The magnetically controlled planar hyperlens which consists of an InSb-PMMA multilayered structure is proposed and analyzed. The ability of the proposed hyperlens to resolve subwavelength structures at THz region is demonstrated by electromagnetic numerical simulation. The asymmetric field pattern in the hyperlens is caused by the surface magnetoplasmon (SMP) propagating in the InSb-PMMA waveguide. By using transfer matrix method and the effective medium approach of the investigated components, the role of SMP played in the super-resolution is elucidated. Furthermore, the super-resolution of the proposed device under various frequencies is accomplished by merely changing the value of external magnetic field. The proposed device would provide a practical route for multi-functional material, real-time super-resolution imaging, photolithography, and THz imaging.
{"title":"Semiconductor-dielectric Multilayer surface magnetoplasmon planar hyperlens (Presentation Recording)","authors":"B. Cheng, Hong Wen Chen, Y. Lan, D. Tsai","doi":"10.1117/12.2188842","DOIUrl":"https://doi.org/10.1117/12.2188842","url":null,"abstract":"The magnetically controlled planar hyperlens which consists of an InSb-PMMA multilayered structure is proposed and analyzed. The ability of the proposed hyperlens to resolve subwavelength structures at THz region is demonstrated by electromagnetic numerical simulation. The asymmetric field pattern in the hyperlens is caused by the surface magnetoplasmon (SMP) propagating in the InSb-PMMA waveguide. By using transfer matrix method and the effective medium approach of the investigated components, the role of SMP played in the super-resolution is elucidated. Furthermore, the super-resolution of the proposed device under various frequencies is accomplished by merely changing the value of external magnetic field. The proposed device would provide a practical route for multi-functional material, real-time super-resolution imaging, photolithography, and THz imaging.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128205661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Osgood, S. Giardini, J. Carlson, Prabhuram Joghee, R. O'Hayre, K. Diest, M. Rothschild
Unlike a semiconductor, where the absorption is limited by the band gap, a “microrectenna array” could theoretically very efficiently rectify any desired portion of the infrared frequency spectrum (25 - 400 THz). We investigated vertical metal-insulator-metal (MIM) diodes that rectify vertical high-frequency fields produced by a metamaterial planar stripe-teeth Al or Au array (above the diodes), similar to stripe arrays that have demonstrated near-perfect absorption in the infrared due to critical coupling [1]. Using our design rules that maximize asymmetry (and therefore the component of the electric field pointed into the substrate, analogous to Second Harmonic Generation), we designed, fabricated, and analyzed these metamaterial-based microrectenna arrays. NbOx and Al2O3 were produced by anodization and ALD, respectively. Smaller visible-light Pt-NbOx-Nb rectennas have produced output power when illuminated by visible (514 nm) light [2]. The resonances of these new Au/NbOx/Nb and Al/Al2O3/Al microrectenna arrays, with larger dimensions and more complex nanostructures than in Ref. 1, were characterized by microscopic FTIR microscopy and agreed well with FDTD models, once the experimental refractive index values were entered into the model. Current-voltage measurements were carried out, showed that the Al/Al2O3/Al diodes have very large barrier heights and breakdown voltages, and were compared to our model of the MIM diode. We calculate expected THz-rectification using classical [3] and quantum [4] rectification models, and compare to measurements of direct current output, under infrared illumination. [1] C. Wu, et. al., Phys. Rev. B 84 (2011) 075102. [2] R. M. Osgood III, et. al., Proc. SPIE 8096, 809610 (2011). [3] A. Sanchez, et. al., J. Appl. Phys. 49 (1978) 5270. [4] J. R. Tucker and M. J. Feldman, Rev. of Mod. Phys. 57, (1985)1055.
与半导体不同,半导体的吸收受到带隙的限制,“微整流天线阵列”理论上可以非常有效地纠正红外频谱(25 - 400太赫兹)的任何期望部分。我们研究了垂直金属-绝缘体-金属(MIM)二极管,该二极管校正由超材料平面条纹齿Al或Au阵列(在二极管上方)产生的垂直高频场,类似于由于临界耦合而在红外中表现出近乎完美吸收的条纹阵列[1]。利用我们最大化不对称的设计规则(因此电场的分量指向衬底,类似于二次谐波产生),我们设计,制造和分析了这些基于超材料的微整流天线阵列。通过阳极氧化和ALD分别制备NbOx和Al2O3。较小的可见光Pt-NbOx-Nb天线在可见光(514 nm)照射下产生输出功率[2]。与文献1相比,这些新的Au/NbOx/Nb和Al/Al2O3/Al微整流天线阵列具有更大的尺寸和更复杂的纳米结构,通过微观FTIR显微镜对其进行了表征,并将实验折射率值输入到模型中,与FDTD模型很好地吻合。电流电压测量表明,Al/Al2O3/Al二极管具有非常大的势垒高度和击穿电压,并与我们的模型MIM二极管进行了比较。我们使用经典[3]和量子[4]整流模型计算了期望的太赫兹整流,并与红外照明下的直流输出测量结果进行了比较。[1]吴志强,等。Rev. B 84(2011) 075102。[2]王晓明,王晓明,等。基于gis的数据采集技术研究进展。[3]李建平,李建平。物理学报49(1978)5270。[4]刘志强,刘志强,刘志强,等。现代物理学报,2004,(3):555 - 555。
{"title":"Stripe-teeth metamaterial Al- and Nb-based rectennas (Presentation Recording)","authors":"R. Osgood, S. Giardini, J. Carlson, Prabhuram Joghee, R. O'Hayre, K. Diest, M. Rothschild","doi":"10.1117/12.2188779","DOIUrl":"https://doi.org/10.1117/12.2188779","url":null,"abstract":"Unlike a semiconductor, where the absorption is limited by the band gap, a “microrectenna array” could theoretically very efficiently rectify any desired portion of the infrared frequency spectrum (25 - 400 THz). We investigated vertical metal-insulator-metal (MIM) diodes that rectify vertical high-frequency fields produced by a metamaterial planar stripe-teeth Al or Au array (above the diodes), similar to stripe arrays that have demonstrated near-perfect absorption in the infrared due to critical coupling [1]. Using our design rules that maximize asymmetry (and therefore the component of the electric field pointed into the substrate, analogous to Second Harmonic Generation), we designed, fabricated, and analyzed these metamaterial-based microrectenna arrays. NbOx and Al2O3 were produced by anodization and ALD, respectively. Smaller visible-light Pt-NbOx-Nb rectennas have produced output power when illuminated by visible (514 nm) light [2]. The resonances of these new Au/NbOx/Nb and Al/Al2O3/Al microrectenna arrays, with larger dimensions and more complex nanostructures than in Ref. 1, were characterized by microscopic FTIR microscopy and agreed well with FDTD models, once the experimental refractive index values were entered into the model. Current-voltage measurements were carried out, showed that the Al/Al2O3/Al diodes have very large barrier heights and breakdown voltages, and were compared to our model of the MIM diode. We calculate expected THz-rectification using classical [3] and quantum [4] rectification models, and compare to measurements of direct current output, under infrared illumination. [1] C. Wu, et. al., Phys. Rev. B 84 (2011) 075102. [2] R. M. Osgood III, et. al., Proc. SPIE 8096, 809610 (2011). [3] A. Sanchez, et. al., J. Appl. Phys. 49 (1978) 5270. [4] J. R. Tucker and M. J. Feldman, Rev. of Mod. Phys. 57, (1985)1055.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121791504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Shalaev, M. Shalaginov, V. Vorobyov, S. Bogdanov, A. Akimov, A. Lagutchev, A. Kildishev, A. Boltasseva
Efficient generation of single photons is essential for the development of photonic quantum technologies. We have demonstrated that coupling a nanodiamond nitrogen-vacancy (NV) center to CMOS-compatible nanophotonic structures results in significant reduction of the excited state lifetime, increase in the collected single–photon emission, and modification of radiation pattern. In addition, we studied the effect of increased photonic density of states on spin dependent fluorescence contrast.
{"title":"Nitrogen-vacancy single-photon emission enhanced with nanophotonic structures (Presentation Recording)","authors":"V. Shalaev, M. Shalaginov, V. Vorobyov, S. Bogdanov, A. Akimov, A. Lagutchev, A. Kildishev, A. Boltasseva","doi":"10.1117/12.2190251","DOIUrl":"https://doi.org/10.1117/12.2190251","url":null,"abstract":"Efficient generation of single photons is essential for the development of photonic quantum technologies. We have demonstrated that coupling a nanodiamond nitrogen-vacancy (NV) center to CMOS-compatible nanophotonic structures results in significant reduction of the excited state lifetime, increase in the collected single–photon emission, and modification of radiation pattern. In addition, we studied the effect of increased photonic density of states on spin dependent fluorescence contrast.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"213 0 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122212082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We propose the exploitation of plasmons in graphene nanoislands as a promising platform for sensing through surface-enhanced infrared absorption and Raman scattering. Our calculations indicate that the large electrical tunability of graphene enables the identification of molecular resonances by recording broadband absorption or inelastic scattering, replacing wavelength-resolved light collection by a signal integrated over photon energy as a function of the graphene doping level. Our results pave the way for the development of novel cost-effective sensors capable of identifying spectral signatures of molecules without using spectrometers and laser sources.
{"title":"Infrared spectroscopy with tunable graphene plasmons (Presentation Recording)","authors":"A. Marini, I. Silveiro, J. F. Garcia de Abajo","doi":"10.1117/12.2190264","DOIUrl":"https://doi.org/10.1117/12.2190264","url":null,"abstract":"We propose the exploitation of plasmons in graphene nanoislands as a promising platform for sensing through surface-enhanced infrared absorption and Raman scattering. Our calculations indicate that the large electrical tunability of graphene enables the identification of molecular resonances by recording broadband absorption or inelastic scattering, replacing wavelength-resolved light collection by a signal integrated over photon energy as a function of the graphene doping level. Our results pave the way for the development of novel cost-effective sensors capable of identifying spectral signatures of molecules without using spectrometers and laser sources.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129223973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jörg Robin, J. Vogelsang, B. Nagy, P. Gross, C. Lienau
Image potential states are well established surface states of metallic films [1]. For a single metallic nanostructure these surface states can be localized in the near-field arising from illumination by a strong laser field. Thus single metallic nanostructures offer the unique possibility to study quantum systems with both high spatial and ultrafast temporal resolution. Here, we investigate the dynamics of Rydberg states localized to a sharp metallic nanotaper. For this purpose we realized a laser system delivering few-cycle pulses tunable over a wide wavelength range [2]. Pulses from a regenerative titanium:sapphire amplifier generate a white light continuum, from which both a proportion in the visible and in the infrared are amplified in two non-collinear optical parametric amplification (NOPA) stages. Difference frequency generation (DFG) of both stages provides pulses in the near-infrared. With a precisely delayed sequence of few-cycle pulses centered around 600 nm (NOPA#1 output) and 1600 nm (DFG output) we illuminate the apex of a sharply etched gold tip. Varying the delay we observe an exponential decay of photoemitted electrons with a distinctly asymmetric decay length on both sides, indicating the population of different states. Superimposed on the decay is a clearly discernible quantum beat pattern with a period of <50 fs, which arises from the motion of Rydberg photoelectrons bound within their own image potential. These results therefore constitute a step towards controlling single electron wavepackets released from a gold tip opening up fascinating perspectives for applications in ultrafast electron microscopy [3]. [1] Hofer, U. et al. Science 277, 1480 (1997) [2] Vogelsang, J., Robin J. et al. Opt. Express 22, 25295 (2014) [3] Petek, H. et al. ACS Nano 8, 5 (2014)
{"title":"Ultrafast coherent dynamics of Rydberg electrons bound in the image potential near a single metallic nano-object (Presentation Recording)","authors":"Jörg Robin, J. Vogelsang, B. Nagy, P. Gross, C. Lienau","doi":"10.1117/12.2190722","DOIUrl":"https://doi.org/10.1117/12.2190722","url":null,"abstract":"Image potential states are well established surface states of metallic films [1]. For a single metallic nanostructure these surface states can be localized in the near-field arising from illumination by a strong laser field. Thus single metallic nanostructures offer the unique possibility to study quantum systems with both high spatial and ultrafast temporal resolution. Here, we investigate the dynamics of Rydberg states localized to a sharp metallic nanotaper. For this purpose we realized a laser system delivering few-cycle pulses tunable over a wide wavelength range [2]. Pulses from a regenerative titanium:sapphire amplifier generate a white light continuum, from which both a proportion in the visible and in the infrared are amplified in two non-collinear optical parametric amplification (NOPA) stages. Difference frequency generation (DFG) of both stages provides pulses in the near-infrared. With a precisely delayed sequence of few-cycle pulses centered around 600 nm (NOPA#1 output) and 1600 nm (DFG output) we illuminate the apex of a sharply etched gold tip. Varying the delay we observe an exponential decay of photoemitted electrons with a distinctly asymmetric decay length on both sides, indicating the population of different states. Superimposed on the decay is a clearly discernible quantum beat pattern with a period of <50 fs, which arises from the motion of Rydberg photoelectrons bound within their own image potential. These results therefore constitute a step towards controlling single electron wavepackets released from a gold tip opening up fascinating perspectives for applications in ultrafast electron microscopy [3]. [1] Hofer, U. et al. Science 277, 1480 (1997) [2] Vogelsang, J., Robin J. et al. Opt. Express 22, 25295 (2014) [3] Petek, H. et al. ACS Nano 8, 5 (2014)","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"9547 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128966856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.
{"title":"Photonic quantum technologies (Presentation Recording)","authors":"J. O'Brien","doi":"10.1117/12.2190648","DOIUrl":"https://doi.org/10.1117/12.2190648","url":null,"abstract":"The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124461528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We introduce a new "universality class" of artificial optical media - photonic hyper-crystals. These hyperbolic metamaterials with periodic spatial variation of dielectric permittivity on subwavelength scale, combine the features of optical metamaterials and photonic crystals.
{"title":"Photonic hypercrystals (Presentation Recording)","authors":"E. Narimanov","doi":"10.1117/12.2191731","DOIUrl":"https://doi.org/10.1117/12.2191731","url":null,"abstract":"We introduce a new \"universality class\" of artificial optical media - photonic hyper-crystals. These hyperbolic metamaterials with periodic spatial variation of dielectric permittivity on subwavelength scale, combine the features of optical metamaterials and photonic crystals.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121212120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Prayakarao, B. Mendoza, Andrew Devine, C. Kyaw, R. V. van Dover, M. Noginov, V. Liberman
Vanadium oxide (VO2) is known to undergo a semiconductor-to-metal transition at 68°C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial designed and studied in this work is composed of subwavelength VO2 and Au layers and is predicted to have the temperature controlled transition from the hyperbolic phase to the metallic phase. The VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in the electrical conductivity as well as optical (transmission, reflection) experiments. The temperature depended changes in the absorption and transmission spectra of metamaterials and films have been observed experimentally and compared with the theory predictions.
{"title":"Tunable VO2/Au hyperbolic metamaterial (Presentation Recording)","authors":"S. Prayakarao, B. Mendoza, Andrew Devine, C. Kyaw, R. V. van Dover, M. Noginov, V. Liberman","doi":"10.1117/12.2190370","DOIUrl":"https://doi.org/10.1117/12.2190370","url":null,"abstract":"Vanadium oxide (VO2) is known to undergo a semiconductor-to-metal transition at 68°C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial designed and studied in this work is composed of subwavelength VO2 and Au layers and is predicted to have the temperature controlled transition from the hyperbolic phase to the metallic phase. The VO2 films and VO2/Au lamellar metamaterial stacks have been fabricated and studied in the electrical conductivity as well as optical (transmission, reflection) experiments. The temperature depended changes in the absorption and transmission spectra of metamaterials and films have been observed experimentally and compared with the theory predictions.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130666194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kate J. Norris, Jiaming Zhang, E. Merced-Grafals, S. Musunuru, M. Zhang, K. Samuels, Jianhua Yang, N. Kobayashi
The field of non-volatile memory devices has been boosted by resistive switching, a reversible change in electrical resistance of a dielectric layer through the application of a voltage potential. Tantalum oxide being one of the leading candidates for the dielectric component of resistance switching devices was investigated in this study. 55nm TaOx devices in all states were compared through cross sectional TEM techniques including HRTEM, EELS, and EFTEM and will be discussed in this presentation. Based on the chemical and physical features found in the cross sectioned nanodevices we will discuss the switching mechanism of these nanoscale devices.
{"title":"Tantalum oxide nanoscale resistive switching devices: TEM/EELS study (Presentation Recording)","authors":"Kate J. Norris, Jiaming Zhang, E. Merced-Grafals, S. Musunuru, M. Zhang, K. Samuels, Jianhua Yang, N. Kobayashi","doi":"10.1117/12.2192488","DOIUrl":"https://doi.org/10.1117/12.2192488","url":null,"abstract":"The field of non-volatile memory devices has been boosted by resistive switching, a reversible change in electrical resistance of a dielectric layer through the application of a voltage potential. Tantalum oxide being one of the leading candidates for the dielectric component of resistance switching devices was investigated in this study. 55nm TaOx devices in all states were compared through cross sectional TEM techniques including HRTEM, EELS, and EFTEM and will be discussed in this presentation. Based on the chemical and physical features found in the cross sectioned nanodevices we will discuss the switching mechanism of these nanoscale devices.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126759439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Xiao, Ziliang Ye, Ying Wang, Hanyu Zhu, Yuang Wang, Xiang Zhang
Layered transition metal dichalcogenide (TMDC) with hexagonal lattice structure has six valleys at corners of the Brillouin zone. The nontrivial Berry curvature distribution renders the adjacent valleys with distinguishable valley angular momentum, which enables itself as an ideal 2D valleytronic platform. Recent studies reported strong excitonic effect in monolayer WS2 and each excitonic state is identified with a well-defined orbital angular momentum, however the anticipated selection rules involve nonlinear optical processes are not clear. Here we show valley angular momentum (VAM) together with exciton angular momentum (EAM) impose different valley-exciton locked selection rules for second harmonic generation (SHG) and two photon luminescence (TPL) in monolayer WS2. Moreover, the two-photon induced valley populations yield net circular polarized photoluminescence after a sub-ps interexciton relaxation. The work demonstrates a new approach to control valley population at different excitonic states for next generation of optical circuits and quantum information computing.
{"title":"Optical selection rule based on valley-exciton locking in monolayer TMDC (Presentation Recording)","authors":"Jun Xiao, Ziliang Ye, Ying Wang, Hanyu Zhu, Yuang Wang, Xiang Zhang","doi":"10.1117/12.2186685","DOIUrl":"https://doi.org/10.1117/12.2186685","url":null,"abstract":"Layered transition metal dichalcogenide (TMDC) with hexagonal lattice structure has six valleys at corners of the Brillouin zone. The nontrivial Berry curvature distribution renders the adjacent valleys with distinguishable valley angular momentum, which enables itself as an ideal 2D valleytronic platform. Recent studies reported strong excitonic effect in monolayer WS2 and each excitonic state is identified with a well-defined orbital angular momentum, however the anticipated selection rules involve nonlinear optical processes are not clear. Here we show valley angular momentum (VAM) together with exciton angular momentum (EAM) impose different valley-exciton locked selection rules for second harmonic generation (SHG) and two photon luminescence (TPL) in monolayer WS2. Moreover, the two-photon induced valley populations yield net circular polarized photoluminescence after a sub-ps interexciton relaxation. The work demonstrates a new approach to control valley population at different excitonic states for next generation of optical circuits and quantum information computing.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122623438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}