"PeriodicalIF":32.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and optimization of anaerobic digestion technology: Current status and future outlook 厌氧消化技术的建模和优化:现状与未来展望
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-10-18 DOI: 10.1016/j.pecs.2024.101199
Tina Kegl , Eloísa Torres Jiménez , Breda Kegl , Anita Kovač Kralj , Marko Kegl
Anaerobic digestion (AD) is an important technology that can be engaged to produce renewable energy and valuable products from organic waste while reducing the net greenhouse gas emissions. Due to the AD process complexity, further development of AD technology goes hand in hand with the advancement of underlying mathematical models and optimization techniques. This paper presents a comprehensive and critical review of current AD process modeling and optimization techniques as well as various aspects of further processing of AD products. The most important mechanistically inspired, kinetic, and phenomenological AD models and the most frequently used deterministic and stochastic methods for AD process optimization are addressed. The foundations, properties, and features of these models and methods are highlighted, discussed, and compared with respect to advantages, disadvantages, and various performance metrics; the models are also ranked with respect to adequately introduced criteria. Since AD process optimization affects heavily the required treatment and utilization of AD products, biogas and digestate utilization in the production of renewable energy and other valuable products is also addressed. Furthermore, special attention is devoted to the challenges and future research needs related to AD modeling and optimization, such are modeling issues related to foaming and microbial activities, AD model parameters calibration, CFD simulation challenges, availability of experimental data, and optimization of the AD process with respect to further biogas and digestate utilizations. As current research results indicate, further progress in these areas could notably improve AD modeling robustness and accuracy as well as AD optimization performance.
厌氧消化(AD)是一项重要的技术,可以利用有机废物生产可再生能源和有价值的产品,同时减少温室气体的净排放量。由于厌氧消化工艺的复杂性,厌氧消化技术的进一步发展与基础数学模型和优化技术的进步密不可分。本文对当前的厌氧消化(AD)工艺建模和优化技术以及厌氧消化(AD)产品深加工的各个方面进行了全面而严谨的评述。本文探讨了最重要的机理启发、动力学和现象学厌氧消化(AD)模型,以及最常用的确定性和随机性厌氧消化(AD)工艺优化方法。重点介绍、讨论了这些模型和方法的基础、特性和特点,并就其优缺点和各种性能指标进行了比较;还根据适当引入的标准对模型进行了排序。由于厌氧消化(AD)工艺优化在很大程度上影响着厌氧消化(AD)产品所需的处理和利用,因此还讨论了利用沼气和沼渣生产可再生能源和其他有价值产品的问题。此外,还特别关注了与厌氧消化(AD)建模和优化相关的挑战和未来研究需求,如与泡沫和微生物活动相关的建模问题、厌氧消化(AD)模型参数校准、CFD 模拟挑战、实验数据的可用性,以及厌氧消化(AD)工艺在进一步沼气和沼渣利用方面的优化。目前的研究结果表明,在这些领域取得进一步进展可以显著提高厌氧消化(AD)建模的稳健性和准确性以及厌氧消化(AD)优化性能。
{"title":"Modeling and optimization of anaerobic digestion technology: Current status and future outlook","authors":"Tina Kegl ,&nbsp;Eloísa Torres Jiménez ,&nbsp;Breda Kegl ,&nbsp;Anita Kovač Kralj ,&nbsp;Marko Kegl","doi":"10.1016/j.pecs.2024.101199","DOIUrl":"10.1016/j.pecs.2024.101199","url":null,"abstract":"<div><div>Anaerobic digestion (AD) is an important technology that can be engaged to produce renewable energy and valuable products from organic waste while reducing the net greenhouse gas emissions. Due to the AD process complexity, further development of AD technology goes hand in hand with the advancement of underlying mathematical models and optimization techniques. This paper presents a comprehensive and critical review of current AD process modeling and optimization techniques as well as various aspects of further processing of AD products. The most important mechanistically inspired, kinetic, and phenomenological AD models and the most frequently used deterministic and stochastic methods for AD process optimization are addressed. The foundations, properties, and features of these models and methods are highlighted, discussed, and compared with respect to advantages, disadvantages, and various performance metrics; the models are also ranked with respect to adequately introduced criteria. Since AD process optimization affects heavily the required treatment and utilization of AD products, biogas and digestate utilization in the production of renewable energy and other valuable products is also addressed. Furthermore, special attention is devoted to the challenges and future research needs related to AD modeling and optimization, such are modeling issues related to foaming and microbial activities, AD model parameters calibration, CFD simulation challenges, availability of experimental data, and optimization of the AD process with respect to further biogas and digestate utilizations. As current research results indicate, further progress in these areas could notably improve AD modeling robustness and accuracy as well as AD optimization performance.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"106 ","pages":"Article 101199"},"PeriodicalIF":32.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in multiscale research on calcium-looping for thermochemical energy storage: From materials to systems 用于热化学储能的钙循环多尺度研究进展:从材料到系统
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-10-10 DOI: 10.1016/j.pecs.2024.101194
Xikun Tian, Sijia Guo, Xiaojun Lv, Shangchao Lin, Chang-Ying Zhao
Thermochemical energy storage (TCES) based on calcium-looping (CaL) has great potential to mitigate the intermittency and instability problems of solar energy harvesting, especially for high-temperature solar thermal utilization. The CaCO3/CaO TCES system has been the focus of intense research over the past few decades for its advantages of high energy storage density, natural abundance of raw materials, low cost, and environmentally benign nature, simultaneously. Although some properties of the CaCO3/CaO TCES system have been concluded, few of them consider the relationships between structures and performances at multiple time and length scales. Herein, we summarize the multiscale developments of the CaCO3/CaO-based TCES systematically, including atomic-scale mechanisms, reaction thermodynamics, cyclic stabilities, energy storage/release properties in reactors, operations, and efficiency optimizations at a system level. This review aims to broaden research interests in multiscale structure-function relationships in the field of TCES and provide constructive references for exploring advanced methods and mature technologies for material development, reactor upgradation, and system optimization. Finally, it will promote the large-scale industrial applications of calcium-looping for thermochemical energy storage.
基于钙循环(CaL)的热化学储能(TCES)在缓解太阳能收集的间歇性和不稳定性问题方面具有巨大潜力,尤其是在高温太阳能热利用方面。CaCO3/CaO TCES 系统同时具有储能密度高、原材料天然丰富、成本低廉和对环境无害等优点,因此在过去几十年中一直是研究的热点。虽然人们已经总结了 CaCO3/CaO TCES 系统的一些特性,但很少有研究考虑到在多个时间和长度尺度上结构与性能之间的关系。在此,我们系统地总结了基于 CaCO3/CaO 的 TCES 的多尺度发展,包括原子尺度机理、反应热力学、循环稳定性、反应器中的能量存储/释放特性、操作以及系统级的效率优化。本综述旨在拓宽 TCES 领域对多尺度结构-功能关系的研究兴趣,并为探索材料开发、反应堆升级和系统优化的先进方法和成熟技术提供建设性参考。最后,它将促进钙环热化学储能的大规模工业应用。
{"title":"Progress in multiscale research on calcium-looping for thermochemical energy storage: From materials to systems","authors":"Xikun Tian,&nbsp;Sijia Guo,&nbsp;Xiaojun Lv,&nbsp;Shangchao Lin,&nbsp;Chang-Ying Zhao","doi":"10.1016/j.pecs.2024.101194","DOIUrl":"10.1016/j.pecs.2024.101194","url":null,"abstract":"<div><div>Thermochemical energy storage (TCES) based on calcium-looping (CaL) has great potential to mitigate the intermittency and instability problems of solar energy harvesting, especially for high-temperature solar thermal utilization. The CaCO<sub>3</sub>/CaO TCES system has been the focus of intense research over the past few decades for its advantages of high energy storage density, natural abundance of raw materials, low cost, and environmentally benign nature, simultaneously. Although some properties of the CaCO<sub>3</sub>/CaO TCES system have been concluded, few of them consider the relationships between structures and performances at multiple time and length scales. Herein, we summarize the multiscale developments of the CaCO<sub>3</sub>/CaO-based TCES systematically, including atomic-scale mechanisms, reaction thermodynamics, cyclic stabilities, energy storage/release properties in reactors, operations, and efficiency optimizations at a system level. This review aims to broaden research interests in multiscale structure-function relationships in the field of TCES and provide constructive references for exploring advanced methods and mature technologies for material development, reactor upgradation, and system optimization. Finally, it will promote the large-scale industrial applications of calcium-looping for thermochemical energy storage.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"106 ","pages":"Article 101194"},"PeriodicalIF":32.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flame stabilization and emission characteristics of ammonia combustion in lab-scale gas turbine combustors: Recent progress and prospects 实验室规模燃气轮机燃烧器中氨燃烧的火焰稳定和排放特性:最新进展和前景
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-10-07 DOI: 10.1016/j.pecs.2024.101193
Meng Zhang , Xutao Wei , Zhenhua An , Ekenechukwu C. Okafor , Thibault F. Guiberti , Jinhua Wang , Zuohua Huang
Global climate change forces all countries to push the process of de-carbonization. Ammonia, which is carbon free and a potential hydrogen carrier, is proposed as a prospective fuel for the power devices to realize the green economy. It also exhibits very good fuel properties, including its storage condition, energy density. However, two main challenges, the difficulties of flame stabilization and potential high fuel NOx production, still need to be tackled in its application in gas turbines. In the last decades, valuable investigations were conducted to address characteristics of NH3/air flame stabilization in swirl combustors as well as the combustion enhancement by cofiring with active molecule like CH4 and H2, applying plasma assistance. These measures mainly improve the flame resistance to the flow and increase the key radicals at flame base, which may provide possible solutions to the combustion chamber design. The inherent mechanisms of fuel NOx production are highlighted by the HNO channel with the presence of OH radical. One promising strategy to mitigate NOx in gas-turbine like combustor is the staged combustion by staging the air or fuel, which may also fit for the practical combustion chamber. The high-pressure condition and plasma assistance were found to show positive influence on both flame stabilization and NOx control. This review also emphasizes the fundamental research issues for ammonia fuel and proposes some future research prospects towards the development of more robust, reliable, and low NOx combustion technologies relevant to gas turbines.
全球气候变化迫使所有国家推进去碳化进程。氨不含碳,是一种潜在的氢载体,被建议作为动力设备的未来燃料,以实现绿色经济。氨是一种无碳的潜在氢载体,被认为是实现绿色经济的动力设备的前瞻性燃料,它还表现出非常好的燃料特性,包括储存条件和能量密度。然而,在燃气轮机中应用这种燃料仍需解决两个主要挑战,即火焰稳定困难和燃料可能产生较高的氮氧化物。在过去几十年中,针对漩涡燃烧器中 NH3/空气火焰稳定的特性以及通过与 CH4 和 H2 等活性分子共燃、应用等离子体辅助来增强燃烧的问题进行了大量研究。这些措施主要是改善火焰的流动阻力,增加火焰底部的关键自由基,从而为燃烧室设计提供可能的解决方案。燃料产生氮氧化物的内在机制突出表现为 HNO 通道和 OH 自由基的存在。在类似燃气轮机的燃烧器中,缓解氮氧化物的一种有前途的策略是通过对空气或燃料进行分段燃烧,这也可能适用于实际的燃烧室。研究发现,高压条件和等离子体辅助对火焰稳定和氮氧化物控制都有积极影响。本综述还强调了氨燃料的基础研究问题,并提出了一些未来的研究前景,以开发与燃气轮机相关的更稳健、可靠和低氮氧化物燃烧技术。
{"title":"Flame stabilization and emission characteristics of ammonia combustion in lab-scale gas turbine combustors: Recent progress and prospects","authors":"Meng Zhang ,&nbsp;Xutao Wei ,&nbsp;Zhenhua An ,&nbsp;Ekenechukwu C. Okafor ,&nbsp;Thibault F. Guiberti ,&nbsp;Jinhua Wang ,&nbsp;Zuohua Huang","doi":"10.1016/j.pecs.2024.101193","DOIUrl":"10.1016/j.pecs.2024.101193","url":null,"abstract":"<div><div>Global climate change forces all countries to push the process of de-carbonization. Ammonia, which is carbon free and a potential hydrogen carrier, is proposed as a prospective fuel for the power devices to realize the green economy. It also exhibits very good fuel properties, including its storage condition, energy density. However, two main challenges, the difficulties of flame stabilization and potential high fuel NO<sub>x</sub> production, still need to be tackled in its application in gas turbines. In the last decades, valuable investigations were conducted to address characteristics of NH<sub>3</sub>/air flame stabilization in swirl combustors as well as the combustion enhancement by cofiring with active molecule like CH<sub>4</sub> and H<sub>2</sub>, applying plasma assistance. These measures mainly improve the flame resistance to the flow and increase the key radicals at flame base, which may provide possible solutions to the combustion chamber design. The inherent mechanisms of fuel NO<sub>x</sub> production are highlighted by the HNO channel with the presence of OH radical. One promising strategy to mitigate NO<sub>x</sub> in gas-turbine like combustor is the staged combustion by staging the air or fuel, which may also fit for the practical combustion chamber. The high-pressure condition and plasma assistance were found to show positive influence on both flame stabilization and NO<sub>x</sub> control. This review also emphasizes the fundamental research issues for ammonia fuel and proposes some future research prospects towards the development of more robust, reliable, and low NO<sub>x</sub> combustion technologies relevant to gas turbines.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"106 ","pages":"Article 101193"},"PeriodicalIF":32.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of liquid fuel droplet evaporation and combustion behavior with carbon-based nanoparticles 液体燃料液滴蒸发和碳基纳米颗粒燃烧行为综述
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-09-27 DOI: 10.1016/j.pecs.2024.101198
A S M Sazzad Parveg, Albert Ratner
Nanofuels (NFs) are an innovative fuel category where nano-scale metal or carbon-based particles are suspended within liquid fuel (LF) to enhance performance, combustion efficiency, and emission characteristics of internal combustion devices while preserving the base fuel properties. Carbon-nanoparticle-based nanofuels (CNFs) have recently attracted attention for their potential to significantly enhance combustion performance and reduce emissions. CNFs offer advantages such as lower toxicity, a reduced environmental footprint, and cost-effectiveness compared to metal-based alternatives. Carbon nanoparticles exhibit potential in enhancing liquid fuel combustion characteristics, particularly when used at low particle concentrations (≤0.30 % w/w), which is likely to be optimal for improving the burning rate. This enhancement can be attributed to their superior heat absorption and transfer properties, improved atomization mechanisms, and impact on combustion kinetics. This review investigates the potential of CNFs and examines the mechanisms by which they alter combustion and evaporation characteristics. Empirical evidence indicates that the increased evaporation and burning rates of CNFs are primarily due to improved radiation capture and heat transfer. The behavior of ignition is closely related to the aggregation and distribution of nanoparticles within CNF droplets, which affects fuel evaporation dynamics. Additionally, increased micro-explosion intensity and generally reduced micro-explosion frequency are observed during CNF droplet combustion. Factors such as particle size, concentration, morphology, and thermo-physical properties play crucial roles in influencing changes in evaporation rate, burning rate, ignition delay, burning period, and micro-explosion characteristics. Studies conducted at droplet, spray, and engine scales consistently support the positive effects of CNFs observed at the droplet scale. These improvements lead to enhanced combustion parameters, better engine performance and a significant reduction in harmful emissions. However, concerns remain about the potential presence of nanoparticles in exhaust emissions and their implications for the environment and human health. This review offers a comprehensive analysis of CNFs, providing insights into their potential applications and identifying areas that require further research.
纳米燃料(NFs)是一种创新燃料,在这种燃料中,纳米级金属或碳基颗粒悬浮在液体燃料(LF)中,以提高内燃设备的性能、燃烧效率和排放特性,同时保留基本燃料的特性。基于碳纳米颗粒的纳米燃料(CNFs)最近因其显著提高燃烧性能和减少排放的潜力而备受关注。与金属基替代品相比,CNF 具有毒性低、对环境影响小和成本效益高等优点。碳纳米颗粒在提高液体燃料燃烧特性方面表现出潜力,尤其是在颗粒浓度较低(≤0.30% w/w)的情况下,这可能是提高燃烧速率的最佳选择。这种提高可归因于其卓越的吸热和传热特性、改进的雾化机制以及对燃烧动力学的影响。本综述研究了 CNFs 的潜力,并探讨了 CNFs 改变燃烧和蒸发特性的机制。经验证据表明,CNFs 蒸发率和燃烧率的提高主要是由于辐射捕获和热传递的改善。点火行为与 CNF 液滴内纳米颗粒的聚集和分布密切相关,这影响了燃料的蒸发动力学。此外,在 CNF 液滴燃烧过程中还观察到微爆强度增加,微爆频率普遍降低。颗粒大小、浓度、形态和热物理性质等因素对蒸发率、燃烧率、点火延迟、燃烧周期和微爆特性的变化起着至关重要的影响作用。在液滴、喷雾和发动机尺度上进行的研究一致支持在液滴尺度上观察到的 CNFs 的积极影响。这些改进提高了燃烧参数,改善了发动机性能,并显著减少了有害气体的排放。然而,人们仍对废气排放中可能存在的纳米颗粒及其对环境和人类健康的影响表示担忧。本综述对 CNFs 进行了全面分析,深入探讨了 CNFs 的潜在应用,并确定了需要进一步研究的领域。
{"title":"A comprehensive review of liquid fuel droplet evaporation and combustion behavior with carbon-based nanoparticles","authors":"A S M Sazzad Parveg,&nbsp;Albert Ratner","doi":"10.1016/j.pecs.2024.101198","DOIUrl":"10.1016/j.pecs.2024.101198","url":null,"abstract":"<div><div>Nanofuels (NFs) are an innovative fuel category where nano-scale metal or carbon-based particles are suspended within liquid fuel (LF) to enhance performance, combustion efficiency, and emission characteristics of internal combustion devices while preserving the base fuel properties. Carbon-nanoparticle-based nanofuels (CNFs) have recently attracted attention for their potential to significantly enhance combustion performance and reduce emissions. CNFs offer advantages such as lower toxicity, a reduced environmental footprint, and cost-effectiveness compared to metal-based alternatives. Carbon nanoparticles exhibit potential in enhancing liquid fuel combustion characteristics, particularly when used at low particle concentrations (≤0.30 % w/w), which is likely to be optimal for improving the burning rate. This enhancement can be attributed to their superior heat absorption and transfer properties, improved atomization mechanisms, and impact on combustion kinetics. This review investigates the potential of CNFs and examines the mechanisms by which they alter combustion and evaporation characteristics. Empirical evidence indicates that the increased evaporation and burning rates of CNFs are primarily due to improved radiation capture and heat transfer. The behavior of ignition is closely related to the aggregation and distribution of nanoparticles within CNF droplets, which affects fuel evaporation dynamics. Additionally, increased micro-explosion intensity and generally reduced micro-explosion frequency are observed during CNF droplet combustion. Factors such as particle size, concentration, morphology, and thermo-physical properties play crucial roles in influencing changes in evaporation rate, burning rate, ignition delay, burning period, and micro-explosion characteristics. Studies conducted at droplet, spray, and engine scales consistently support the positive effects of CNFs observed at the droplet scale. These improvements lead to enhanced combustion parameters, better engine performance and a significant reduction in harmful emissions. However, concerns remain about the potential presence of nanoparticles in exhaust emissions and their implications for the environment and human health. This review offers a comprehensive analysis of CNFs, providing insights into their potential applications and identifying areas that require further research.</div></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"106 ","pages":"Article 101198"},"PeriodicalIF":32.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review and assessment of the ammonium perchlorate chemistry in AP/HTPB composite propellant gas-phase chemical kinetics mechanisms 回顾和评估 AP/HTPB 复合推进剂气相化学动力学机制中的高氯酸铵化学性质
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-09-23 DOI: 10.1016/j.pecs.2024.101195
Claire M. Grégoire , Olivier Mathieu , Joseph Kalman , Eric L. Petersen
<div><div>Physical and chemical processes of ammonium perchlorate and hydroxyl-terminated polybutadiene (AP/HTPB) composite propellant combustion have been studied for several decades, and more than 50 years of model development can be reported. Computational methods focus on the heterogeneous aspects—the solid-phase and its decomposition—whereas AP self-deflagration and burning characteristics should be seen as a multi-step, physiochemical process. There has been a lack of systematic studies on the gas-phase chemical kinetics mechanisms for AP combustion, with emphasis on the starting gas-phase species NH<sub>3</sub> and HClO<sub>4</sub>. Only three recent detailed gas-phase mechanisms with sufficient detail in terms of the number of chemical reactions and number of species are currently available in the literature prior to 2023, and simulations are carried out within the present review to assess the state of their current performance and to highlight potential knowledge gaps that should be filled. Given the importance and prevalence of AP in modern propellants, it is surprising that the chemical kinetics of AP combustion are very much understudied. The authors highlight the fact that the few existing AP mechanisms have never been fully vetted against an applicable database of experimental results, certainly not in the manner that mechanisms are typically validated within the combustion science community for fuels such as hydrogen and various hydrocarbons. This review does not put forward such a mechanism, but rather 1) brings to light the limitations of current AP kinetics mechanisms in predicting some limited, available kinetics data, and 2) underlines the need for additional, fundamental data that can be used to calibrate an AP kinetics model. A limited gas-phase experimental database was identified from currently available sources for two main compound families: ammonia (NH<sub>3</sub>) and perchloric acid (HClO<sub>4</sub>). The decomposition of AP is initiated by NH<sub>4</sub>ClO<sub>4</sub> → NH<sub>3</sub> + HClO<sub>4</sub> and leads to these two rather complex molecules that differ strongly in their nature and consequently in their reaction schemes for combustion processes. On the one hand, existing measurements of ignition delay times, laminar flame speeds, and speciation were collected for NH<sub>3</sub>, N<sub>2</sub>O, and NO<sub>2</sub>, and on the other hand, a similar albeit much smaller body of experimental results was assembled for HClO<sub>4</sub>, ClO<sub>2</sub>, and Cl<sub>2</sub>. These global kinetics data were used to evaluate modern AP/HTPB propellant models. We observe that there is much room for improvement regarding models' performance. Significant improvements in our ability to model the gas-phase chemical kinetics of AP combustion can be made by taking advantage of recent developments in ammonia oxidation chemistry modeling. However, additional, fundamental data are needed before similar strengthening of the perc
对高氯酸铵和羟基封端聚丁二烯(AP/HTPB)复合推进剂燃烧的物理和化学过程的研究已有几十年的历史,可报告的模型开发已有 50 多年的历史。计算方法侧重于异质方面--固相及其分解,而 AP 的自燃和燃烧特性应被视为一个多步骤的物理化学过程。目前还缺乏对 AP 燃烧气相化学动力学机制的系统研究,重点是起始气相物种 NH3 和 HClO4。在 2023 年之前的文献中,目前仅有三篇最新的详细气相机制研究,在化学反应数量和物种数量方面都足够详细,本综述对其进行了模拟,以评估其目前的性能状况,并强调应填补的潜在知识空白。鉴于 AP 在现代推进剂中的重要性和普遍性,令人惊讶的是 AP 燃烧的化学动力学研究却非常不足。作者强调了一个事实,即现有的少数 AP 机制从未根据适用的实验结果数据库进行过全面审查,当然也没有像燃烧科学界通常对氢气和各种碳氢化合物等燃料的机制进行验证的方式。这篇综述并没有提出这样的机制,而是:1)揭示了当前 AP 动力学机制在预测一些有限的、可用的动力学数据方面的局限性;2)强调了需要更多可用于校准 AP 动力学模型的基础数据。从目前可获得的资料中,我们确定了两个主要化合物系列的有限气相实验数据库:氨(NH3)和高氯酸(HClO4)。AP 的分解是由 NH4ClO4 → NH3 + HClO4 开始的,这两种相当复杂的分子在性质上有很大不同,因此在燃烧过程中的反应方案也不同。一方面,我们收集了 NH3、N2O 和 NO2 的点火延迟时间、层流火焰速度和标样的现有测量数据;另一方面,我们还收集了 HClO4、ClO2 和 Cl2 的类似实验结果,尽管数量要少得多。这些总体动力学数据被用来评估现代 AP/HTPB 推进剂模型。我们发现,模型的性能还有很大的改进空间。通过利用氨氧化化学建模的最新进展,我们可以显著提高 AP 燃烧气相化学动力学建模的能力。然而,在对与高氯酸盐有关的化学动力学以及涉及 N 和 Cl 物种的跨系统反应进行类似的强化之前,还需要更多的基础数据。
{"title":"Review and assessment of the ammonium perchlorate chemistry in AP/HTPB composite propellant gas-phase chemical kinetics mechanisms","authors":"Claire M. Grégoire ,&nbsp;Olivier Mathieu ,&nbsp;Joseph Kalman ,&nbsp;Eric L. Petersen","doi":"10.1016/j.pecs.2024.101195","DOIUrl":"10.1016/j.pecs.2024.101195","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Physical and chemical processes of ammonium perchlorate and hydroxyl-terminated polybutadiene (AP/HTPB) composite propellant combustion have been studied for several decades, and more than 50 years of model development can be reported. Computational methods focus on the heterogeneous aspects—the solid-phase and its decomposition—whereas AP self-deflagration and burning characteristics should be seen as a multi-step, physiochemical process. There has been a lack of systematic studies on the gas-phase chemical kinetics mechanisms for AP combustion, with emphasis on the starting gas-phase species NH&lt;sub&gt;3&lt;/sub&gt; and HClO&lt;sub&gt;4&lt;/sub&gt;. Only three recent detailed gas-phase mechanisms with sufficient detail in terms of the number of chemical reactions and number of species are currently available in the literature prior to 2023, and simulations are carried out within the present review to assess the state of their current performance and to highlight potential knowledge gaps that should be filled. Given the importance and prevalence of AP in modern propellants, it is surprising that the chemical kinetics of AP combustion are very much understudied. The authors highlight the fact that the few existing AP mechanisms have never been fully vetted against an applicable database of experimental results, certainly not in the manner that mechanisms are typically validated within the combustion science community for fuels such as hydrogen and various hydrocarbons. This review does not put forward such a mechanism, but rather 1) brings to light the limitations of current AP kinetics mechanisms in predicting some limited, available kinetics data, and 2) underlines the need for additional, fundamental data that can be used to calibrate an AP kinetics model. A limited gas-phase experimental database was identified from currently available sources for two main compound families: ammonia (NH&lt;sub&gt;3&lt;/sub&gt;) and perchloric acid (HClO&lt;sub&gt;4&lt;/sub&gt;). The decomposition of AP is initiated by NH&lt;sub&gt;4&lt;/sub&gt;ClO&lt;sub&gt;4&lt;/sub&gt; → NH&lt;sub&gt;3&lt;/sub&gt; + HClO&lt;sub&gt;4&lt;/sub&gt; and leads to these two rather complex molecules that differ strongly in their nature and consequently in their reaction schemes for combustion processes. On the one hand, existing measurements of ignition delay times, laminar flame speeds, and speciation were collected for NH&lt;sub&gt;3&lt;/sub&gt;, N&lt;sub&gt;2&lt;/sub&gt;O, and NO&lt;sub&gt;2&lt;/sub&gt;, and on the other hand, a similar albeit much smaller body of experimental results was assembled for HClO&lt;sub&gt;4&lt;/sub&gt;, ClO&lt;sub&gt;2&lt;/sub&gt;, and Cl&lt;sub&gt;2&lt;/sub&gt;. These global kinetics data were used to evaluate modern AP/HTPB propellant models. We observe that there is much room for improvement regarding models' performance. Significant improvements in our ability to model the gas-phase chemical kinetics of AP combustion can be made by taking advantage of recent developments in ammonia oxidation chemistry modeling. However, additional, fundamental data are needed before similar strengthening of the perc","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"106 ","pages":"Article 101195"},"PeriodicalIF":32.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0360128524000534/pdfft?md5=b8d5629a7f8be1c56bf128da17879861&pid=1-s2.0-S0360128524000534-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ammonia pyrolysis and oxidation chemistry 氨热解和氧化化学
IF 32 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-23 DOI: 10.1016/j.pecs.2024.101177
Manuel Monge-Palacios , Xiaoyuan Zhang , Natalia Morlanes , Hisashi Nakamura , Giuseppe Pezzella , S. Mani Sarathy

Ammonia has been essential to human activities for centuries. It is widely used as feedstock for fertilizers, industrial chemicals, and emission after-treatment systems. Owing to its properties, ammonia has garnered interest as a carrier for hydrogen in energy applications. It can be generated from carbon-free emission sources and pyrolyzed to produce pure hydrogen for various applications. The combustion of ammonia for power generation has been previously reviewed in this journal besides several aspects of ammonia oxidation chemistry, as it relates to emission after-treatment and reburn systems. However, the pyrolysis and oxidation chemistry of ammonia requires further elucidation to improve its use as a hydrogen carrier and as a fuel for combustion systems. This article provides an in-depth review of ammonia pyrolysis and oxidation chemistry in noncatalytic and catalytic systems. The catalytic pyrolysis chemistry of ammonia to produce pure hydrogen is reviewed to understand catalyst and reactor requirements for scaling up this technology. The combustion properties of ammonia as a pure fuel and in mixtures, including ignition, flame propagation, and extinction characteristics; its pyrolysis and oxidation reactions; and its potential to produce pollutant emissions are extensively reviewed. Ammonia combustion reaction mechanisms are reported based on results from pyrolysis and oxidation reactors, shock tubes, rapid compression machines, and research engines. The experimental work is complemented by the development of detailed combustion models via chemical kinetic and quantum chemistry simulations. Herein, recent results on ammonia pyrolysis and oxidation chemistry are introduced and summarized by highlighting the pertinent aspects of this rich and rapidly increasing body of information.

几个世纪以来,氨一直是人类活动的必需品。它被广泛用作化肥、工业化学品和排放后处理系统的原料。由于其特性,氨在能源应用中作为氢的载体引起了人们的兴趣。氨可从无碳排放源产生,并通过热解产生纯氢,可用于各种应用。除了氨氧化化学的几个方面外,本期刊还对氨燃烧发电进行了综述,因为这与排放后处理和回燃系统有关。然而,氨的热解和氧化化学需要进一步阐明,以改善其作为氢载体和燃烧系统燃料的用途。本文深入评述了非催化和催化系统中的氨热解和氧化化学反应。文章回顾了氨催化热解产生纯氢的化学过程,以了解扩大该技术规模所需的催化剂和反应器。还广泛综述了氨作为纯燃料和混合物的燃烧特性,包括点火、火焰传播和熄灭特性;氨的热解和氧化反应;以及氨产生污染物排放的潜力。根据热解和氧化反应器、冲击管、快速压缩机和研究发动机的结果,报告了氨的燃烧反应机理。通过化学动力学和量子化学模拟建立的详细燃烧模型对实验工作进行了补充。本文介绍并总结了氨热解和氧化化学方面的最新成果,着重强调了这些丰富且快速增长的信息的相关方面。
{"title":"Ammonia pyrolysis and oxidation chemistry","authors":"Manuel Monge-Palacios ,&nbsp;Xiaoyuan Zhang ,&nbsp;Natalia Morlanes ,&nbsp;Hisashi Nakamura ,&nbsp;Giuseppe Pezzella ,&nbsp;S. Mani Sarathy","doi":"10.1016/j.pecs.2024.101177","DOIUrl":"10.1016/j.pecs.2024.101177","url":null,"abstract":"<div><p>Ammonia has been essential to human activities for centuries. It is widely used as feedstock for fertilizers, industrial chemicals, and emission after-treatment systems. Owing to its properties, ammonia has garnered interest as a carrier for hydrogen in energy applications. It can be generated from carbon-free emission sources and pyrolyzed to produce pure hydrogen for various applications. The combustion of ammonia for power generation has been previously reviewed in this journal besides several aspects of ammonia oxidation chemistry, as it relates to emission after-treatment and reburn systems. However, the pyrolysis and oxidation chemistry of ammonia requires further elucidation to improve its use as a hydrogen carrier and as a fuel for combustion systems. This article provides an in-depth review of ammonia pyrolysis and oxidation chemistry in noncatalytic and catalytic systems. The catalytic pyrolysis chemistry of ammonia to produce pure hydrogen is reviewed to understand catalyst and reactor requirements for scaling up this technology. The combustion properties of ammonia as a pure fuel and in mixtures, including ignition, flame propagation, and extinction characteristics; its pyrolysis and oxidation reactions; and its potential to produce pollutant emissions are extensively reviewed. Ammonia combustion reaction mechanisms are reported based on results from pyrolysis and oxidation reactors, shock tubes, rapid compression machines, and research engines. The experimental work is complemented by the development of detailed combustion models via chemical kinetic and quantum chemistry simulations. Herein, recent results on ammonia pyrolysis and oxidation chemistry are introduced and summarized by highlighting the pertinent aspects of this rich and rapidly increasing body of information.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"105 ","pages":"Article 101177"},"PeriodicalIF":32.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in Energy and Combustion Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1