Solar and other renewable energy driven gas-solid thermochemical energy storage (TCES) technology is a promising solution for the next generation energy storage systems due to its high operating temperature, efficient energy conversion, ultra-long storage duration, and potential high energy density. Experimental and theoretical studies suggest that the respective gravimetric and volumetric TCES energy storage densities vary from 200 to 3000 kJ kg−1 and 1–3 GJ m−3. Solar radiation or heat generated from electric furnaces powered by renewable electricity can be stored in the form of chemical energy through endothermic reactions, while the stored chemical energy can be converted to thermal energy via an exothermic reaction when needed. The design of highly effective reactors requires a deep understanding of materials, thermodynamics, chemical kinetics, and transport phenomena. At time of writing, TCES reactors are yet to be deployed at commercially relevant scales, leaving a substantial gap between development efforts and commercial feasibility. Therefore, this review aims to examine the state-of-the-art design and performance of particle-based TCES reactors with different reactive materials. Fundamentals related to TCES reactive materials, reaction conditions, thermodynamics and kinetics, and transport phenomena are reviewed in detail to provide a comprehensive understanding of the reactor design and operation. Five major types of TCES reactors have been comprehensively reviewed and compared, including fixed, moving, rotary, fluidized, and entrained bed reactors. Most reported prototype reactors in the literature operate at lab scale with thermal inputs below 40 kW, and scaled TCES reactors (e.g., at megawatt level) are yet to be demonstrated. The nominal reactor operating temperatures range from 300 to 1500 °C, depending on the selected chemistry, reactive material, and heat sources. To evaluate their designs, the reactors are assessed in aspects of performance, cost, and durability. Discrepancies in performance indicators of energy storage density, extent of reaction, and various energy efficiencies are highlighted. The scale-up of reactors and power block integration, which hold the key to the successful commercialization of TCES systems, are critically analyzed. Advanced materials (both reactive materials and ceramic reactor housing materials), effective particle flow control, advanced modeling tools, and novel system design may bring significant improvement to the energy efficiency, storage density and cost competitiveness of particle-based TCES reactors.