首页 > 最新文献

Solid State Sciences最新文献

英文 中文
More about the BaO(BaCO3)–Lu2O3–CuO system 关于 BaO(BaCO3)-Lu2O3-CuO 体系的更多信息
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-17 DOI: 10.1016/j.solidstatesciences.2024.107722
Oksana Zaremba, Mariia-Suzanna Teplinska, Pavlo Demchenko, Vasyl Kordan, Roman Gladyshevskii
The phase diagram of the BaO(BaCO3)–Lu2O3–CuO system was built at 900 °C. It comprises of 8 single-phase, 15 two-phase, and 8 three-phase regions. The boundary oxide systems Lu2O3–CuO and BaO–CuO contain the phases Lu2Cu2O5 (structure type Ho2Cu2O5, Pearson symbol oP36, space group Pna21, a = 10.702(1), b = 3.412(1), c = 12.360(1) Å, RB = 0.076) and Ba44Cu45O90 (own structure type, cI400, Im-3m, a = 18.294(3) Å, RB = 0.114), whereas in the Lu2O3–BaO(BaCO3) system the oxide-carbonate Ba3Lu2[CO3]O5 (Ba3Yb2[CO3]O5, tP26, P4/mmm, a = 4.322(1), c = 11.862(2) Å, RB = 0.107) was identified under the conditions of the experiment. Two quaternary oxides were observed. The structure of BaLu2CuO5 was confirmed (BaY2CuO5, oP36, Pnma), whereas the structure of the phase with approximate composition Ba3LuCu2O6.5 still needs to be established. The electrochemical properties of BaLu2CuO5 as cathode material in Li-ion batteries were investigated. The existence of a (in part) substitutional solid solution BaLu2CuO5:Li was confirmed by the decrease of the unit-cell volume (−0.11 %). No traces of the formation of a phase with YBCO-type structure were detected at 900 °C.
在 900 °C 下绘制了 BaO(BaCO3)-Lu2O3-CuO 体系的相图。它包括 8 个单相区域、15 个两相区域和 8 个三相区域。边界氧化物体系 Lu2O3-CuO 和 BaO-CuO 包含相 Lu2Cu2O5(结构类型 Ho2Cu2O5,皮尔逊符号 oP36,空间群 Pna21,a = 10.702(1),b = 3.412(1),c = 12.360(1) Å,RB = 0.076)和 Ba44Cu45O90(自身结构类型,cI400,Im-3m,a = 18.294(3)埃,RB = 0.114),而在 Lu2O3-BaO(BaCO3)体系中,在实验条件下发现了氧化物-碳酸盐 Ba3Lu2[CO3]O5 (Ba3Yb2[CO3]O5, tP26, P4/mmm, a = 4.322(1), c = 11.862(2) 埃,RB = 0.107)。观察到两种四氧化物。BaLu2CuO5 的结构已得到确认(BaY2CuO5, oP36, Pnma),而近似成分为 Ba3LuCu2O6.5 的相的结构仍有待确定。研究了锂离子电池中作为阴极材料的 BaLu2CuO5 的电化学特性。单位晶胞体积的减小(-0.11 %)证实了(部分)置换固溶体 BaLu2CuO5:Li 的存在。在 900 °C 温度下,没有检测到形成 YBCO 型结构相的痕迹。
{"title":"More about the BaO(BaCO3)–Lu2O3–CuO system","authors":"Oksana Zaremba,&nbsp;Mariia-Suzanna Teplinska,&nbsp;Pavlo Demchenko,&nbsp;Vasyl Kordan,&nbsp;Roman Gladyshevskii","doi":"10.1016/j.solidstatesciences.2024.107722","DOIUrl":"10.1016/j.solidstatesciences.2024.107722","url":null,"abstract":"<div><div>The phase diagram of the BaO(BaCO<sub>3</sub>)–Lu<sub>2</sub>O<sub>3</sub>–CuO system was built at 900 °C. It comprises of 8 single-phase, 15 two-phase, and 8 three-phase regions. The boundary oxide systems Lu<sub>2</sub>O<sub>3</sub>–CuO and BaO–CuO contain the phases Lu<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub> (structure type Ho<sub>2</sub>Cu<sub>2</sub>O<sub>5</sub>, Pearson symbol <em>oP</em>36, space group <em>Pna</em>2<sub>1</sub>, <em>a</em> = 10.702(1), <em>b</em> = 3.412(1), <em>c</em> = 12.360(1) Å, <em>R</em><sub>B</sub> = 0.076) and Ba<sub>44</sub>Cu<sub>45</sub>O<sub>90</sub> (own structure type, <em>cI</em>400, <em>Im</em>-3<em>m</em>, <em>a</em> = 18.294(3) Å, <em>R</em><sub>B</sub> = 0.114), whereas in the Lu<sub>2</sub>O<sub>3</sub>–BaO(BaCO<sub>3</sub>) system the oxide-carbonate Ba<sub>3</sub>Lu<sub>2</sub>[CO<sub>3</sub>]O<sub>5</sub> (Ba<sub>3</sub>Yb<sub>2</sub>[CO<sub>3</sub>]O<sub>5</sub>, <em>tP</em>26, <em>P</em>4/<em>mmm</em>, <em>a</em> = 4.322(1), <em>c</em> = 11.862(2) Å, <em>R</em><sub>B</sub> = 0.107) was identified under the conditions of the experiment. Two quaternary oxides were observed. The structure of BaLu<sub>2</sub>CuO<sub>5</sub> was confirmed (BaY<sub>2</sub>CuO<sub>5</sub>, <em>oP</em>36, <em>Pnma</em>), whereas the structure of the phase with approximate composition Ba<sub>3</sub>LuCu<sub>2</sub>O<sub>6.5</sub> still needs to be established. The electrochemical properties of BaLu<sub>2</sub>CuO<sub>5</sub> as cathode material in Li-ion batteries were investigated. The existence of a (in part) substitutional solid solution BaLu<sub>2</sub>CuO<sub>5</sub>:Li was confirmed by the decrease of the unit-cell volume (−0.11 %). No traces of the formation of a phase with YBCO-type structure were detected at 900 °C.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107722"},"PeriodicalIF":3.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and investigation of the structure, thermal and electrical properties of new Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) molybdates 新型 Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) 钼酸盐的合成及其结构、热学和电学特性研究
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-17 DOI: 10.1016/j.solidstatesciences.2024.107725
Victoria G. Grossman , Maxim S. Molokeev , Bair G. Bazarov
The traditional solid-state synthesizing method was employed to prepare Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) ceramics. Structural characterization was performed through the Rietveld method on the X-ray powder diffraction data. The unit cell parameters are defined for Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2). Impedance spectra were measured at temperatures ranging from 300 to 800 K, covering a frequency range of 1 Hz to 1 MHz. The results show that the electrical conductivity decreases with an incrementing in the x value in the range of x = 0.1–2.0. Tl4.9K0.1LuZr(MoO4)6 has the best ionic conductivity of this series of molybdates (1.31 × 10−3 S cm−1), and Tl5LuZr(MoO4)6 has the lowest conductivity (5.51 × 10−4 S cm−1). Activation energy was found out to decrease from 1.32 eV for Tl5LuZr(MoO4)6 to 0.92 eV for Tl4.9K0.1LuZr(MoO4)6.
采用传统固态合成法制备了 Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) 陶瓷。通过对 X 射线粉末衍射数据的里特维尔德法进行了结构表征。确定了 Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) 的单胞参数。在 300 至 800 K 的温度范围内测量了阻抗谱,频率范围为 1 Hz 至 1 MHz。结果表明,在 x = 0.1-2.0 的范围内,电导率随着 x 值的增加而降低。在这一系列钼酸盐中,Tl4.9K0.1LuZr(MoO4)6 的离子导电率最好(1.31 × 10-3 S cm-1),而 Tl5LuZr(MoO4)6 的导电率最低(5.51 × 10-4 S cm-1)。活化能从 Tl5LuZr(MoO4)6 的 1.32 eV 下降到 Tl4.9K0.1LuZr(MoO4)6 的 0.92 eV。
{"title":"Synthesis and investigation of the structure, thermal and electrical properties of new Tl5-xKxLuZr(MoO4)6 (x = 0; 0.1; 0.2; 1; 2) molybdates","authors":"Victoria G. Grossman ,&nbsp;Maxim S. Molokeev ,&nbsp;Bair G. Bazarov","doi":"10.1016/j.solidstatesciences.2024.107725","DOIUrl":"10.1016/j.solidstatesciences.2024.107725","url":null,"abstract":"<div><div>The traditional solid-state synthesizing method was employed to prepare Tl<sub>5-<em>x</em></sub>K<sub><em>x</em></sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> (<em>x</em> = 0; 0.1; 0.2; 1; 2) ceramics. Structural characterization was performed through the Rietveld method on the X-ray powder diffraction data. The unit cell parameters are defined for Tl<sub>5-<em>x</em></sub>K<sub><em>x</em></sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> (<em>x</em> = 0; 0.1; 0.2; 1; 2). Impedance spectra were measured at temperatures ranging from 300 to 800 K, covering a frequency range of 1 Hz to 1 MHz. The results show that the electrical conductivity decreases with an incrementing in the <em>x</em> value in the range of <em>x</em> = 0.1–2.0. Tl<sub>4.9</sub>K<sub>0.1</sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> has the best ionic conductivity of this series of molybdates (1.31 × 10<sup>−3</sup> S cm<sup>−1</sup><sub>)</sub>, and Tl<sub>5</sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> has the lowest conductivity (5.51 × 10<sup>−4</sup> S cm<sup>−1</sup><sub>)</sub>. Activation energy was found out to decrease from 1.32 eV for Tl<sub>5</sub>LuZr(MoO<sub>4</sub>)<sub>6</sub> to 0.92 eV for Tl<sub>4.9</sub>K<sub>0.1</sub>LuZr(MoO<sub>4</sub>)<sub>6.</sub></div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107725"},"PeriodicalIF":3.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First TPymT-Ln complexes (TPymT = 2,4,6-Tris(2-pyrimidyl)-1,3,5-triazine; Ln = Eu, Gd, Tb, Dy): Solvothermal synthesis, structure, magnetic and photoluminescent properties 首个 TPymT-Ln 复合物(TPymT = 2,4,6-三(2-嘧啶基)-1,3,5-三嗪;Ln = Eu、Gd、Tb、Dy):溶热合成、结构、磁性和光致发光特性
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-16 DOI: 10.1016/j.solidstatesciences.2024.107723
Burak Ay , Rina Takano , Takayuki Ishida
Four novel mononuclear lanthanide complexes, [Ln(TPymT)(NO3)3(H2O)2] (Ln: Eu3+ (1), Gd3+ (2), Tb3+ (3) and Dy3+ (4)), have been solvothermally synthesized using multidentate 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine (TPymT). Compounds 13 have been characterized by means of elemental analysis, FT-IR, and single-crystal/powder X-ray diffraction analysis. Compound 4 was structurally characterized. The Ln3+ ion in 14 is ten-coordinated, where TPymT serves as an N3 donor in an isostructural series. The alternating-current magnetic studies showed frequency dependence below ca. 10 K for 3, as an indication of a single-ion magnet. The activation energy for the magnetization reorientation was estimated as Ueff/kB = 95(9) K after applying a dc bias field 2000 Oe for 3. The photoluminescent studies clarified that 1 and 3 behaved as red and green light emitters with quantum yields as high as 17 and 39 %, respectively. The TD-DFT calculation supports the energy level scheme of ground and excited states of TPymT together with the reference compound 4′-phenyl-2,2’:6′,2″-terpyridine. The present work suggests a broad chance and motivation to apply TPymT to the field of 4f coordination chemistry.
四种新型单核镧系配合物[Ln(TPymT)(NO3)3(H2O)2](Ln:利用多叉 2,4,6-三(2-嘧啶基)-1,3,5-三嗪(TPymT)溶热合成了四种新型单核镧系配合物 [Ln(TPymT)(NO3)3(H2O)2](Ln:Eu3+ (1)、Gd3+ (2)、Tb3+ (3) 和 Dy3+ (4))。化合物 1-3 已通过元素分析、傅立叶变换红外光谱和单晶/粉末 X 射线衍射分析进行了表征。对化合物 4 进行了结构表征。1-4 中的 Ln3+ 离子是十配位的,其中 TPymT 在等结构系列中充当 N3 给体。交变电流磁性研究显示,3 的频率依赖性低于约 10 K,这表明它是一种单离子磁体。对 3 施加直流偏置场 2000 Oe 后,磁化重新定向的活化能估计为 Ueff/kB = 95(9) K。光致发光研究表明,1 和 3 表现为红色和绿色发光体,量子产率分别高达 17% 和 39%。TD-DFT 计算支持 TPymT 与参考化合物 4′-苯基-2,2':6′,2″-三吡啶的基态和激发态能级方案。本研究为将 TPymT 应用于 4f 配位化学领域提供了广阔的机会和动力。
{"title":"First TPymT-Ln complexes (TPymT = 2,4,6-Tris(2-pyrimidyl)-1,3,5-triazine; Ln = Eu, Gd, Tb, Dy): Solvothermal synthesis, structure, magnetic and photoluminescent properties","authors":"Burak Ay ,&nbsp;Rina Takano ,&nbsp;Takayuki Ishida","doi":"10.1016/j.solidstatesciences.2024.107723","DOIUrl":"10.1016/j.solidstatesciences.2024.107723","url":null,"abstract":"<div><div>Four novel mononuclear lanthanide complexes, [Ln(<strong>TPymT</strong>)(NO<sub>3</sub>)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>] (Ln: Eu<sup>3+</sup> (<strong>1</strong>), Gd<sup>3+</sup> (<strong>2</strong>), Tb<sup>3+</sup> (<strong>3</strong>) and Dy<sup>3+</sup> (<strong>4</strong>)), have been solvothermally synthesized using multidentate 2,4,6-tris(2-pyrimidyl)-1,3,5-triazine (<strong>TPymT</strong>). Compounds <strong>1</strong>–<strong>3</strong> have been characterized by means of elemental analysis, FT-IR, and single-crystal/powder X-ray diffraction analysis. Compound <strong>4</strong> was structurally characterized. The Ln<sup>3+</sup> ion in <strong>1</strong>–<strong>4</strong> is ten-coordinated, where <strong>TPymT</strong> serves as an N<sub>3</sub> donor in an isostructural series. The alternating-current magnetic studies showed frequency dependence below ca. 10 K for <strong>3</strong>, as an indication of a single-ion magnet. The activation energy for the magnetization reorientation was estimated as <em>U</em><sub>eff</sub>/<em>k</em><sub>B</sub> = 95(9) K after applying a dc bias field 2000 Oe for <strong>3</strong>. The photoluminescent studies clarified that <strong>1</strong> and <strong>3</strong> behaved as red and green light emitters with quantum yields as high as 17 and 39 %, respectively. The TD-DFT calculation supports the energy level scheme of ground and excited states of <strong>TPymT</strong> together with the reference compound 4′-phenyl-2,2’:6′,2″-terpyridine. The present work suggests a broad chance and motivation to apply <strong>TPymT</strong> to the field of 4f coordination chemistry.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107723"},"PeriodicalIF":3.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skutterudites as sustainable thermoelectric material- A critical review 作为可持续热电材料的沸石--重要综述
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-10 DOI: 10.1016/j.solidstatesciences.2024.107721
Klinton Brito K , Shobana Priyanka D , Srinivasan M , Sudharsan J B , Fujiwara K , Ramasamy P
In this article, we comprehensively reviewed the thermoelectric proper-ties of skutterudites-based materials. We discussed the various synthesis methods like non-chemical and chemical methods for the synthesis of the skutterudites materials for thermoelectric applications. In particular, this review articles also consolidates the information on how the filler plays a crucial role in improving the thermoelectric performance of the skutterudites materials. In addition, this review also concentrates on diverse fabrication methods employed in the production of skutterudites to optimize their thermoelectric performance. It also elucidates the efficiency of devices based on skutterudite materials and discusses the applications of thermoelectric devices.
本文全面综述了基于沸石的材料的热电特性。我们讨论了用于热电应用的沸石材料的各种合成方法,如非化学和化学方法。特别是,本综述文章还整合了有关填料如何在提高沸石材料热电性能方面发挥关键作用的信息。此外,这篇综述还集中介绍了为优化沸石热电性能而在沸石生产过程中采用的各种制造方法。它还阐明了基于沸石材料的设备的效率,并讨论了热电设备的应用。
{"title":"Skutterudites as sustainable thermoelectric material- A critical review","authors":"Klinton Brito K ,&nbsp;Shobana Priyanka D ,&nbsp;Srinivasan M ,&nbsp;Sudharsan J B ,&nbsp;Fujiwara K ,&nbsp;Ramasamy P","doi":"10.1016/j.solidstatesciences.2024.107721","DOIUrl":"10.1016/j.solidstatesciences.2024.107721","url":null,"abstract":"<div><div>In this article, we comprehensively reviewed the thermoelectric proper-ties of skutterudites-based materials. We discussed the various synthesis methods like non-chemical and chemical methods for the synthesis of the skutterudites materials for thermoelectric applications. In particular, this review articles also consolidates the information on how the filler plays a crucial role in improving the thermoelectric performance of the skutterudites materials. In addition, this review also concentrates on diverse fabrication methods employed in the production of skutterudites to optimize their thermoelectric performance. It also elucidates the efficiency of devices based on skutterudite materials and discusses the applications of thermoelectric devices.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107721"},"PeriodicalIF":3.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and physical properties of modified Ti2MnAl compound – Ti2Fe0.5Cr0.5Al and Ti2MnAl0.5In0.5 case 改性 Ti2MnAl 化合物 - Ti2Fe0.5Cr0.5Al 和 Ti2MnAl0.5In0.5 的结构和物理性质
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-10 DOI: 10.1016/j.solidstatesciences.2024.107720
Jerzy Goraus , Wojciech Gumulak , Jacek Czerniewski , Marcin Fijałkowski , Jerzy Kubacki , Ondrej Zivotsky
Ti2MnAl was believed to be Spin Gapless Semiconducting (SGS) material, but this state can be achieved only in an inverted variant of Heusler structure. This specific structure is not realized under normal conditions, however, earlier reports suggest that substituting Al by In or Sn should make it possible. This was the motivation for studying the structural and physical properties of Ti2MnAl0.5In0.5 alloy in this paper. We also studied isoelectronic Ti2Fe0.5Cr0.5Al material, as it is well known that properties of Heusler compounds strongly depend on the valence electron count. We report a combined experimental and theoretical study, where we synthesized substituted variants and measured their diffraction patterns. Additionally we performed ab initio calculations using several methods to study the stability of the resulting compounds. We also examined the impact of disorder within Coherent Potential Approximation. Experimental XPS (X-ray Photoemission Spectroscopy) spectra, magnetic susceptibility and electrical resistivity are also discussed.
人们认为 Ti2MnAl 是无自旋间隙半导体(SGS)材料,但这种状态只有在 Heusler 结构的倒置变体中才能实现。这种特殊结构在正常条件下无法实现,然而,早先的报告表明,用 In 或 Sn 替代 Al 应该可以实现。这就是本文研究 Ti2MnAl0.5In0.5 合金的结构和物理性质的动机。我们还研究了等电子的 Ti2Fe0.5Cr0.5Al 材料,因为众所周知,Heusler 化合物的性质与价电子数密切相关。我们报告了一项实验和理论相结合的研究,我们合成了取代变体,并测量了它们的衍射图样。此外,我们还使用多种方法进行了 ab initio 计算,以研究由此产生的化合物的稳定性。我们还研究了相干势近似法中无序的影响。此外,我们还讨论了实验 XPS(X 射线光发射光谱)光谱、磁感应强度和电阻率。
{"title":"Structure and physical properties of modified Ti2MnAl compound – Ti2Fe0.5Cr0.5Al and Ti2MnAl0.5In0.5 case","authors":"Jerzy Goraus ,&nbsp;Wojciech Gumulak ,&nbsp;Jacek Czerniewski ,&nbsp;Marcin Fijałkowski ,&nbsp;Jerzy Kubacki ,&nbsp;Ondrej Zivotsky","doi":"10.1016/j.solidstatesciences.2024.107720","DOIUrl":"10.1016/j.solidstatesciences.2024.107720","url":null,"abstract":"<div><div>Ti<sub>2</sub>MnAl was believed to be Spin Gapless Semiconducting (SGS) material, but this state can be achieved only in an inverted variant of Heusler structure. This specific structure is not realized under normal conditions, however, earlier reports suggest that substituting Al by In or Sn should make it possible. This was the motivation for studying the structural and physical properties of Ti<sub>2</sub>MnAl<sub>0.5</sub>In<sub>0.5</sub> alloy in this paper. We also studied isoelectronic Ti<sub>2</sub>Fe<sub>0.5</sub>Cr<sub>0.5</sub>Al material, as it is well known that properties of Heusler compounds strongly depend on the valence electron count. We report a combined experimental and theoretical study, where we synthesized substituted variants and measured their diffraction patterns. Additionally we performed ab initio calculations using several methods to study the stability of the resulting compounds. We also examined the impact of disorder within Coherent Potential Approximation. Experimental XPS (X-ray Photoemission Spectroscopy) spectra, magnetic susceptibility and electrical resistivity are also discussed.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107720"},"PeriodicalIF":3.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth mechanism and SERS effect of Ag nanowire arrays prepared by solid-state ionics method 固态离子法制备的银纳米线阵列的生长机理和 SERS 效应
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-09 DOI: 10.1016/j.solidstatesciences.2024.107718
Dapeng Xu, Yarui Liu, Song Zhang, Zixiong Wang, Wei Yang, Qiaoqin Guo, Jian Chen
Solid-state ionic method has attracted more and more attention due to its simple operation and controllable preparation, but its growth mechanism is still uncertain. In this work, Ag nanowire (Ag NW) arrays prepared by solid-state ionics method at 5 μA impressed currents using fast ionic conductor RbAg4I5 films and different metal electrodes were reported. The conduction mode of Ag+ in RbAg4I5 films, the growth mechanism of Ag NW arrays prepared by solid-state ionics method and the effect of microscopic morphology on surface-enhance Raman scattering (SERS) performance were investigated. The results show that Ag nanoparticles (Ag NPs) with diameters from 40 nm to 70 nm were attached to the surface of Ag NW arrays with diameters of 80–150 nm prepared with different metal electrodes, which lead to Ag NW arrays have high surface roughness. The conduction velocity and stability of Ag+ in RbAg4I5 films are closely related to the morphology of Ag NW arrays. The irregular electrode interface and apical growth advantage resulted in the fractal dimension of Ag NW arrays prepared with Ag electrodes is 1.69 due to macroscopic dendritic structure. Ag NW arrays have excellent SERS performance due to the many Ag NPs attached to the surface of the closely aligned Ag NWs, the limit of detection (LOD) for Basic Fuchsin (BF) and Crystal Violet (CV) detected by Ag NW arrays SERS substrates prepared with Ag electrodes are as low as 10−11and 10−14mol/L, respectively. This paper provides a reference for the preparation method of metal nanostructures, Ag NW arrays have good potential for application in the field of trace analysis.
固态离子法因其操作简单、制备过程可控而受到越来越多的关注,但其生长机理仍不确定。本研究采用固态离子法,利用快速离子导体 RbAg4I5 薄膜和不同的金属电极,在 5 μA 冲击电流下制备了 Ag 纳米线(Ag NW)阵列。研究了 Ag+ 在 RbAg4I5 薄膜中的传导模式、固态离子法制备的 Ag NW 阵列的生长机制以及微观形貌对表面增强拉曼散射(SERS)性能的影响。结果表明,不同金属电极制备的直径为 80-150 nm 的 Ag NW 阵列表面附着有直径为 40 nm 至 70 nm 的 Ag NPs,导致 Ag NW 阵列具有较高的表面粗糙度。RbAg4I5 薄膜中 Ag+ 的传导速度和稳定性与 Ag NW 阵列的形态密切相关。由于不规则的电极界面和顶端生长优势,使用银电极制备的 Ag NW 阵列具有宏观树枝状结构,分形维数为 1.69。由于紧密排列的 Ag NW 表面附着了许多 Ag NPs,因此 Ag NW 阵列具有优异的 SERS 性能,用 Ag NW 阵列制备的 SERS 基底检测到的碱性品红(BF)和水晶紫(CV)的检测限(LOD)分别低至 10-11mol/L 和 10-14mol/L。本文为金属纳米结构的制备方法提供了参考,Ag NW 阵列在痕量分析领域具有良好的应用潜力。
{"title":"Growth mechanism and SERS effect of Ag nanowire arrays prepared by solid-state ionics method","authors":"Dapeng Xu,&nbsp;Yarui Liu,&nbsp;Song Zhang,&nbsp;Zixiong Wang,&nbsp;Wei Yang,&nbsp;Qiaoqin Guo,&nbsp;Jian Chen","doi":"10.1016/j.solidstatesciences.2024.107718","DOIUrl":"10.1016/j.solidstatesciences.2024.107718","url":null,"abstract":"<div><div>Solid-state ionic method has attracted more and more attention due to its simple operation and controllable preparation, but its growth mechanism is still uncertain. In this work, Ag nanowire (Ag NW) arrays prepared by solid-state ionics method at 5 μA impressed currents using fast ionic conductor RbAg<sub>4</sub>I<sub>5</sub> films and different metal electrodes were reported. The conduction mode of Ag<sup>+</sup> in RbAg<sub>4</sub>I<sub>5</sub> films, the growth mechanism of Ag NW arrays prepared by solid-state ionics method and the effect of microscopic morphology on surface-enhance Raman scattering (SERS) performance were investigated. The results show that Ag nanoparticles (Ag NPs) with diameters from 40 nm to 70 nm were attached to the surface of Ag NW arrays with diameters of 80–150 nm prepared with different metal electrodes, which lead to Ag NW arrays have high surface roughness. The conduction velocity and stability of Ag<sup>+</sup> in RbAg<sub>4</sub>I<sub>5</sub> films are closely related to the morphology of Ag NW arrays. The irregular electrode interface and apical growth advantage resulted in the fractal dimension of Ag NW arrays prepared with Ag electrodes is 1.69 due to macroscopic dendritic structure. Ag NW arrays have excellent SERS performance due to the many Ag NPs attached to the surface of the closely aligned Ag NWs, the limit of detection (LOD) for Basic Fuchsin (BF) and Crystal Violet (CV) detected by Ag NW arrays SERS substrates prepared with Ag electrodes are as low as 10<sup>−11</sup>and 10<sup>−14</sup>mol/L, respectively. This paper provides a reference for the preparation method of metal nanostructures, Ag NW arrays have good potential for application in the field of trace analysis.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107718"},"PeriodicalIF":3.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
La2O2MQ2 phases: Stability and synthetic challenges La2O2MQ2 相:稳定性与合成挑战
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-09 DOI: 10.1016/j.solidstatesciences.2024.107719
Glen R. Hebberd, Budhika G. Mendis, Leon Bowen, Stewart J. Clark, Emma E. McCabe
Oxychalcogenides containing transition metal or p block cations have potential for thermoelectric, photocatalytic and magnetic applications but the synthetic pathways to these quaternary phases are not fully understood. This presents a challenge to the design and preparation of new functional materials. Our combined experimental and computational study of La2O2MQ2 (M = +2 cation; Q = sulfide, selenide anion) systems explores the thermodynamic constraints on synthesis and highlights the subtle balance in stabilities of phases formed via competing reaction pathways.
含有过渡金属或 p 块阳离子的氧化钙苷具有热电、光催化和磁性应用的潜力,但这些四元相的合成途径还不完全清楚。这对设计和制备新型功能材料提出了挑战。我们对 La2O2MQ2(M = +2 阳离子;Q = 硫化物、硒化阴离子)系统进行了实验和计算相结合的研究,探索了合成的热力学限制,并强调了通过相互竞争的反应途径形成的相在稳定性方面的微妙平衡。
{"title":"La2O2MQ2 phases: Stability and synthetic challenges","authors":"Glen R. Hebberd,&nbsp;Budhika G. Mendis,&nbsp;Leon Bowen,&nbsp;Stewart J. Clark,&nbsp;Emma E. McCabe","doi":"10.1016/j.solidstatesciences.2024.107719","DOIUrl":"10.1016/j.solidstatesciences.2024.107719","url":null,"abstract":"<div><div>Oxychalcogenides containing transition metal or p block cations have potential for thermoelectric, photocatalytic and magnetic applications but the synthetic pathways to these quaternary phases are not fully understood. This presents a challenge to the design and preparation of new functional materials. Our combined experimental and computational study of La<sub>2</sub>O<sub>2</sub><em>MQ</em><sub>2</sub> (<em>M</em> = +2 cation; <em>Q</em> = sulfide, selenide anion) systems explores the thermodynamic constraints on synthesis and highlights the subtle balance in stabilities of phases formed via competing reaction pathways.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107719"},"PeriodicalIF":3.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel metal-free nanomaterial P-CN/BC/NCDs preparation and its performance of photocatalytic degradation 一种新型无金属纳米材料 P-CN/BC/NCDs 的制备及其光催化降解性能
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-05 DOI: 10.1016/j.solidstatesciences.2024.107717
Xiaoling Liu , Meng Wen , Qi Guo , Gang Wang , Pengcheng Hao , Wanyi Liu , Haijuan Zhan , Xiaoyan Chen , Heping Li
The development of photocatalysts with high charge separation and migration efficiencies for environmental remediation using sunlight had been a research priority. In this study, a ternary composite photocatalyst, P-CN/BC/NCDs, was successfully synthesized by thermal condensation and hydrothermal methods, incorporating graphitic carbon nitride (P-CN), biochar (BC), and nitrogen-doped carbon quantum dots (NCDs). Alizarin red S (ARS) was selected as the model pollutant to evaluate the photocatalytic degradation performance. P-CN/BC/NCDs exhibited enhanced photocatalytic degradation performance under visible light irradiation, with a 4.5-fold improvement compared to P-CN alone. The optimally NCDs-loaded P-CN/BC nanocomposites exhibited high visible light absorption and high specific surface area. The increased photocatalytic activity was further confirmed by the increase in photocurrent intensity and the decrease in fluorescence intensity and resistance. XPS and FT-IR tests showed that NCDs, as co-catalysts of P-CN/BC, effectively promoted charge separation through ether bonds and electrostatic interactions. It was experimentally verified by free radical trapping experiments and EPR tests that •O2 was the primary active species in the photocatalytic process, while •OH served as an auxiliary site during the degradation process. Cyclic experiments demonstrated high reusability and excellent stability, with an activity exceeding 93.8 %. Decomposition intermediates and reaction pathways were identified by liquid-quality analysis. Photocatalyst pervasiveness was evaluated by using different pollutants including methyl orange (MO), rhodamine B (Rh B) under similar conditions. This design concept of functional synergistic modification of P-CN materials holds promise for application in various fields.
开发具有高电荷分离和迁移效率的光催化剂以利用阳光进行环境修复一直是研究的重点。本研究采用热凝结法和水热法成功合成了氮化石墨碳(P-CN)、生物炭(BC)和掺氮碳量子点(NCDs)三元复合光催化剂 P-CN/BC/NCDs。选择茜素红 S(ARS)作为模型污染物来评估其光催化降解性能。在可见光照射下,P-CN/BC/NCDs 表现出更强的光催化降解性能,与单独的 P-CN 相比提高了 4.5 倍。最佳的 NCDs 负载 P-CN/BC 纳米复合材料具有高可见光吸收率和高比表面积。光电流强度的增加以及荧光强度和电阻的降低进一步证实了光催化活性的提高。XPS 和 FT-IR 测试表明,NCD 作为 P-CN/BC 的辅助催化剂,通过醚键和静电作用有效地促进了电荷分离。自由基捕获实验和 EPR 测试验证了 -O2- 是光催化过程中的主要活性物种,而 -OH 则是降解过程中的辅助位点。循环实验表明,这种催化剂具有很高的重复利用率和出色的稳定性,活性超过 93.8%。通过液质分析确定了分解中间产物和反应途径。在类似条件下,使用甲基橙(MO)、罗丹明 B(Rh B)等不同污染物评估了光催化剂的普适性。这种对 P-CN 材料进行功能协同改性的设计理念有望应用于各个领域。
{"title":"A novel metal-free nanomaterial P-CN/BC/NCDs preparation and its performance of photocatalytic degradation","authors":"Xiaoling Liu ,&nbsp;Meng Wen ,&nbsp;Qi Guo ,&nbsp;Gang Wang ,&nbsp;Pengcheng Hao ,&nbsp;Wanyi Liu ,&nbsp;Haijuan Zhan ,&nbsp;Xiaoyan Chen ,&nbsp;Heping Li","doi":"10.1016/j.solidstatesciences.2024.107717","DOIUrl":"10.1016/j.solidstatesciences.2024.107717","url":null,"abstract":"<div><div>The development of photocatalysts with high charge separation and migration efficiencies for environmental remediation using sunlight had been a research priority. In this study, a ternary composite photocatalyst, P-CN/BC/NCDs, was successfully synthesized by thermal condensation and hydrothermal methods, incorporating graphitic carbon nitride (P-CN), biochar (BC), and nitrogen-doped carbon quantum dots (NCDs). Alizarin red S (ARS) was selected as the model pollutant to evaluate the photocatalytic degradation performance. P-CN/BC/NCDs exhibited enhanced photocatalytic degradation performance under visible light irradiation, with a 4.5-fold improvement compared to P-CN alone. The optimally NCDs-loaded P-CN/BC nanocomposites exhibited high visible light absorption and high specific surface area. The increased photocatalytic activity was further confirmed by the increase in photocurrent intensity and the decrease in fluorescence intensity and resistance. XPS and FT-IR tests showed that NCDs, as co-catalysts of P-CN/BC, effectively promoted charge separation through ether bonds and electrostatic interactions. It was experimentally verified by free radical trapping experiments and EPR tests that •O<sub>2</sub><sup>−</sup> was the primary active species in the photocatalytic process, while •OH served as an auxiliary site during the degradation process. Cyclic experiments demonstrated high reusability and excellent stability, with an activity exceeding 93.8 %. Decomposition intermediates and reaction pathways were identified by liquid-quality analysis. Photocatalyst pervasiveness was evaluated by using different pollutants including methyl orange (MO), rhodamine B (Rh B) under similar conditions. This design concept of functional synergistic modification of P-CN materials holds promise for application in various fields.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107717"},"PeriodicalIF":3.4,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of heteroatom-doped hierarchical porous carbon on hydrogen storage properties of MgH2 掺杂杂原子的分层多孔碳对 MgH2 储氢性能的影响
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-10-05 DOI: 10.1016/j.solidstatesciences.2024.107716
R. Li , J. Zhang , X.J. Zhou , X.T. Pang , X.X. Ji , J.F. Duan , X.Z. Lu , X.M. Chen , J.H. Li , D.W. Zhou
In this paper, the nitrogen doped (N-HPC), nitrogen and phosphorus co-doped hierarchical porous carbon (NP-HPC) are prepared by cross-linking phytic acid and poly pyrrole/aniline precursor, respectively. They are mixed with MgH2 by high-energy ball milling, and then their effects and mechanisms on the hydrogen absorption and desorption properties of MgH2 are investigated. Meanwhile, the hydrogen storage properties of MgH2 added with graphite (G) are also compared. The results show that the additions of NP-HPC, N-HPC, and G all exhibit the catalytic effect on the hydrogen absorption and desorption of MgH2. As for the hydrogen desorption, the catalytic effect is enhanced in the order of N-HPC, G and NP-HPC. Compared with pure MgH2, the hydrogen desorption temperature is reduced by 65.3 °C, 79.6 °C and 91.1 °C, respectively. Among them, the MgH2 + NP-HPC system can release 5.17 wt% hydrogen at 300 °C within 30 min. First-principles calculations reveal that the P-doped and vacancy-containing carbon materials significantly reduce the H2 recombination barrier from the surface of MgH2 and distort the atomic structure of near-surface layer of MgH2, which in turn weakens the Mg-H bond strength. This may be the intrinsic reason for the excellent catalytic effect of NP-HPC and vacancy-containing G on the hydrogen desorption performance of MgH2.
本文通过交联植酸和聚吡咯/苯胺前驱体,分别制备了氮掺杂(N-HPC)、氮磷共掺杂(NP-HPC)分层多孔碳。通过高能球磨将它们与 MgH2 混合,然后研究它们对 MgH2 吸氢和解吸性能的影响和机制。同时,还比较了加入石墨(G)的 MgH2 的储氢性能。结果表明,添加 NP-HPC、N-HPC 和 G 对 MgH2 的吸氢和解吸都有催化作用。在氢气解吸方面,催化效果依次为 N-HPC、G 和 NP-HPC。与纯 MgH2 相比,氢气解吸温度分别降低了 65.3 ℃、79.6 ℃ 和 91.1 ℃。其中,MgH2 + NP-HPC 体系可在 300 °C 温度下于 30 分钟内释放 5.17 wt% 的氢气。第一性原理计算显示,掺杂 P 和含空位的碳材料大大降低了来自 MgH2 表面的 H2 重组势垒,并扭曲了 MgH2 近表面层的原子结构,从而削弱了 Mg-H 键的强度。这可能是 NP-HPC 和含空位 G 对 MgH2 的氢解吸性能具有优异催化效果的内在原因。
{"title":"Effects of heteroatom-doped hierarchical porous carbon on hydrogen storage properties of MgH2","authors":"R. Li ,&nbsp;J. Zhang ,&nbsp;X.J. Zhou ,&nbsp;X.T. Pang ,&nbsp;X.X. Ji ,&nbsp;J.F. Duan ,&nbsp;X.Z. Lu ,&nbsp;X.M. Chen ,&nbsp;J.H. Li ,&nbsp;D.W. Zhou","doi":"10.1016/j.solidstatesciences.2024.107716","DOIUrl":"10.1016/j.solidstatesciences.2024.107716","url":null,"abstract":"<div><div>In this paper, the nitrogen doped (N-HPC), nitrogen and phosphorus co-doped hierarchical porous carbon (NP-HPC) are prepared by cross-linking phytic acid and poly pyrrole/aniline precursor, respectively. They are mixed with MgH<sub>2</sub> by high-energy ball milling, and then their effects and mechanisms on the hydrogen absorption and desorption properties of MgH<sub>2</sub> are investigated. Meanwhile, the hydrogen storage properties of MgH<sub>2</sub> added with graphite (G) are also compared. The results show that the additions of NP-HPC, N-HPC, and G all exhibit the catalytic effect on the hydrogen absorption and desorption of MgH<sub>2</sub>. As for the hydrogen desorption, the catalytic effect is enhanced in the order of N-HPC, G and NP-HPC. Compared with pure MgH<sub>2</sub>, the hydrogen desorption temperature is reduced by 65.3 °C, 79.6 °C and 91.1 °C, respectively. Among them, the MgH<sub>2</sub> + NP-HPC system can release 5.17 wt% hydrogen at 300 °C within 30 min. First-principles calculations reveal that the P-doped and vacancy-containing carbon materials significantly reduce the H<sub>2</sub> recombination barrier from the surface of MgH<sub>2</sub> and distort the atomic structure of near-surface layer of MgH<sub>2</sub>, which in turn weakens the Mg-H bond strength. This may be the intrinsic reason for the excellent catalytic effect of NP-HPC and vacancy-containing G on the hydrogen desorption performance of MgH<sub>2</sub>.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107716"},"PeriodicalIF":3.4,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of gadolinium doping on structural, optical, and magnetic properties of CuS nanostructures 钆掺杂对 CuS 纳米结构的结构、光学和磁学特性的影响
IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2024-09-30 DOI: 10.1016/j.solidstatesciences.2024.107714
Sree Sesha Sudha Gayatri B, Madhusudhana Rao N
To examine the effect of rare earth ions on CuS nanostructures, a series of Gadolinium-doped copper sulphide (Cu1-xGdxS) nanostructures were synthesized through the hydrothermal method. These nanostructures were prepared at x = 0, 1, 3, 5, and 7 at. % concentrations. The prepared samples’ structural, optical, and magnetic characteristics were investigated. Powder X-ray diffraction and Raman analysis were performed to examine the structural analysis of the samples and confirm the existence of a covellite phase hexagonal structure. XPS analysis was conducted to study the valence states. Observations of the surface morphology study from FESEM reveal the formation of flower-shaped structures resembling nanospheres, while at lower magnification nanoflakes were observed. Optical reflectance spectra were recorded using UV–Vis spectroscopy, which showed the increase in bandgap as the concentration of Gd rises. The fluorescence spectrophotometer was utilized for the analysis of room-temperature photoluminescence. The prepared samples showed significant emission peaks at 435 nm. Fluorescence lifetime studies were carried out to confirm the fluorescence decay of CuS nanostructures doped with Gd. Magnetic measurements revealed that prepared samples exhibit an unexpected superparamagnetic nature at room temperature.
为了研究稀土离子对 CuS 纳米结构的影响,我们采用水热法合成了一系列掺杂钆的硫化铜(Cu1-xGdxS)纳米结构。这些纳米结构的 x = 0、1、3、5 和 7 的浓度分别为%的浓度下制备了这些纳米结构。研究了所制备样品的结构、光学和磁学特性。粉末 X 射线衍射和拉曼分析用于检查样品的结构分析,并确认了沸石相六方结构的存在。XPS 分析用于研究价态。通过 FESEM 对表面形貌的观察发现,形成了类似纳米球的花形结构,而在较低的放大倍率下则观察到了纳米片。使用紫外可见光谱仪记录的光学反射光谱显示,随着钆浓度的增加,带隙也在增加。荧光分光光度计用于分析室温光致发光。制备的样品在 435 纳米波长处显示出明显的发射峰。荧光寿命研究证实了掺杂钆的 CuS 纳米结构的荧光衰减。磁性测量显示,制备的样品在室温下具有意想不到的超顺磁性。
{"title":"Influence of gadolinium doping on structural, optical, and magnetic properties of CuS nanostructures","authors":"Sree Sesha Sudha Gayatri B,&nbsp;Madhusudhana Rao N","doi":"10.1016/j.solidstatesciences.2024.107714","DOIUrl":"10.1016/j.solidstatesciences.2024.107714","url":null,"abstract":"<div><div>To examine the effect of rare earth ions on CuS nanostructures, a series of Gadolinium-doped copper sulphide (Cu<sub>1-x</sub>Gd<sub>x</sub>S) nanostructures were synthesized through the hydrothermal method. These nanostructures were prepared at x = 0, 1, 3, 5, and 7 at. % concentrations. The prepared samples’ structural, optical, and magnetic characteristics were investigated. Powder X-ray diffraction and Raman analysis were performed to examine the structural analysis of the samples and confirm the existence of a covellite phase hexagonal structure. XPS analysis was conducted to study the valence states. Observations of the surface morphology study from FESEM reveal the formation of flower-shaped structures resembling nanospheres, while at lower magnification nanoflakes were observed. Optical reflectance spectra were recorded using UV–Vis spectroscopy, which showed the increase in bandgap as the concentration of Gd rises. The fluorescence spectrophotometer was utilized for the analysis of room-temperature photoluminescence. The prepared samples showed significant emission peaks at 435 nm. Fluorescence lifetime studies were carried out to confirm the fluorescence decay of CuS nanostructures doped with Gd. Magnetic measurements revealed that prepared samples exhibit an unexpected superparamagnetic nature at room temperature.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"157 ","pages":"Article 107714"},"PeriodicalIF":3.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solid State Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1