Abstract Precise Point Positioning (PPP) is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS), Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), GNSS Analysis and Positioning Software (GAPS) and magicPPP - Precise Point Positioning Solution (magicGNSS). On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ Final products.
{"title":"A Comparative Study of Precise Point Positioning (PPP) Accuracy Using Online Services","authors":"M. Malinowski, J. Kwiecień","doi":"10.1515/rgg-2016-0025","DOIUrl":"https://doi.org/10.1515/rgg-2016-0025","url":null,"abstract":"Abstract Precise Point Positioning (PPP) is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS), Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), GNSS Analysis and Positioning Software (GAPS) and magicPPP - Precise Point Positioning Solution (magicGNSS). On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ Final products.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75344710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The new solution for the Polish geodetic primary GNSS network was created to verify the currently used reference frame (PL-ETRF2000). The new solution is based on more GNSS data (more daily observation sessions included, a longer data timespan, GLONASS observations added) which were processed in a newer reference frame (IGb08) according to up-to-date methodology and using the latest version of Bernese GNSS Software. The new long-term solution (spanning 3.7 years) was aligned to the IGb08 reference frame using a minimum constraints approach. We categorized Polish reference stations into two categories according to their data length. We obtained good agreement of the new solution with the PL-ETRF2000: for most stations position differences did not exceed 5 mm in horizontal, and 10 mm in vertical components. However, for 30 stations we observed discontinuities in position time series, mostly due to GNSS equipment changes, which occured after the introduction of PL-ETRF2000. Position changes due to the discontinuities reached 9.1 mm in horizontal components, and 26.9 mm in vertical components. The new solution takes into account position discontinuities, and in addition also includes six new stations which were installed after the introduction of the PL-ETRF2000. Therefore, we propose to update the currently-used reference frame for the Polish geodetic primary network (PL-ETRF2000) with the new solution. The new solution was also accepted by the EUREF Technical Working Group as a class A solution (highest accuracy) according to EUREF standards.
{"title":"Verification of the Polish Geodetic Reference Frame by Means of a New Solution Based on Permanent GNSS Data from the Years 2011-2014","authors":"T. Liwosz, M. Ryczywolski","doi":"10.1515/rgg-2016-0027","DOIUrl":"https://doi.org/10.1515/rgg-2016-0027","url":null,"abstract":"Abstract The new solution for the Polish geodetic primary GNSS network was created to verify the currently used reference frame (PL-ETRF2000). The new solution is based on more GNSS data (more daily observation sessions included, a longer data timespan, GLONASS observations added) which were processed in a newer reference frame (IGb08) according to up-to-date methodology and using the latest version of Bernese GNSS Software. The new long-term solution (spanning 3.7 years) was aligned to the IGb08 reference frame using a minimum constraints approach. We categorized Polish reference stations into two categories according to their data length. We obtained good agreement of the new solution with the PL-ETRF2000: for most stations position differences did not exceed 5 mm in horizontal, and 10 mm in vertical components. However, for 30 stations we observed discontinuities in position time series, mostly due to GNSS equipment changes, which occured after the introduction of PL-ETRF2000. Position changes due to the discontinuities reached 9.1 mm in horizontal components, and 26.9 mm in vertical components. The new solution takes into account position discontinuities, and in addition also includes six new stations which were installed after the introduction of the PL-ETRF2000. Therefore, we propose to update the currently-used reference frame for the Polish geodetic primary network (PL-ETRF2000) with the new solution. The new solution was also accepted by the EUREF Technical Working Group as a class A solution (highest accuracy) according to EUREF standards.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79354765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The aim of this paper is to present the need for changes of geodetic-legal procedures for the cadastre and real estate management. This problem was analyzed both in theoretical and practical terms. In order to better present the analyzed technical and legal procedures, a study of several cases of surveying documentation was made. On their example the problems associated with the surveying services were shows and the formal and legal procedures, on the basis of which described surveying works were done were verified. The problem presented is current and valid not only for the comfort of the surveyor's work, but also from the point of view of the structure and modernization of the real estate cadastre, constituting the backbone of the real estate management. The article emphasized the need to unify the databases of state registers and the digitization of the National Geodetic and Cartographic Resources (PZDGiK). Research has shown that despite the continuous changes of legislation, there are still many shortcomings and gaps, which often complicate the surveying works. The surveyor must analyze and verify all materials he uses, including those obtained from the Centre of Geodetic and Cartographic Documentation (ODGiK). The quality of the geodetic and cartographic elaboration depends largely on the work of the Centre of Geodetic and Cartographic Documentation. The need of modernization of the Land and Buildings Registry, which acts as a cadastre in Poland, has been demonstrated. Furthermore, the unification of data used as reference systems both for plane coordinates and elevation has been proposed.
{"title":"Proposals for Changes in Surveying-Legal Procedures for the Needs of Cadastre in Poland","authors":"M. Mika","doi":"10.1515/rgg-2016-0028","DOIUrl":"https://doi.org/10.1515/rgg-2016-0028","url":null,"abstract":"Abstract The aim of this paper is to present the need for changes of geodetic-legal procedures for the cadastre and real estate management. This problem was analyzed both in theoretical and practical terms. In order to better present the analyzed technical and legal procedures, a study of several cases of surveying documentation was made. On their example the problems associated with the surveying services were shows and the formal and legal procedures, on the basis of which described surveying works were done were verified. The problem presented is current and valid not only for the comfort of the surveyor's work, but also from the point of view of the structure and modernization of the real estate cadastre, constituting the backbone of the real estate management. The article emphasized the need to unify the databases of state registers and the digitization of the National Geodetic and Cartographic Resources (PZDGiK). Research has shown that despite the continuous changes of legislation, there are still many shortcomings and gaps, which often complicate the surveying works. The surveyor must analyze and verify all materials he uses, including those obtained from the Centre of Geodetic and Cartographic Documentation (ODGiK). The quality of the geodetic and cartographic elaboration depends largely on the work of the Centre of Geodetic and Cartographic Documentation. The need of modernization of the Land and Buildings Registry, which acts as a cadastre in Poland, has been demonstrated. Furthermore, the unification of data used as reference systems both for plane coordinates and elevation has been proposed.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90326754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Performing any measurement on watercraft is connected with many additional difficulties caused by the sea-environment. The most important is the problem of spatial stabilization of measurement systems, which are usually fastened to craft body. As soon as usually these measurement are executed during the move of the craft additional question is the accuracy of execution the planed trajectory. This is a problem for all investigators, especially when system use spatially configured beams of any antennas or other sensors, regardless is it receiving or transmitting one. Different aspects of these question are the subject of research activity of Institute of Navigation and Maritime Hydrography of Polish Naval Academy. In this paper the review of works executed in last years are presented.
{"title":"The Problem of the Instrument Stabilization During Hydrographic Measurements","authors":"A. Felski, K. Naus, M. Wąż","doi":"10.1515/rgg-2016-0006","DOIUrl":"https://doi.org/10.1515/rgg-2016-0006","url":null,"abstract":"Abstract Performing any measurement on watercraft is connected with many additional difficulties caused by the sea-environment. The most important is the problem of spatial stabilization of measurement systems, which are usually fastened to craft body. As soon as usually these measurement are executed during the move of the craft additional question is the accuracy of execution the planed trajectory. This is a problem for all investigators, especially when system use spatially configured beams of any antennas or other sensors, regardless is it receiving or transmitting one. Different aspects of these question are the subject of research activity of Institute of Navigation and Maritime Hydrography of Polish Naval Academy. In this paper the review of works executed in last years are presented.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78615662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The Department of Photogrammetry, Remote Sensing and Geographic Information Systems at the Warsaw University of Technology is one of six organizational units of the Faculty of Geodesy and Cartography. The photogrammetry has been under interest of scientists in Faculty for over 90 years. The last decades has been characterized by the incredible development of photogrammetric technologies, mainly towards wide automation and popularization of derivative products for processing data acquired at satellite, aerial, and terrestrial levels. The paper presents achievements of scientists employed in Photogrammetric Research Group during last decades related to projects that were carried out in this department.
{"title":"Photogrammetry at the Warsaw University of Technology – Past and Present","authors":"D. Zawieska, Z. Kurczynski","doi":"10.1515/rgg-2016-0015","DOIUrl":"https://doi.org/10.1515/rgg-2016-0015","url":null,"abstract":"Abstract The Department of Photogrammetry, Remote Sensing and Geographic Information Systems at the Warsaw University of Technology is one of six organizational units of the Faculty of Geodesy and Cartography. The photogrammetry has been under interest of scientists in Faculty for over 90 years. The last decades has been characterized by the incredible development of photogrammetric technologies, mainly towards wide automation and popularization of derivative products for processing data acquired at satellite, aerial, and terrestrial levels. The paper presents achievements of scientists employed in Photogrammetric Research Group during last decades related to projects that were carried out in this department.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80604882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
{"title":"Elements of an algorithm for optimizing a parameter-structural neural network","authors":"M. Mrówczyńska","doi":"10.1515/rgg-2016-0019","DOIUrl":"https://doi.org/10.1515/rgg-2016-0019","url":null,"abstract":"Abstract The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72653388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The article presents an outline of the 25-year history of the journal “Reports on Geodesy and Geoinformatics”. The source of information was mainly the journal issues themselves. Attention was drawn to changes that the journal underwent over a quarter of a century and its relationship with the Institute of Geodesy and Geodetic Astronomy and later the Department of Geodesy and Geodetic Astronomy. Many issues were dedicated to materials from Polish conferences - those organised by the Institute and the international ones attended by the employees of the Institute, which was indicated in the section on the history of the journal. The second part of the article concerns the current activity and importance of the journal. Attention was paid to visibility of “Reports on Geodesy and Geoinformatics” in the domestic and foreign databases. Polish databases where the journal is indexed have been identified and briefly described. A separate issue is the evaluation of the journal, which forms a measure of its popularity among consumers. For this purpose, various parameters and biometrics indicators are used. The article used the Web of Science, Google Scholar and the Ministerial List databases for the assessment of the journal.
摘要本文概述了《大地测量学与地理信息学报告》杂志25年的发展历程。信息来源主要是期刊本身。会议提请注意该杂志在四分之一世纪中所经历的变化,以及它与大地测量学和大地测量天文学研究所以及后来与大地测量学和大地测量天文学系的关系。许多问题都是关于波兰会议的材料,这些会议是由研究所组织的,以及由研究所雇员参加的国际会议,这在关于该杂志历史的一节中指出。文章的第二部分是关于期刊的现状和重要性。重视“大地测量学与地理信息学报告”在国内外数据库中的可见性。已确定并简要描述了该期刊索引所在的波兰数据库。另一个问题是对杂志的评价,这是衡量其在消费者中的受欢迎程度的标准。为此,使用了各种参数和生物识别指标。这篇文章使用了Web of Science、Google Scholar和部长级名单数据库对期刊进行评估。
{"title":"25 Years of Reports on Geodesy and Geoinformatics","authors":"Jadwiga Siemiątkowska","doi":"10.1515/rgg-2016-0002","DOIUrl":"https://doi.org/10.1515/rgg-2016-0002","url":null,"abstract":"Abstract The article presents an outline of the 25-year history of the journal “Reports on Geodesy and Geoinformatics”. The source of information was mainly the journal issues themselves. Attention was drawn to changes that the journal underwent over a quarter of a century and its relationship with the Institute of Geodesy and Geodetic Astronomy and later the Department of Geodesy and Geodetic Astronomy. Many issues were dedicated to materials from Polish conferences - those organised by the Institute and the international ones attended by the employees of the Institute, which was indicated in the section on the history of the journal. The second part of the article concerns the current activity and importance of the journal. Attention was paid to visibility of “Reports on Geodesy and Geoinformatics” in the domestic and foreign databases. Polish databases where the journal is indexed have been identified and briefly described. A separate issue is the evaluation of the journal, which forms a measure of its popularity among consumers. For this purpose, various parameters and biometrics indicators are used. The article used the Web of Science, Google Scholar and the Ministerial List databases for the assessment of the journal.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73737669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Presented paper is dedicated to problems of deformation of the Earth's crust as a response to the surface loading caused by continental waters. The aim of this study was to specify areas particularly vulnerable to studied deformation and to compare calculated and observed displacements. Information of the continental water volume was taken from the WaterGAP Global Hydrological Model. Calculated values of the deformations were verified with the results obtained with programs SPOTL and grat. Vertical deformations were almost 10 times higher than the deformation in the horizontal plane, for which reason later part of the paper focuses on the former. In order to check agreement of the calculated and observed deformation 23 stations of International GNSS Service (IGS) were selected and divided into three groups (inland, near the shoreline and islands). Before comparison outliers and discontinuities were removed from GNSS observations. Modelled and observed signals were centred. The analysed time series of the vertical displacements showed that only for the inland stations it is possible to effectively remove displacements caused by mass transfer in the hydrosphere. For stations located in the coastal regions or islands, it is necessary to consider additional movement effects resulting from indirect ocean tidal loading or atmosphere loading.
{"title":"Assessment of continental hydrosphere loading using GNSS measurements","authors":"M. Zygmunt, M. Rajner, T. Liwosz","doi":"10.1515/rgg-2016-0020","DOIUrl":"https://doi.org/10.1515/rgg-2016-0020","url":null,"abstract":"Abstract Presented paper is dedicated to problems of deformation of the Earth's crust as a response to the surface loading caused by continental waters. The aim of this study was to specify areas particularly vulnerable to studied deformation and to compare calculated and observed displacements. Information of the continental water volume was taken from the WaterGAP Global Hydrological Model. Calculated values of the deformations were verified with the results obtained with programs SPOTL and grat. Vertical deformations were almost 10 times higher than the deformation in the horizontal plane, for which reason later part of the paper focuses on the former. In order to check agreement of the calculated and observed deformation 23 stations of International GNSS Service (IGS) were selected and divided into three groups (inland, near the shoreline and islands). Before comparison outliers and discontinuities were removed from GNSS observations. Modelled and observed signals were centred. The analysed time series of the vertical displacements showed that only for the inland stations it is possible to effectively remove displacements caused by mass transfer in the hydrosphere. For stations located in the coastal regions or islands, it is necessary to consider additional movement effects resulting from indirect ocean tidal loading or atmosphere loading.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81150147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Nowak, R. Malarski, W. Prószyński, Alicja Sadowska, M. Woźniak, J. Zaczek-Peplinska
Abstract Geodetic engineering surveys are an important part of the works carried out by the Faculty of Geodesy and Cartography, Warsaw University of Technology. These works concern measurement techniques as well as advanced result analysis methods applied in precise industrial surveys and in processes controlling object’s behaviour over time. The thematic scope of research realised by Chair of Engineering Geodesy and Control-Measuring Systems shows that article related to geodetic engineering measurements and geodetic monitoring is carried out with high intensity, resulting in technological advancement and implementation of new or improved measurement solutions and methods of measurement result development.
{"title":"Research and Development Work Carried out by the Chair of Engineering Geodesy and Measurement and Control Systems, Faculty of Geodesy and Cartography WUT – Thematic Scope and Achievements","authors":"E. Nowak, R. Malarski, W. Prószyński, Alicja Sadowska, M. Woźniak, J. Zaczek-Peplinska","doi":"10.1515/rgg-2016-0014","DOIUrl":"https://doi.org/10.1515/rgg-2016-0014","url":null,"abstract":"Abstract Geodetic engineering surveys are an important part of the works carried out by the Faculty of Geodesy and Cartography, Warsaw University of Technology. These works concern measurement techniques as well as advanced result analysis methods applied in precise industrial surveys and in processes controlling object’s behaviour over time. The thematic scope of research realised by Chair of Engineering Geodesy and Control-Measuring Systems shows that article related to geodetic engineering measurements and geodetic monitoring is carried out with high intensity, resulting in technological advancement and implementation of new or improved measurement solutions and methods of measurement result development.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79512694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Bogusz, A. Klos, M. Gruszczyńska, M. Gruszczyński
Abstract In the modern geodesy the role of the permanent station is growing constantly. The proper treatment of the time series from such station lead to the determination of the reliable velocities. In this paper we focused on some pre-analysis as well as analysis issues, which have to be performed upon the time series of the North, East and Up components and showed the best, in our opinion, methods of determination of periodicities (by means of Singular Spectrum Analysis) and spatio-temporal correlations (Principal Component Analysis), that still exist in the time series despite modelling. Finally, the velocities of the selected European permanent stations with the associated errors determined following power-law assumption in the stochastic part is presented.
{"title":"Towards Reliable Velocities of Permanent GNSS Stations","authors":"J. Bogusz, A. Klos, M. Gruszczyńska, M. Gruszczyński","doi":"10.1515/rgg-2016-0003","DOIUrl":"https://doi.org/10.1515/rgg-2016-0003","url":null,"abstract":"Abstract In the modern geodesy the role of the permanent station is growing constantly. The proper treatment of the time series from such station lead to the determination of the reliable velocities. In this paper we focused on some pre-analysis as well as analysis issues, which have to be performed upon the time series of the North, East and Up components and showed the best, in our opinion, methods of determination of periodicities (by means of Singular Spectrum Analysis) and spatio-temporal correlations (Principal Component Analysis), that still exist in the time series despite modelling. Finally, the velocities of the selected European permanent stations with the associated errors determined following power-law assumption in the stochastic part is presented.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74101567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}