首页 > 最新文献

Progress in Energy and Combustion Science最新文献

英文 中文
Intrinsic thermoacoustic instabilities 固有热声不稳定性
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2023-03-01 DOI: 10.1016/j.pecs.2022.101065
Camilo F. Silva

It is accepted that the thermoacoustic behavior of a given combustion system can be analyzed by investigating how its natural acoustic modes are perturbed by the flame dynamics. As a result, the resonance frequency and structure of the resulting thermoacoustic mode – understood as a perturbed acoustic mode – are slightly modified with respect to the natural acoustic mode counterpart. However, experimental evidence shows that the frequency of unstable thermoacoustic modes sometimes lies far away from the natural acoustic frequencies of the system under study. In many cases, this frequency cannot be associated with hydrodynamic or entropy-related instabilities. In recent years, the intrinsic thermoacoustic (ITA) feedback loop has been formally recognized as the responsible mechanism in some of those situations. Theory and devoted experiments have been developed that have enormously contributed to the understanding of the particular behavior of intrinsic thermoacoustic instabilities.

The present review encapsulates in a single theoretical framework the theory presented in the collection of today existing ITA papers, which spread through different cases of study regarding acoustic boundaries – anechoic, partially or fully reflecting – and geometries – duct flames, combustors composed by three coaxial ducts and annular configurations. Several examples are shown that summarize the most relevant results on ITA theory to this day. This review paper also gives special attention to the categorization of ITA modes, given the fact that there is no current agreement on the definition of an ITA mode: one example in this review paper explicitly shows that the proposed categorization methods can indeed be contradictory. Of high interest is also the review of papers illustrating the coexistence of thermoacoustic modes of acoustic and ITA nature, which in turn relate to the recently discovered exceptional points in the thermoacoustic spectrum. Additionally, this paper discusses the ‘counter-intuitive’ evidence that shows that ITA modes can be destabilized when acoustic dissipative elements are added into the system. Finally, it is shown how a single-mode Galerkin expansion may be able to model some ITA eigenfrequencies. This result is suggested in some recent works and is not obvious. The practical relevance of ITA modes in industrial combustion chambers of gas turbines is also discussed together with suggestions for future studies.

人们普遍认为,可以通过研究燃烧系统的自然声模式如何受到火焰动力学的扰动来分析给定燃烧系统的热声行为。因此,由此产生的热声模的共振频率和结构——被理解为扰动声模——相对于自然声模的对应物略有改变。然而,实验证据表明,不稳定热声模态的频率有时远离被研究系统的自然声频率。在许多情况下,这个频率不能与流体动力或熵相关的不稳定性相关联。近年来,固有热声(ITA)反馈回路已被正式承认为某些情况下的负责机制。理论和专门的实验已经发展,极大地有助于理解固有热声不稳定性的特殊行为。本综述在一个单一的理论框架中封装了当前ITA论文集合中提出的理论,这些论文通过不同的声学边界研究案例传播-消声,部分或完全反射-和几何形状-管道火焰,由三个同轴管道组成的燃烧器和环形配置。本文给出了几个例子,总结了ITA理论到目前为止最相关的结果。这篇综述还特别关注了ITA模式的分类,因为目前还没有对ITA模式的定义达成一致:这篇综述中的一个例子明确表明,提出的分类方法确实可能是相互矛盾的。此外,我们还回顾了有关声学和ITA性质的热声模态共存的论文,这些论文又与最近发现的热声谱中的异常点有关。此外,本文讨论了“反直觉”的证据,表明当声学耗散元素加入系统时,ITA模式可能会不稳定。最后,展示了单模伽辽金展开如何能够模拟一些ITA特征频率。这一结果在最近的一些研究中有所提示,但并不明显。本文还讨论了ITA模式在燃气轮机工业燃烧室中的实际意义,并对今后的研究提出了建议。
{"title":"Intrinsic thermoacoustic instabilities","authors":"Camilo F. Silva","doi":"10.1016/j.pecs.2022.101065","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101065","url":null,"abstract":"<div><p>It is accepted that the thermoacoustic behavior of a given combustion system<span><span> can be analyzed by investigating how its natural acoustic modes are perturbed by the flame dynamics. As a result, the </span>resonance frequency<span> and structure of the resulting thermoacoustic mode – understood as a perturbed acoustic mode – are slightly modified with respect to the natural acoustic mode counterpart. However, experimental evidence shows that the frequency of unstable thermoacoustic modes sometimes lies far away from the natural acoustic frequencies<span><span> of the system under study. In many cases, this frequency cannot be associated with hydrodynamic or entropy-related instabilities. In recent years, the intrinsic thermoacoustic (ITA) feedback loop has been formally recognized as the responsible mechanism in some of those situations. Theory and devoted experiments have been developed that have enormously contributed to the understanding of the particular behavior of intrinsic </span>thermoacoustic instabilities.</span></span></span></p><p><span>The present review encapsulates in a single theoretical framework the theory presented in the collection of today existing ITA papers, which spread through different cases of study regarding acoustic boundaries – anechoic, partially or fully reflecting – and geometries – duct flames, combustors<span> composed by three coaxial ducts and annular configurations. Several examples are shown that summarize the most relevant results on ITA theory to this day. This review paper also gives special attention to the categorization of ITA modes, given the fact that there is no current agreement on the definition of an ITA mode: one example in this review paper explicitly shows that the proposed categorization methods can indeed be contradictory. Of high interest is also the review of papers illustrating the coexistence of thermoacoustic modes of acoustic and ITA nature, which in turn relate to the recently discovered exceptional points in the thermoacoustic spectrum. Additionally, this paper discusses the ‘counter-intuitive’ evidence that shows that ITA modes can be destabilized when acoustic dissipative elements are added into the system. Finally, it is shown how a single-mode Galerkin expansion may be able to model some ITA eigenfrequencies. This result is suggested in some recent works and is not obvious. The practical relevance of ITA modes in industrial </span></span>combustion chambers<span> of gas turbines is also discussed together with suggestions for future studies.</span></p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"95 ","pages":"Article 101065"},"PeriodicalIF":29.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3446872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Sorption direct air capture with CO2 utilization 吸附直接空气捕获与二氧化碳的利用
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2023-03-01 DOI: 10.1016/j.pecs.2022.101069
L. Jiang , W. Liu , R.Q. Wang , A. Gonzalez-Diaz , M.F. Rojas-Michaga , S. Michailos , M. Pourkashanian , X.J. Zhang , C. Font-Palma

Direct air capture (DAC) is gathering momentum since it has vast potential and high flexibility to collect CO2 from discrete sources as “synthetic tree” when compared with current CO2 capture technologies, e.g., amine based post-combustion capture. It is considered as one of the emerging carbon capture technologies in recent decades and remains in a prototype investigation stage with many technical challenges to be overcome. The objective of this paper is to comprehensively discuss the state-of-the-art of DAC and CO2 utilization, note unresolved technology bottlenecks, and give investigation perspectives for commercial large-scale applications. Firstly, characteristics of physical and chemical sorbents are evaluated. Then, the representative capture processes, e.g., pressure swing adsorption, temperature swing adsorption and other ongoing absorption chemical loops, are described and compared. Methods of CO2 conversion including synthesis of fuels and chemicals as well as biological utilization are reviewed. Finally, techno-economic analysis and life cycle assessment for DAC application are summarized. Based on research achievements, future challenges of DAC and CO2 conversion are presented, which include providing synthesis guidelines for obtaining sorbents with the desired characteristics, uncovering the mechanisms for different working processes and establishing evaluation criteria in terms of technical and economic aspects.

与目前的二氧化碳捕获技术(例如基于胺的燃烧后捕获)相比,直接空气捕获(DAC)具有巨大的潜力和高度的灵活性,可以从离散源收集二氧化碳,作为“合成树”。它被认为是近几十年来新兴的碳捕获技术之一,目前仍处于原型研究阶段,需要克服许多技术挑战。本文的目的是全面讨论DAC和CO2利用的最新进展,指出尚未解决的技术瓶颈,并为商业大规模应用提供调查视角。首先,对物理和化学吸附剂的特性进行了评价。然后,描述和比较了代表性的捕获过程,如变压吸附、变温吸附和其他正在进行的吸收化学循环。综述了二氧化碳转化的方法,包括燃料和化学品的合成以及生物利用。最后对DAC应用的技术经济分析和生命周期评价进行了总结。在此基础上,提出了DAC和CO2转化未来面临的挑战,包括为获得具有所需特性的吸附剂提供合成指南,揭示不同工作过程的机制,并建立技术和经济方面的评价标准。
{"title":"Sorption direct air capture with CO2 utilization","authors":"L. Jiang ,&nbsp;W. Liu ,&nbsp;R.Q. Wang ,&nbsp;A. Gonzalez-Diaz ,&nbsp;M.F. Rojas-Michaga ,&nbsp;S. Michailos ,&nbsp;M. Pourkashanian ,&nbsp;X.J. Zhang ,&nbsp;C. Font-Palma","doi":"10.1016/j.pecs.2022.101069","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101069","url":null,"abstract":"<div><p>Direct air capture (DAC) is gathering momentum since it has vast potential and high flexibility to collect CO<sub>2</sub> from discrete sources as “synthetic tree” when compared with current CO<sub>2</sub> capture technologies, e.g., amine based post-combustion capture. It is considered as one of the emerging carbon capture technologies in recent decades and remains in a prototype investigation stage with many technical challenges to be overcome. The objective of this paper is to comprehensively discuss the state-of-the-art of DAC and CO<sub>2</sub> utilization, note unresolved technology bottlenecks, and give investigation perspectives for commercial large-scale applications. Firstly, characteristics of physical and chemical sorbents are evaluated. Then, the representative capture processes, e.g., pressure swing adsorption, temperature swing adsorption and other ongoing absorption chemical loops, are described and compared. Methods of CO<sub>2</sub> conversion including synthesis of fuels and chemicals as well as biological utilization are reviewed. Finally, techno-economic analysis and life cycle assessment for DAC application are summarized. Based on research achievements, future challenges of DAC and CO<sub>2</sub> conversion are presented, which include providing synthesis guidelines for obtaining sorbents with the desired characteristics, uncovering the mechanisms for different working processes and establishing evaluation criteria in terms of technical and economic aspects.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"95 ","pages":"Article 101069"},"PeriodicalIF":29.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3137474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
Application of reinforcement learning in planning and operation of new power system towards carbon peaking and neutrality 强化学习在新电力系统碳调峰中和规划与运行中的应用
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2023-02-06 DOI: 10.1088/2516-1083/acb987
Fangyuan Sun, Zhiwei Wang, Jun-hui Huang, R. Diao, Yingru Zhao, Tu Lan
To mitigate global climate change and ensure a sustainable energy future, China has launched a new energy policy of achieving carbon peaking by 2030 and carbon neutrality by 2060, which sets an ambitious goal of building NPS with high penetration of renewable energy. However, the strong uncertainty, nonlinearity, and intermittency of renewable generation and their power electronics-based control devices are imposing grand challenges for secure and economic planning and operation of the NPS. The performance of traditional methods and tools becomes rather limited under such phenomena. Together with high-fidelity modeling and high-performance simulation techniques, the fast development of AI technology, especially RL, provides a promising way of tackling these critical issues. This paper first provides a comprehensive overview of RL methods that interact with high-fidelity grid simulators to train effective agents for intelligent, model-free decision-making. Secondly, three important applications of RL are reviewed, including device-level control, system-level optimized control, and demand side management, with detailed modeling and procedures of solution explained. Finally, this paper discusses future research efforts for achieving the goals of full absorption of renewable energy, optimized allocation of large-scale energy resources, reliable supply of electricity, and secure and economic operation of the power grid.
为了减缓全球气候变化,确保能源的可持续发展,中国推出了到2030年实现碳峰值、到2060年实现碳中和的新能源政策,制定了建设可再生能源高渗透率的核电厂的宏伟目标。然而,可再生能源发电及其电力电子控制装置的强不确定性、非线性和间歇性给NPS的安全、经济规划和运行带来了巨大挑战。在这种现象下,传统的方法和工具的性能变得相当有限。与高保真建模和高性能仿真技术一起,人工智能技术的快速发展,特别是强化学习,为解决这些关键问题提供了一种有希望的方法。本文首先全面概述了与高保真网格模拟器交互的强化学习方法,以训练有效的智能代理,无模型决策。其次,回顾了强化学习的三个重要应用,包括设备级控制、系统级优化控制和需求侧管理,并详细说明了建模和解决方法。最后,对实现可再生能源充分吸收、大规模能源资源优化配置、电力可靠供应、电网安全经济运行等目标的未来研究工作进行了探讨。
{"title":"Application of reinforcement learning in planning and operation of new power system towards carbon peaking and neutrality","authors":"Fangyuan Sun, Zhiwei Wang, Jun-hui Huang, R. Diao, Yingru Zhao, Tu Lan","doi":"10.1088/2516-1083/acb987","DOIUrl":"https://doi.org/10.1088/2516-1083/acb987","url":null,"abstract":"To mitigate global climate change and ensure a sustainable energy future, China has launched a new energy policy of achieving carbon peaking by 2030 and carbon neutrality by 2060, which sets an ambitious goal of building NPS with high penetration of renewable energy. However, the strong uncertainty, nonlinearity, and intermittency of renewable generation and their power electronics-based control devices are imposing grand challenges for secure and economic planning and operation of the NPS. The performance of traditional methods and tools becomes rather limited under such phenomena. Together with high-fidelity modeling and high-performance simulation techniques, the fast development of AI technology, especially RL, provides a promising way of tackling these critical issues. This paper first provides a comprehensive overview of RL methods that interact with high-fidelity grid simulators to train effective agents for intelligent, model-free decision-making. Secondly, three important applications of RL are reviewed, including device-level control, system-level optimized control, and demand side management, with detailed modeling and procedures of solution explained. Finally, this paper discusses future research efforts for achieving the goals of full absorption of renewable energy, optimized allocation of large-scale energy resources, reliable supply of electricity, and secure and economic operation of the power grid.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"250 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76990371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fundamentals of window-ejected fire plumes from under-ventilated compartment fires: Recent progresses and perspectives 通风不足的隔间火灾中窗户喷出的火羽的基本原理:最近的进展和观点
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2023-01-01 DOI: 10.1016/j.pecs.2022.101039
Xiepeng Sun , Fei Tang , Kaihua Lu , Fei Ren , Congling Shi , Bart Merci , Longhua Hu

This paper intends to provide a comprehensive state-of-art review of recent progresses and to formulate perspectives on window-ejected fire plumes, originating from under-ventilated compartment fires (known as ‘Regime I’ fires). Various external boundary conditions are considered, as they contribute to the fire and plume dynamics, and as such affect decisions on fire prevention and firefighting. Hence this is an important fire combustion topic of both fundamental and practical significance. After discussing the general fundamentals, the paper focuses particularly on recent progresses on quantifying the ejected fire plume behavior: constrained by the presence of walls; at sub-atmospheric pressure (for fires at high altitudes) and under complex flow conditions caused by wind. Experiments, theoretical scaling analysis and basic models are reviewed. The key points cover systematically: the compartment fire evolution (and hence criteria for flame ejection through the window); flame interaction and merging behavior from two windows; air entrainment mechanisms and characteristic parameters (flame structure/dimensions, temperature profile and heat flux) of window-ejected fire plumes. Meanwhile, the limitations of present research and future challenges are also discussed.

本文旨在对最近的进展进行全面的技术回顾,并对来自通风不足的隔间火灾(称为“状态I”火灾)的窗户喷射火灾羽流提出观点。考虑到各种外部边界条件,因为它们有助于火灾和羽流动力学,并因此影响防火和消防的决定。因此,这是一个既具有基础意义又具有现实意义的重要火灾燃烧课题。在讨论了一般的基本原理之后,本文特别关注了最近在量化喷射火羽行为方面的进展:受墙壁存在的限制;在亚大气压下(用于高海拔地区的火灾)和由风引起的复杂流动条件下。综述了实验、理论尺度分析和基本模型。重点系统地涵盖:舱室火灾演变(以及通过窗户喷射火焰的标准);火焰相互作用和两个窗口的合并行为;窗射火羽的空气夹带机制和特征参数(火焰结构/尺寸、温度分布和热流)。同时,也讨论了目前研究的局限性和未来面临的挑战。
{"title":"Fundamentals of window-ejected fire plumes from under-ventilated compartment fires: Recent progresses and perspectives","authors":"Xiepeng Sun ,&nbsp;Fei Tang ,&nbsp;Kaihua Lu ,&nbsp;Fei Ren ,&nbsp;Congling Shi ,&nbsp;Bart Merci ,&nbsp;Longhua Hu","doi":"10.1016/j.pecs.2022.101039","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101039","url":null,"abstract":"<div><p>This paper intends to provide a comprehensive state-of-art review of recent progresses and to formulate perspectives on window-ejected fire plumes, originating from under-ventilated compartment fires (known as ‘Regime I’ fires). Various external boundary conditions are considered, as they contribute to the fire and plume dynamics, and as such affect decisions on fire prevention and firefighting. Hence this is an important fire combustion topic of both fundamental and practical significance. After discussing the general fundamentals, the paper focuses particularly on recent progresses on quantifying the ejected fire plume behavior: constrained by the presence of walls; at sub-atmospheric pressure (for fires at high altitudes) and under complex flow conditions caused by wind. Experiments, theoretical scaling analysis and basic models are reviewed. The key points cover systematically: the compartment fire evolution (and hence criteria for flame ejection through the window); flame interaction and merging behavior from two windows; air entrainment mechanisms and characteristic parameters (flame structure/dimensions, temperature profile and heat flux) of window-ejected fire plumes. Meanwhile, the limitations of present research and future challenges are also discussed.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"94 ","pages":"Article 101039"},"PeriodicalIF":29.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2622298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Opportunities and challenges in using particle circulation loops for concentrated solar power applications 聚光太阳能应用中粒子循环的机遇与挑战
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2023-01-01 DOI: 10.1016/j.pecs.2022.101056
Gilles Flamant , Benjamin Grange , John Wheeldon , Frédéric Siros , Benoît Valentin , Françoise Bataille , Huili Zhang , Yimin Deng , Jan Baeyens
<div><p>Concentrated Solar Power (CSP) is an electricity generation technology that concentrates solar irradiance through heliostats onto a small area, the receiver, where a heat transfer medium, currently a fluid (HTF), is used as heat carrier towards the heat storage and power block. It has been under the spotlight for a decade as one of the potential or promising renewable and sustainable energy technologies.</p><p>Using gas/solid suspensions as heat transfer medium in CSP has been advocated for the first time in the 1980′s and this novel concept relies on its possible application throughout the full CSP plant, i.e., in heat harvesting, conveying, storage and re-use, where it offers major advantages in comparison with the common heat transfer fluids such as water/steam, thermal fluids or molten salt. Although the particle suspension has a lower heat capacity than molten salts, the particle-driven system can operate without temperature limitation (except for the maximum allowable wall temperature of the receiver tubes), and it can also operate with higher hot-cold temperature gradients. Suspension temperatures of over 800 °C can be tolerated and achieved, with additional high efficiency thermodynamic systems being applicable. The application of high temperature particulate heat carriers moreover expands the possible thermodynamic cycles from Rankine steam cycles to Brayton gas cycles and even to combined electricity generating cycles.</p><p>This review paper deals with the development of the particle-driven CSP and assesses both its background fundamentals and its energy efficiency. Among the cited systems, batch and continuous operations with particle conveying loops are discussed. A short summary of relevant particle-related properties, and their use as heat transfer medium is included. Recent pilot plant experiments have demonstrated that a novel bubbling fluidized bed concept, the upflow bubbling fluidized bed (UBFB), recently adapted to use bubble rupture promoters and called dense upflow fluidized bed (DUFB), offers a considerable potential for use in a solar power tower plant for its excellent heat transfer at moderate to high receiver capacities.</p><p>For all CSP applications with particle circulation, a major challenge remains the transfer of hot and colder particles among the different constituents of the CSP system (receiver to storage, power block and return loop to the top of the solar tower). Potential conveying modes are discussed and compared. Whereas in solar heat capture, bubbling fluidized beds, particle falling films, vortex and rotary furnaces, among others, seem appropriate, both moving beds and bubbling fluidized beds are recommended in the heat storage and re-use, and examined in the review.</p><p>Common to all CSP applications are the thermodynamic cycles in the power block, where different secondary working fluids can be used to feed the turbines. These thermodynamic cycles are discussed in detail and the current or f
聚光太阳能发电(CSP)是一种发电技术,通过定日镜将太阳辐照度集中到一个小面积的接收器上,在接收器上,传热介质(目前为流体(HTF))被用作热载体,流向储热和电源块。作为一种潜在的或有前途的可再生和可持续能源技术,它已经在聚光灯下十年了。在20世纪80年代首次提倡在CSP中使用气体/固体悬浮液作为传热介质,这一新颖的概念依赖于它在整个CSP工厂中的可能应用,即在热量收集,输送,储存和再利用中,与水/蒸汽,热流体或熔盐等常见传热流体相比,它具有主要优势。虽然颗粒悬浮液的热容量低于熔盐,但颗粒驱动系统可以在没有温度限制的情况下运行(除了接收管的最大允许壁温),并且还可以在更高的冷热温度梯度下运行。悬浮温度超过800°C可以容忍和实现,额外的高效热力学系统是适用的。高温颗粒热载体的应用进一步扩大了热力学循环的可能性,从朗肯蒸汽循环扩展到布雷顿气体循环,甚至扩展到联合发电循环。本文综述了粒子驱动光热技术的发展,并对其背景、基本原理和能效进行了评价。在列举的系统中,讨论了带有颗粒输送回路的批处理和连续操作。简要概述了相关颗粒的相关性质,以及它们作为传热介质的用途。最近的中试工厂实验表明,一种新的鼓泡流化床概念,即上流鼓泡流化床(UBFB),最近被用于使用气泡破裂促进剂,称为密集上流流化床(DUFB),在太阳能塔式发电厂中具有相当大的潜力,因为它在中高接收容量下具有出色的传热能力。对于所有具有颗粒循环的CSP应用,一个主要的挑战仍然是在CSP系统的不同组成部分(接收器到存储,电源块和返回循环到太阳能塔的顶部)之间传递热粒子和冷粒子。对可能的输送方式进行了讨论和比较。而在太阳能热捕获中,鼓泡流化床、颗粒落膜、涡旋炉和旋转炉等似乎是合适的,在蓄热和再利用中推荐移动床和鼓泡流化床,并在综述中进行了研究。所有CSP应用的共同点是动力块中的热力学循环,其中可以使用不同的二次工作流体来为涡轮机提供动力。详细讨论了这些热力学循环,并提出了当前或未来最可能的选择。由于建议所有CSP系统使用备用燃料,因此使用替代燃料备用的混合操作也包括在审查中。通过对规模数据和挑战的总结,对系统的前景和整体经济性进行了初步的展望。这两种新型聚光太阳能的市场前景都很好。尽管该研究为新型太阳能发电塔CSP概念的关键单元操作提供了基于实验室和中试规模的设计方法和方程,但正如最后建议的那样,未来有几个主题的发展空间很大。
{"title":"Opportunities and challenges in using particle circulation loops for concentrated solar power applications","authors":"Gilles Flamant ,&nbsp;Benjamin Grange ,&nbsp;John Wheeldon ,&nbsp;Frédéric Siros ,&nbsp;Benoît Valentin ,&nbsp;Françoise Bataille ,&nbsp;Huili Zhang ,&nbsp;Yimin Deng ,&nbsp;Jan Baeyens","doi":"10.1016/j.pecs.2022.101056","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101056","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Concentrated Solar Power (CSP) is an electricity generation technology that concentrates solar irradiance through heliostats onto a small area, the receiver, where a heat transfer medium, currently a fluid (HTF), is used as heat carrier towards the heat storage and power block. It has been under the spotlight for a decade as one of the potential or promising renewable and sustainable energy technologies.&lt;/p&gt;&lt;p&gt;Using gas/solid suspensions as heat transfer medium in CSP has been advocated for the first time in the 1980′s and this novel concept relies on its possible application throughout the full CSP plant, i.e., in heat harvesting, conveying, storage and re-use, where it offers major advantages in comparison with the common heat transfer fluids such as water/steam, thermal fluids or molten salt. Although the particle suspension has a lower heat capacity than molten salts, the particle-driven system can operate without temperature limitation (except for the maximum allowable wall temperature of the receiver tubes), and it can also operate with higher hot-cold temperature gradients. Suspension temperatures of over 800 °C can be tolerated and achieved, with additional high efficiency thermodynamic systems being applicable. The application of high temperature particulate heat carriers moreover expands the possible thermodynamic cycles from Rankine steam cycles to Brayton gas cycles and even to combined electricity generating cycles.&lt;/p&gt;&lt;p&gt;This review paper deals with the development of the particle-driven CSP and assesses both its background fundamentals and its energy efficiency. Among the cited systems, batch and continuous operations with particle conveying loops are discussed. A short summary of relevant particle-related properties, and their use as heat transfer medium is included. Recent pilot plant experiments have demonstrated that a novel bubbling fluidized bed concept, the upflow bubbling fluidized bed (UBFB), recently adapted to use bubble rupture promoters and called dense upflow fluidized bed (DUFB), offers a considerable potential for use in a solar power tower plant for its excellent heat transfer at moderate to high receiver capacities.&lt;/p&gt;&lt;p&gt;For all CSP applications with particle circulation, a major challenge remains the transfer of hot and colder particles among the different constituents of the CSP system (receiver to storage, power block and return loop to the top of the solar tower). Potential conveying modes are discussed and compared. Whereas in solar heat capture, bubbling fluidized beds, particle falling films, vortex and rotary furnaces, among others, seem appropriate, both moving beds and bubbling fluidized beds are recommended in the heat storage and re-use, and examined in the review.&lt;/p&gt;&lt;p&gt;Common to all CSP applications are the thermodynamic cycles in the power block, where different secondary working fluids can be used to feed the turbines. These thermodynamic cycles are discussed in detail and the current or f","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"94 ","pages":"Article 101056"},"PeriodicalIF":29.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Reduction in greenhouse gas and other emissions from ship engines: Current trends and future options 减少船舶发动机的温室气体和其他排放物:当前趋势和未来选择
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2023-01-01 DOI: 10.1016/j.pecs.2022.101055
Päivi T. Aakko-Saksa , Kati Lehtoranta , Niina Kuittinen , Anssi Järvinen , Jukka-Pekka Jalkanen , Kent Johnson , Heejung Jung , Leonidas Ntziachristos , Stéphanie Gagné , Chiori Takahashi , Panu Karjalainen , Topi Rönkkö , Hilkka Timonen

The impact of ship emission reductions can be maximised by considering climate, health and environmental effects simultaneously and using solutions fitting into existing marine engines and infrastructure. Several options available enable selecting optimum solutions for different ships, routes and regions. Carbon-neutral fuels, including low-carbon and carbon-negative fuels, from biogenic or non-biogenic origin (biomass, waste, renewable hydrogen) could resemble current marine fuels (diesel-type, methane and methanol). The carbon-neutrality of fuels depends on their Well-to-Wake (WtW) emissions of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4), and nitrous oxide emissions (N2O). Additionally, non-gaseous black carbon (BC) emissions have high global warming potential (GWP). Exhaust emissions which are harmful to health or the environment need to be equally removed using emission control achieved by fuel, engine or exhaust aftertreatment technologies. Harmful emission species include nitrogen oxides (NOx), sulphur oxides (SOx), ammonia (NH3), formaldehyde, particle mass (PM) and number emissions (PN). Particles may carry polyaromatic hydrocarbons (PAHs) and heavy metals, which cause serious adverse health issues. Carbon-neutral fuels are typically sulphur-free enabling negligible SOx emissions and efficient exhaust aftertreatment technologies, such as particle filtration. The combinations of carbon-neutral drop-in fuels and efficient emission control technologies would enable (near-)zero-emission shipping and these could be adaptable in the short- to mid-term. Substantial savings in external costs on society caused by ship emissions give arguments for regulations, policies and investments needed to support this development.

通过同时考虑气候、健康和环境影响,并采用适合现有船舶发动机和基础设施的解决方案,可以最大限度地发挥船舶减排的影响。有几个选项可以为不同的船舶、航线和地区选择最佳解决方案。来自生物源或非生物源(生物质、废物、可再生氢)的碳中性燃料,包括低碳和负碳燃料,可能类似于目前的海洋燃料(柴油型、甲烷和甲醇)。燃料的碳中和取决于其从井到井(WtW)排放的温室气体(GHG),包括二氧化碳(CO2)、甲烷(CH4)和一氧化二氮(N2O)。此外,非气态黑碳(BC)排放具有很高的全球变暖潜能值(GWP)。对健康或环境有害的废气排放同样需要利用燃料、发动机或废气后处理技术实现的排放控制加以消除。有害排放物质包括氮氧化物(NOx)、硫氧化物(SOx)、氨(NH3)、甲醛、粒子质量(PM)和数量排放(PN)。颗粒可能携带多芳烃(PAHs)和重金属,导致严重的不良健康问题。碳中性燃料通常不含硫,可忽略硫氧化物排放和高效的尾气后处理技术,如颗粒过滤。碳中性燃料和高效排放控制技术的结合将使(接近)零排放航运成为可能,这些技术在中短期内是可以适应的。船舶排放给社会带来的大量外部成本节约,为支持这一发展所需的法规、政策和投资提供了论据。
{"title":"Reduction in greenhouse gas and other emissions from ship engines: Current trends and future options","authors":"Päivi T. Aakko-Saksa ,&nbsp;Kati Lehtoranta ,&nbsp;Niina Kuittinen ,&nbsp;Anssi Järvinen ,&nbsp;Jukka-Pekka Jalkanen ,&nbsp;Kent Johnson ,&nbsp;Heejung Jung ,&nbsp;Leonidas Ntziachristos ,&nbsp;Stéphanie Gagné ,&nbsp;Chiori Takahashi ,&nbsp;Panu Karjalainen ,&nbsp;Topi Rönkkö ,&nbsp;Hilkka Timonen","doi":"10.1016/j.pecs.2022.101055","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101055","url":null,"abstract":"<div><p>The impact of ship emission reductions can be maximised by considering climate, health and environmental effects simultaneously and using solutions fitting into existing marine engines and infrastructure. Several options available enable selecting optimum solutions for different ships, routes and regions. Carbon-neutral fuels, including low-carbon and carbon-negative fuels, from biogenic or non-biogenic origin (biomass, waste, renewable hydrogen) could resemble current marine fuels (diesel-type, methane and methanol). The carbon-neutrality of fuels depends on their Well-to-Wake (WtW) emissions of greenhouse gases (GHG) including carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), and nitrous oxide emissions (N<sub>2</sub>O). Additionally, non-gaseous black carbon (BC) emissions have high global warming potential (GWP). Exhaust emissions which are harmful to health or the environment need to be equally removed using emission control achieved by fuel, engine or exhaust aftertreatment technologies. Harmful emission species include nitrogen oxides (NO<sub>x</sub>), sulphur oxides (SO<sub>x</sub>), ammonia (NH<sub>3</sub>), formaldehyde, particle mass (PM) and number emissions (PN). Particles may carry polyaromatic hydrocarbons (PAHs) and heavy metals, which cause serious adverse health issues. Carbon-neutral fuels are typically sulphur-free enabling negligible SO<sub>x</sub> emissions and efficient exhaust aftertreatment technologies, such as particle filtration. The combinations of carbon-neutral drop-in fuels and efficient emission control technologies would enable (near-)zero-emission shipping and these could be adaptable in the short- to mid-term. Substantial savings in external costs on society caused by ship emissions give arguments for regulations, policies and investments needed to support this development.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"94 ","pages":"Article 101055"},"PeriodicalIF":29.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1867846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Critical review on the synthesis, characterization, and application of highly efficient metal chalcogenide catalysts for fuel cells 燃料电池用高效金属硫系催化剂的合成、表征及应用综述
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2023-01-01 DOI: 10.1016/j.pecs.2022.101044
Tasnim Eisa , Mohammad Ali Abdelkareem , Dipak A. Jadhav , Hend Omar Mohamed , Enas Taha Sayed , Abdul Ghani Olabi , Pedro Castaño , Kyu-Jung Chae

The shift in the energy sector toward green resources makes fuel cells increasingly relevant as a supplier of green and sustainable energy. However, factors such as expensive catalysts, anodic poisoning, and fuel crossover reduce the lifetime and performance of the fuel cells, necessitating catalysis improvement. This review article presents the unique capabilities of metal chalcogenides (MC) as tailored catalysts, elucidating their synthesis, testing techniques, and performance evaluations. MC catalysts are matured via various physical and chemical methods to control their morphology, quantity, dimension, and size. Upon synthesis, the catalyst performance is quantified using three-electrode cells, followed by tests in fuel-cell prototypes. As anodic catalysts, MCs oxidize various fuels such as methanol, ethanol, urea, and impure H2 at high current densities and low onset potentials, while hindering the poisoning species. As cathodic catalysts, MCs exhibit current values similar to that exhibited by their noble metal counterparts while reducing oxygen selectively in the vicinity of the fuels via four electron transfers at a wide range of potentials.

能源部门向绿色资源的转变使得燃料电池作为绿色和可持续能源的供应商越来越重要。然而,昂贵的催化剂、阳极中毒和燃料交叉等因素降低了燃料电池的使用寿命和性能,因此需要对催化剂进行改进。本文综述了金属硫族化合物(MC)作为定制催化剂的独特性能,阐述了其合成、测试技术和性能评价。MC催化剂通过各种物理和化学方法成熟,以控制其形态、数量、尺寸和尺寸。合成后,使用三电极电池对催化剂性能进行量化,然后在燃料电池原型中进行测试。作为阳极催化剂,MCs可以在高电流密度和低起始电位下氧化甲醇、乙醇、尿素和不纯氢气等多种燃料,同时抑制中毒物质。作为阴极催化剂,MCs表现出与贵金属相似的电流值,同时在广泛的电位范围内通过四次电子转移选择性地还原燃料附近的氧。
{"title":"Critical review on the synthesis, characterization, and application of highly efficient metal chalcogenide catalysts for fuel cells","authors":"Tasnim Eisa ,&nbsp;Mohammad Ali Abdelkareem ,&nbsp;Dipak A. Jadhav ,&nbsp;Hend Omar Mohamed ,&nbsp;Enas Taha Sayed ,&nbsp;Abdul Ghani Olabi ,&nbsp;Pedro Castaño ,&nbsp;Kyu-Jung Chae","doi":"10.1016/j.pecs.2022.101044","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101044","url":null,"abstract":"<div><p>The shift in the energy sector toward green resources makes fuel cells increasingly relevant as a supplier of green and sustainable energy. However, factors such as expensive catalysts, anodic poisoning, and fuel crossover reduce the lifetime and performance of the fuel cells, necessitating catalysis improvement. This review article presents the unique capabilities of metal chalcogenides (MC) as tailored catalysts, elucidating their synthesis, testing techniques, and performance evaluations. MC catalysts are matured via various physical and chemical methods to control their morphology, quantity, dimension, and size. Upon synthesis, the catalyst performance is quantified using three-electrode cells, followed by tests in fuel-cell prototypes. As anodic catalysts, MCs oxidize various fuels such as methanol, ethanol, urea, and impure H<sub>2</sub> at high current densities and low onset potentials, while hindering the poisoning species. As cathodic catalysts, MCs exhibit current values similar to that exhibited by their noble metal counterparts while reducing oxygen selectively in the vicinity of the fuels via four electron transfers at a wide range of potentials.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"94 ","pages":"Article 101044"},"PeriodicalIF":29.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1886078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Volumetric emission tomography for combustion processes 燃烧过程的体积发射层析成像
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2023-01-01 DOI: 10.1016/j.pecs.2022.101024
Samuel J. Grauer , Khadijeh Mohri , Tao Yu , Hecong Liu , Weiwei Cai

This is a comprehensive, critical, and pedagogical review of volumetric emission tomography for combustion processes. Many flames that are of interest to scientists and engineers are turbulent and thus inherently three-dimensional, especially in practical combustors, which often contain multiple interacting flames. Fortunately, combustion leads to the emission of light, both spontaneously and in response to laser-based stimulation. Therefore, images of a flame convey path-integrated information about the source of light, and a tomography algorithm can be used to reconstruct the spatial distribution of the light source, called emission tomography. In a carefully designed experiment, reconstructions can be post-processed using chemical kinetic, spectroscopic, and/or transport models to extract quantitative information. This information can be invaluable for benchmarking numerical solutions, and volumetric emission tomography is increasingly relied upon to paint a more complete picture of combustion than point, linear, or planar tools. Steady reductions in the cost of optical equipment and computing power, improvements in imaging technology, and advances in reconstruction algorithms have enabled a suite of three-dimensional sensors that are regularly used to characterize combustion. Four emission modalities are considered in this review: chemiluminescence, laser-induced fluorescence, passive incandescence, and laser-induced incandescence. The review covers the reconstruction algorithms, imaging models, camera calibration techniques, signal physics, instrumentation, and post-processing methods needed to conduct volumetric emission tomography and interpret the results. Limitations of each method are discussed and a survey of key applications is presented. The future of volumetric combustion diagnostics is considered, with special attention paid to the advent and promise of machine learning as well as spectrally-resolved volumetric measurement techniques.

这是一个全面的,关键的,和教学回顾体积发射断层扫描燃烧过程。科学家和工程师感兴趣的许多火焰都是湍流的,因此本质上是三维的,特别是在实际的燃烧器中,通常包含多个相互作用的火焰。幸运的是,燃烧导致自发和响应激光刺激的光发射。因此,火焰图像传递了光源的路径集成信息,并且可以使用层析成像算法来重建光源的空间分布,称为发射层析成像。在精心设计的实验中,可以使用化学动力学、光谱和/或输运模型对重建进行后处理,以提取定量信息。这些信息对于数值解决方案的基准测试是非常宝贵的,并且体积发射断层扫描越来越依赖于绘制比点,线性或平面工具更完整的燃烧图像。光学设备和计算能力成本的稳步下降、成像技术的改进以及重建算法的进步,使得一套三维传感器得以经常用于表征燃烧。本文综述了四种发射方式:化学发光、激光诱导荧光、被动白炽和激光诱导白炽。这篇综述涵盖了重建算法、成像模型、相机校准技术、信号物理、仪器以及进行体发射断层扫描和解释结果所需的后处理方法。讨论了每种方法的局限性,并对关键应用进行了综述。考虑了体积燃烧诊断的未来,特别关注机器学习和光谱分辨体积测量技术的出现和前景。
{"title":"Volumetric emission tomography for combustion processes","authors":"Samuel J. Grauer ,&nbsp;Khadijeh Mohri ,&nbsp;Tao Yu ,&nbsp;Hecong Liu ,&nbsp;Weiwei Cai","doi":"10.1016/j.pecs.2022.101024","DOIUrl":"https://doi.org/10.1016/j.pecs.2022.101024","url":null,"abstract":"<div><p>This is a comprehensive, critical, and pedagogical review of volumetric emission tomography for combustion processes. Many flames that are of interest to scientists and engineers are turbulent and thus inherently three-dimensional, especially in practical combustors, which often contain multiple interacting flames. Fortunately, combustion leads to the emission of light, both spontaneously and in response to laser-based stimulation. Therefore, images of a flame convey path-integrated information about the source of light, and a tomography algorithm can be used to reconstruct the spatial distribution of the light source, called emission tomography. In a carefully designed experiment, reconstructions can be post-processed using chemical kinetic, spectroscopic, and/or transport models to extract quantitative information. This information can be invaluable for benchmarking numerical solutions, and volumetric emission tomography is increasingly relied upon to paint a more complete picture of combustion than point, linear, or planar tools. Steady reductions in the cost of optical equipment and computing power, improvements in imaging technology, and advances in reconstruction algorithms have enabled a suite of three-dimensional sensors that are regularly used to characterize combustion. Four emission modalities are considered in this review: chemiluminescence, laser-induced fluorescence, passive incandescence, and laser-induced incandescence. The review covers the reconstruction algorithms, imaging models, camera calibration techniques, signal physics, instrumentation, and post-processing methods needed to conduct volumetric emission tomography and interpret the results. Limitations of each method are discussed and a survey of key applications is presented. The future of volumetric combustion diagnostics is considered, with special attention paid to the advent and promise of machine learning as well as spectrally-resolved volumetric measurement techniques.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"94 ","pages":"Article 101024"},"PeriodicalIF":29.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3137476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
A synthesis and review of exacerbated inequities from the February 2021 winter storm (Uri) in Texas and the risks moving forward 对2021年2月德克萨斯州冬季风暴(Uri)加剧的不公平现象及其未来风险的综合和审查
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2023-01-01 DOI: 10.1088/2516-1083/aca9b4
Sergio Castellanos, Jerry R. Potts, Helena R. Tiedmann, S. Alverson, Y. R. Glazer, A. Robison, Suzanne Russo, Dana Harmon, Bobuchi Ken-Opurum, Margo Weisz, Frances Acuna, K. Stephens, K. Faust, M. Webber
A severe winter storm in February 2021 impacted multiple infrastructure systems in Texas, leaving over 13 million people without electricity and/or water, potentially $100 billion in economic damages, and almost 250 lives lost. While the entire state was impacted by temperatures up to 10 °C colder than expected for this time of year, as well as levels of snow and ice accumulation not observed in decades, the responses and outcomes from communities were inconsistent and exacerbated prevailing social and infrastructure inequities that are still impacting those communities. In this contribution, we synthesize a subset of multiple documented inequities stemming from the interdependence of the water, housing, transportation, and communication sectors with the energy sector, and present a summary of actions to address the interdependency of infrastructure system inequities.
2021年2月,一场严重的冬季风暴影响了德克萨斯州的多个基础设施系统,造成1300多万人无电无水,潜在的经济损失达1000亿美元,近250人丧生。虽然整个州都受到了比往年同期低10°C的气温的影响,以及几十年来未见的冰雪积累水平,但社区的反应和结果却不一致,加剧了目前仍在影响这些社区的社会和基础设施不平等。在这篇文章中,我们综合了由水、住房、交通和通信部门与能源部门相互依赖而产生的多种记录不平等的子集,并提出了解决基础设施系统不平等相互依赖的行动摘要。
{"title":"A synthesis and review of exacerbated inequities from the February 2021 winter storm (Uri) in Texas and the risks moving forward","authors":"Sergio Castellanos, Jerry R. Potts, Helena R. Tiedmann, S. Alverson, Y. R. Glazer, A. Robison, Suzanne Russo, Dana Harmon, Bobuchi Ken-Opurum, Margo Weisz, Frances Acuna, K. Stephens, K. Faust, M. Webber","doi":"10.1088/2516-1083/aca9b4","DOIUrl":"https://doi.org/10.1088/2516-1083/aca9b4","url":null,"abstract":"A severe winter storm in February 2021 impacted multiple infrastructure systems in Texas, leaving over 13 million people without electricity and/or water, potentially $100 billion in economic damages, and almost 250 lives lost. While the entire state was impacted by temperatures up to 10 °C colder than expected for this time of year, as well as levels of snow and ice accumulation not observed in decades, the responses and outcomes from communities were inconsistent and exacerbated prevailing social and infrastructure inequities that are still impacting those communities. In this contribution, we synthesize a subset of multiple documented inequities stemming from the interdependence of the water, housing, transportation, and communication sectors with the energy sector, and present a summary of actions to address the interdependency of infrastructure system inequities.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"51 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90848079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Hydrogen storage in liquid hydrogen carriers: recent activities and new trends 液氢载体的储氢:最近的活动和新趋势
IF 29.5 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2022-12-16 DOI: 10.1088/2516-1083/acac5c
T. H. Ulucan, S. Akhade, Ajith Ambalakatte, T. Autrey, A. Cairns, Ping Chen, Y. Cho, F. Gallucci, Wenbo Gao, J. Grinderslev, Katarzyna Grubel, T. Jensen, P. D. de Jongh, J. Kothandaraman, K. Lamb, Young-Su Lee, C. Makhloufi, P. Ngene, Pierre Olivier, C. J. Webb, Berenger Wegman, B. Wood, C. Weidenthaler
Efficient storage of hydrogen is one of the biggest challenges towards a potential hydrogen economy. Hydrogen storage in liquid carriers is an attractive alternative to compression or liquefaction at low temperatures. Liquid carriers can be stored cost-effectively and transportation and distribution can be integrated into existing infrastructures. The development of efficient liquid carriers is part of the work of the International Energy Agency Task 40: Hydrogen-Based Energy Storage. Here, we report the state-of-the-art for ammonia and closed CO2-cycle methanol-based storage options as well for liquid organic hydrogen carriers.
氢的有效储存是潜在氢经济面临的最大挑战之一。在液体载体中储存氢是在低温下压缩或液化的一个有吸引力的替代方案。液体载体可以经济有效地储存,运输和分配可以整合到现有的基础设施中。高效液体载体的开发是国际能源机构任务40:氢基储能工作的一部分。在这里,我们报告了最先进的氨和封闭的二氧化碳循环甲醇为基础的存储选项,以及液态有机氢载体。
{"title":"Hydrogen storage in liquid hydrogen carriers: recent activities and new trends","authors":"T. H. Ulucan, S. Akhade, Ajith Ambalakatte, T. Autrey, A. Cairns, Ping Chen, Y. Cho, F. Gallucci, Wenbo Gao, J. Grinderslev, Katarzyna Grubel, T. Jensen, P. D. de Jongh, J. Kothandaraman, K. Lamb, Young-Su Lee, C. Makhloufi, P. Ngene, Pierre Olivier, C. J. Webb, Berenger Wegman, B. Wood, C. Weidenthaler","doi":"10.1088/2516-1083/acac5c","DOIUrl":"https://doi.org/10.1088/2516-1083/acac5c","url":null,"abstract":"Efficient storage of hydrogen is one of the biggest challenges towards a potential hydrogen economy. Hydrogen storage in liquid carriers is an attractive alternative to compression or liquefaction at low temperatures. Liquid carriers can be stored cost-effectively and transportation and distribution can be integrated into existing infrastructures. The development of efficient liquid carriers is part of the work of the International Energy Agency Task 40: Hydrogen-Based Energy Storage. Here, we report the state-of-the-art for ammonia and closed CO2-cycle methanol-based storage options as well for liquid organic hydrogen carriers.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"324 1","pages":""},"PeriodicalIF":29.5,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76640923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Progress in Energy and Combustion Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1