Pub Date : 2023-11-20DOI: 10.3390/microbiolres14040132
S. Fu, Xinyue Tian, Jingyang Li, Yuzhen Yuan, Jing He, Chun Peng, Ling Guo, Chun Ye, Yu Liu, Bingbing Zong, Y. Qiu
The gut microbiota is engaged in multiple interactions affecting host health, and gut dysbiosis can lead to many diseases. However, the effects of acetylcysteine (NAC) on the gut microbiome composition in pigs using metagenomic sequencing have not been reported. In this study, we used metagenome sequencing to study the effects of NAC on the pig gut microbiome. Sequencing results showed that microbial diversity was changed after NAC treatment. Antibiotic Resistance Genes Database (ARDB) analysis demonstrated that the main genes modified were macb, tsnr, norm, bl2be-per, vansb and pbp1b in the NAC group. Our data showed that NAC could affect microbial distribution at the phylum, gene and species levels. At the species level, NAC significantly increased the abundances of Megasphaera, Lactobacillus reuteri and Megasphaeraelsdenii and reduced the abundances of Phascolarctobacterium succinatutens, Prevotellacopri and Selenomonasbovis compared with the control group. In addition, Gene Ontology (GO) analysis revealed that in the NAC group, cellular process, metabolic process and single-organism process were the dominant terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that RNA transport, MAPK signaling pathway, cell cycle, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and VEGF signaling pathway were the dominant signaling pathways in the NAC group. In conclusion, our results suggest that NAC may modify the piglet gut microbiome composition and these findings might provide a new strategy for maintaining animal and human health in the future.
{"title":"Metagenomic Sequencing Analysis of the Effects of Acetylcysteine on the Pig Gut Microbiome","authors":"S. Fu, Xinyue Tian, Jingyang Li, Yuzhen Yuan, Jing He, Chun Peng, Ling Guo, Chun Ye, Yu Liu, Bingbing Zong, Y. Qiu","doi":"10.3390/microbiolres14040132","DOIUrl":"https://doi.org/10.3390/microbiolres14040132","url":null,"abstract":"The gut microbiota is engaged in multiple interactions affecting host health, and gut dysbiosis can lead to many diseases. However, the effects of acetylcysteine (NAC) on the gut microbiome composition in pigs using metagenomic sequencing have not been reported. In this study, we used metagenome sequencing to study the effects of NAC on the pig gut microbiome. Sequencing results showed that microbial diversity was changed after NAC treatment. Antibiotic Resistance Genes Database (ARDB) analysis demonstrated that the main genes modified were macb, tsnr, norm, bl2be-per, vansb and pbp1b in the NAC group. Our data showed that NAC could affect microbial distribution at the phylum, gene and species levels. At the species level, NAC significantly increased the abundances of Megasphaera, Lactobacillus reuteri and Megasphaeraelsdenii and reduced the abundances of Phascolarctobacterium succinatutens, Prevotellacopri and Selenomonasbovis compared with the control group. In addition, Gene Ontology (GO) analysis revealed that in the NAC group, cellular process, metabolic process and single-organism process were the dominant terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that RNA transport, MAPK signaling pathway, cell cycle, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and VEGF signaling pathway were the dominant signaling pathways in the NAC group. In conclusion, our results suggest that NAC may modify the piglet gut microbiome composition and these findings might provide a new strategy for maintaining animal and human health in the future.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"162 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139258402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.3390/microbiolres14040130
Omkar Pokharkar, G. Zyryanov, M. Tsurkan
Among the oldest marine species on the planet, the genus Salinispora is often encountered inhabiting sediments and other marine creatures in tropical and subtropical marine settings. This bacterial genus produces a plethora of natural products. The purpose of this study was to examine the potential for salinispora-based natural products (NPs) to combat the SARS-CoV-2 virus. The RCSB PDB was used to obtain the crystal structures of proteins 3CLpro and PLpro. All 125 NPs were obtained from online databases. Using Autodock Vina software v1.2.0 the molecular docking process was carried out after the proteins and ligands were prepared. Assessments of binding affinities and interacting amino acids were rigorously examined prior to MD simulations. The docking experiments revealed 35 NPs in total for both 3CLpro and PLpro, with high docking scores ranging from −8.0 kcal/mol to −9.0 kcal/mol. However, a thorough binding residue analyses of all docked complexes filtered nine NPs showing strong interactions with HIS: 41 and CYS: 145 of 3CLpro. Whereas, for PLpro, merely six NPs presented good interactions with residues CYS: 111, HIS: 272, and ASP: 286. Further research was conducted on residue–residue and ligand–residue interactions in both the filtered docked complexes and the Apo-protein structures using the Protein Contacts Atlas website. All complexes were found to be stable in CABS-flex 2.0 MD simulations conducted at various time frames (50, 125, 500, and 1000 cycles). In conclusion, salinaphthoquinone B appears to be the most promising metabolite, based on favorable amino acid interactions forming stable confirmations towards 3CLpro and PLpro enzymes, acting as a dual inhibitor.
{"title":"Natural Products from Marine Actinomycete Genus Salinispora Might Inhibit 3CLpro and PLpro Proteins of SARS-CoV-2: An In Silico Evidence","authors":"Omkar Pokharkar, G. Zyryanov, M. Tsurkan","doi":"10.3390/microbiolres14040130","DOIUrl":"https://doi.org/10.3390/microbiolres14040130","url":null,"abstract":"Among the oldest marine species on the planet, the genus Salinispora is often encountered inhabiting sediments and other marine creatures in tropical and subtropical marine settings. This bacterial genus produces a plethora of natural products. The purpose of this study was to examine the potential for salinispora-based natural products (NPs) to combat the SARS-CoV-2 virus. The RCSB PDB was used to obtain the crystal structures of proteins 3CLpro and PLpro. All 125 NPs were obtained from online databases. Using Autodock Vina software v1.2.0 the molecular docking process was carried out after the proteins and ligands were prepared. Assessments of binding affinities and interacting amino acids were rigorously examined prior to MD simulations. The docking experiments revealed 35 NPs in total for both 3CLpro and PLpro, with high docking scores ranging from −8.0 kcal/mol to −9.0 kcal/mol. However, a thorough binding residue analyses of all docked complexes filtered nine NPs showing strong interactions with HIS: 41 and CYS: 145 of 3CLpro. Whereas, for PLpro, merely six NPs presented good interactions with residues CYS: 111, HIS: 272, and ASP: 286. Further research was conducted on residue–residue and ligand–residue interactions in both the filtered docked complexes and the Apo-protein structures using the Protein Contacts Atlas website. All complexes were found to be stable in CABS-flex 2.0 MD simulations conducted at various time frames (50, 125, 500, and 1000 cycles). In conclusion, salinaphthoquinone B appears to be the most promising metabolite, based on favorable amino acid interactions forming stable confirmations towards 3CLpro and PLpro enzymes, acting as a dual inhibitor.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"38 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139274794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-12DOI: 10.3390/microbiolres14040129
Ramamoorthi M. Sivashankari, Yuki Miyahara, Takeharu Tsuge
The use of stable isotope-labeled polymers in in situ biodegradation tests provides detailed information on the degradation process. As isotope-labeled raw chemicals are generally expensive, it is desirable to prepare polymer samples with high production yields and high isotope-labeling ratios. The biodegradable plastic poly[(R)-3-hydroxybutyrate)] (P(3HB)) is produced by microorganisms. In this study, to produce carbon 13 (13C)-labeled P(3HB) from [U-13C6]D-glucose (13C-glucose), the culture conditions needed for high production yields and high 13C-labeling ratios were investigated using Ralstonia eutropha NCIMB 11599 and recombinant Escherichia coli JM109. We found that over 10 g/L of P(3HB) could be obtained when these microorganisms were cultured in Luria-Bertani (LB3) medium containing 3 g/L NaCl and 40 g/L 13C-glucose, while 1.4–4.7 g/L of P(3HB) was obtained when a mineral salt (MS) medium containing 20 g/L 13C-glucose was used. The 13C-labeling ratio of P(3HB) was determined by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry (GC-MS), and both analytical methods yielded nearly identical results. High 13C-labeling ratios (97.6 atom% by GC-MS) were observed in the MS medium, whereas low 13C-labeling ratios (88.8–94.4 atom% by GC-MS) were observed in the LB3 medium. Isotope effects were observed for the P(3HB) content in cells cultured in the LB3 medium and the polydispersity of P(3HB).
{"title":"Poly(3-hydroxybutyrate) Biosynthesis from [U-13C6]D-Glucose by Ralstonia eutropha NCIMB 11599 and Recombinant Escherichia coli","authors":"Ramamoorthi M. Sivashankari, Yuki Miyahara, Takeharu Tsuge","doi":"10.3390/microbiolres14040129","DOIUrl":"https://doi.org/10.3390/microbiolres14040129","url":null,"abstract":"The use of stable isotope-labeled polymers in in situ biodegradation tests provides detailed information on the degradation process. As isotope-labeled raw chemicals are generally expensive, it is desirable to prepare polymer samples with high production yields and high isotope-labeling ratios. The biodegradable plastic poly[(R)-3-hydroxybutyrate)] (P(3HB)) is produced by microorganisms. In this study, to produce carbon 13 (13C)-labeled P(3HB) from [U-13C6]D-glucose (13C-glucose), the culture conditions needed for high production yields and high 13C-labeling ratios were investigated using Ralstonia eutropha NCIMB 11599 and recombinant Escherichia coli JM109. We found that over 10 g/L of P(3HB) could be obtained when these microorganisms were cultured in Luria-Bertani (LB3) medium containing 3 g/L NaCl and 40 g/L 13C-glucose, while 1.4–4.7 g/L of P(3HB) was obtained when a mineral salt (MS) medium containing 20 g/L 13C-glucose was used. The 13C-labeling ratio of P(3HB) was determined by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry (GC-MS), and both analytical methods yielded nearly identical results. High 13C-labeling ratios (97.6 atom% by GC-MS) were observed in the MS medium, whereas low 13C-labeling ratios (88.8–94.4 atom% by GC-MS) were observed in the LB3 medium. Isotope effects were observed for the P(3HB) content in cells cultured in the LB3 medium and the polydispersity of P(3HB).","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"37 14","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135038691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.3390/microbiolres14040128
Hanan Balto, Musarat Amina, Ramesa Shafi Bhat, Hanan M. Al-Yousef, Sayed H. Auda, Afaf Elansary
The current study evaluated the biogenic synthesis of nickel oxide nanoparticles (SP-NiONPs) from the root extract of (Salvadora persica) S. persica and their biological properties. The nanoparticles were characterized using spectroscopic and microscopic techniques and then evaluated for their antimicrobial properties against 10 oral pathogens. The ultraviolet-visible (UV–Vis) spectra exhibited a distinctive resonance spectrum at 334 nm for the SP-NiONPs produced from S. persica. The fourier transform infrared (FTIR) analysis revealed the presence of functional groups of biomolecules of S. persica that served as reducing and capping agents of the SP-NiONPs. The scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyses showed that the nanoparticles were spherical-shaped, tightly packed, and ranged in size from 18.20 nm to 45.12 nm. The energy dispersive x-ray (EDX) analysis confirmed 69.9% of the nickel (Ni) content by weight, and the X-ray diffraction (XRD) results showed the face-centered cubic (FCC) crystalline structure of the formed SP-NiONPs. The antioxidant activity of the SP-NiONPs exhibited a dose-dependent profile with an IC50 value of 51.45 ± 0.65 and a 54.13 ± 0.98 DPPH• and ABTS•+ radical scavenging activity, respectively. The SP-NiONPs showed an antibacterial activity against all the test strains; however, E. cloacae was found to be the most sensitive strain, with an inhibition zone of 31 ± 0.50 mm. The SEM image of the E. cloacae cells treated with SP-NiONPs showed irregular shapes and ruptured, destroyed cell membranes. Our findings revealed that SP-NiONPs could be used as excellent antibacterial agents against oral pathogens.
{"title":"Green Synthesis of Nickel Nanoparticles Using Salvadora persica and Their Application in Antimicrobial Activity against Oral Microbes","authors":"Hanan Balto, Musarat Amina, Ramesa Shafi Bhat, Hanan M. Al-Yousef, Sayed H. Auda, Afaf Elansary","doi":"10.3390/microbiolres14040128","DOIUrl":"https://doi.org/10.3390/microbiolres14040128","url":null,"abstract":"The current study evaluated the biogenic synthesis of nickel oxide nanoparticles (SP-NiONPs) from the root extract of (Salvadora persica) S. persica and their biological properties. The nanoparticles were characterized using spectroscopic and microscopic techniques and then evaluated for their antimicrobial properties against 10 oral pathogens. The ultraviolet-visible (UV–Vis) spectra exhibited a distinctive resonance spectrum at 334 nm for the SP-NiONPs produced from S. persica. The fourier transform infrared (FTIR) analysis revealed the presence of functional groups of biomolecules of S. persica that served as reducing and capping agents of the SP-NiONPs. The scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyses showed that the nanoparticles were spherical-shaped, tightly packed, and ranged in size from 18.20 nm to 45.12 nm. The energy dispersive x-ray (EDX) analysis confirmed 69.9% of the nickel (Ni) content by weight, and the X-ray diffraction (XRD) results showed the face-centered cubic (FCC) crystalline structure of the formed SP-NiONPs. The antioxidant activity of the SP-NiONPs exhibited a dose-dependent profile with an IC50 value of 51.45 ± 0.65 and a 54.13 ± 0.98 DPPH• and ABTS•+ radical scavenging activity, respectively. The SP-NiONPs showed an antibacterial activity against all the test strains; however, E. cloacae was found to be the most sensitive strain, with an inhibition zone of 31 ± 0.50 mm. The SEM image of the E. cloacae cells treated with SP-NiONPs showed irregular shapes and ruptured, destroyed cell membranes. Our findings revealed that SP-NiONPs could be used as excellent antibacterial agents against oral pathogens.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":" 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135191588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-09DOI: 10.3390/microbiolres14040127
Massimo Pisano, Francesco Giordano, Giuseppe Sangiovanni, Nicoletta Capuano, Alfonso Acerra, Francesco D’Ambrosio
Background: The human being is defined as a ‘superorganism’ since it is made up of its own cells and microorganisms that reside inside and outside the human body. Commensal microorganisms, which are even ten times more numerous than the cells present in the body, perform very important functions for the host, as they contribute to the health of the host, resist pathogens, maintain homeostasis, and modulate the immune system. In the mouth, there are different types of microorganisms, such as viruses, mycoplasmas, bacteria, archaea, fungi, and protozoa, often organized in communities. The aim of this umbrella review is to evaluate if there is a connection between the oral microbiome and systematic diseases. Methodology: A literature search was conducted through PubMed/MEDLINE, the COCHRANE library, Scopus, and Web of Science databases without any restrictions. Because of the large number of articles included and the wide range of methods and results among the studies found, it was not possible to report the results in the form of a systematic review or meta-analysis. Therefore, a narrative review was conducted. We obtained 73.931 results, of which 3593 passed the English language filter. After the screening of the titles and abstracts, non-topic entries were excluded, but most articles obtained concerned interactions between the oral microbiome and systemic diseases. Discussion: A description of the normal microbial flora was present in the oral cavity both in physiological conditions and in local pathological conditions and in the most widespread systemic pathologies. Furthermore, the therapeutic precautions that the clinician can follow in order to intervene on the change in the microbiome have been described. Conclusions: This review highlights what are the intercorrelations of the oral microbiota in healthy subjects and in subjects in pathological conditions. According to several recent studies, there is a clear correlation between dysbiosis of the oral microbiota and diseases such as diabetes, cardiovascular diseases, chronic inflammatory diseases, and neurodegenerative diseases.
背景:人类被定义为“超级有机体”,因为它是由自己的细胞和微生物组成的,这些细胞和微生物居住在人体内外。共生微生物的数量甚至是人体细胞的十倍,它们对宿主起着非常重要的作用,因为它们有助于宿主的健康,抵抗病原体,维持体内平衡,调节免疫系统。口腔中有不同类型的微生物,如病毒、支原体、细菌、古生菌、真菌和原生动物,通常以群落的形式组织。本综述的目的是评估口腔微生物群与系统性疾病之间是否存在联系。方法:通过PubMed/MEDLINE、COCHRANE图书馆、Scopus和Web of Science数据库进行文献检索,没有任何限制。由于纳入的文章数量众多,所发现的研究方法和结果范围广泛,因此不可能以系统评价或荟萃分析的形式报告结果。因此,进行了叙述性的回顾。我们获得了73.931个结果,其中3593个通过了英语语言过滤器。在对标题和摘要进行筛选后,排除了非主题条目,但获得的大多数文章都涉及口腔微生物组与全身性疾病之间的相互作用。讨论:正常微生物菌群的描述是存在于口腔的生理条件和局部病理条件和最广泛的系统性病理。此外,还描述了临床医生可以遵循的治疗预防措施,以便干预微生物组的变化。结论:本综述强调了健康受试者和病理受试者口腔微生物群的相互关系。根据最近的几项研究,口腔微生物群失调与糖尿病、心血管疾病、慢性炎症性疾病和神经退行性疾病等疾病之间存在明显的相关性。
{"title":"The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review","authors":"Massimo Pisano, Francesco Giordano, Giuseppe Sangiovanni, Nicoletta Capuano, Alfonso Acerra, Francesco D’Ambrosio","doi":"10.3390/microbiolres14040127","DOIUrl":"https://doi.org/10.3390/microbiolres14040127","url":null,"abstract":"Background: The human being is defined as a ‘superorganism’ since it is made up of its own cells and microorganisms that reside inside and outside the human body. Commensal microorganisms, which are even ten times more numerous than the cells present in the body, perform very important functions for the host, as they contribute to the health of the host, resist pathogens, maintain homeostasis, and modulate the immune system. In the mouth, there are different types of microorganisms, such as viruses, mycoplasmas, bacteria, archaea, fungi, and protozoa, often organized in communities. The aim of this umbrella review is to evaluate if there is a connection between the oral microbiome and systematic diseases. Methodology: A literature search was conducted through PubMed/MEDLINE, the COCHRANE library, Scopus, and Web of Science databases without any restrictions. Because of the large number of articles included and the wide range of methods and results among the studies found, it was not possible to report the results in the form of a systematic review or meta-analysis. Therefore, a narrative review was conducted. We obtained 73.931 results, of which 3593 passed the English language filter. After the screening of the titles and abstracts, non-topic entries were excluded, but most articles obtained concerned interactions between the oral microbiome and systemic diseases. Discussion: A description of the normal microbial flora was present in the oral cavity both in physiological conditions and in local pathological conditions and in the most widespread systemic pathologies. Furthermore, the therapeutic precautions that the clinician can follow in order to intervene on the change in the microbiome have been described. Conclusions: This review highlights what are the intercorrelations of the oral microbiota in healthy subjects and in subjects in pathological conditions. According to several recent studies, there is a clear correlation between dysbiosis of the oral microbiota and diseases such as diabetes, cardiovascular diseases, chronic inflammatory diseases, and neurodegenerative diseases.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":" 42","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135240898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.3390/microbiolres14040126
Gabriele Sass, David A. Stevens
Co-infection with Pseudomonas (Pa) and Aspergillus (Af) commonly occurs in the airways of immune-compromised patients or in cystic fibrosis and frequently results in more severe outcomes than mono-infection. We affixed both pathogens to agar beads, separately (Af beads, Pa beads) or on the same bead (AfPa beads) and infected immunocompetent mice, an in vivo Af-Pa interaction model. Endotracheal administration was superior to intranasal, allowing larger beads to be administered resulting in longer lung residence. The CFU of the Af beads, diameter 150–250 µm, were detectable for ≤21 days. Af-bead-infected mice cleared the Af infection more than mice infected with AfPa beads, but Af clearance was the same with a combination of beads (Af beads + Pa beads). Pa-infected mice had more Pa clearance in the presence of Af than with Pa beads alone. In vitro studies supported our conclusion that the close proximity of Af and Pa (on AfPa beads) was disadvantageous for Af, whereas a larger distance (Af + Pa beads) was not. We demonstrated that the interaction between Pseudomonas and Aspergillus during co-infection can be studied in immunocompetent mice. The mutual inhibition of Af and Pa in vivo appears to be dependent on their proximity. We review the literature relating to animal models of infection with Af, Pa, or both.
{"title":"Model of Pulmonary Co-Infection of Aspergillus and Pseudomonas in Immunocompetent Mice","authors":"Gabriele Sass, David A. Stevens","doi":"10.3390/microbiolres14040126","DOIUrl":"https://doi.org/10.3390/microbiolres14040126","url":null,"abstract":"Co-infection with Pseudomonas (Pa) and Aspergillus (Af) commonly occurs in the airways of immune-compromised patients or in cystic fibrosis and frequently results in more severe outcomes than mono-infection. We affixed both pathogens to agar beads, separately (Af beads, Pa beads) or on the same bead (AfPa beads) and infected immunocompetent mice, an in vivo Af-Pa interaction model. Endotracheal administration was superior to intranasal, allowing larger beads to be administered resulting in longer lung residence. The CFU of the Af beads, diameter 150–250 µm, were detectable for ≤21 days. Af-bead-infected mice cleared the Af infection more than mice infected with AfPa beads, but Af clearance was the same with a combination of beads (Af beads + Pa beads). Pa-infected mice had more Pa clearance in the presence of Af than with Pa beads alone. In vitro studies supported our conclusion that the close proximity of Af and Pa (on AfPa beads) was disadvantageous for Af, whereas a larger distance (Af + Pa beads) was not. We demonstrated that the interaction between Pseudomonas and Aspergillus during co-infection can be studied in immunocompetent mice. The mutual inhibition of Af and Pa in vivo appears to be dependent on their proximity. We review the literature relating to animal models of infection with Af, Pa, or both.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"346 2‐3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135392457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.3390/microbiolres14040125
Monserrat Alonso-Vargas, Lizbeth Anahí Portillo-Torres, Yuridia Mercado-Flores, María del Rocío Ramírez-Vargas, Arturo Cadena-Ramírez
This study elucidates the effects of Carbon/Nitrogen (C/N) ratios on the respiratory behavior of Paracoccus denitrificans PD1222, a microorganism noted for its metabolic adaptability. We explored its ability to undergo dissimilative denitrification, a less understood process where energy is harnessed from nutrient consumption without resultant growth. By manipulating the C/N ratios and available nitrogen sources in our experimental design, we were able to demonstrate significant shifts in P. denitrificans metabolic behavior. At a C/N ratio of 1.34, with nitrate as the sole nitrogen source, dissimilative denitrification occurred with no observable increase in biomass. Succinate, the provided carbon source, was quickly metabolized without contributing to cell growth. Our results contribute to the understanding of environmental microbiology, specifically denitrification processes, and indicate P. denitrificans’s potential for wastewater treatment scenarios, where pollutant consumption without biomass proliferation is desired.
{"title":"The Respiratory Way without Microbial Growth of Paracoccus denitrificans","authors":"Monserrat Alonso-Vargas, Lizbeth Anahí Portillo-Torres, Yuridia Mercado-Flores, María del Rocío Ramírez-Vargas, Arturo Cadena-Ramírez","doi":"10.3390/microbiolres14040125","DOIUrl":"https://doi.org/10.3390/microbiolres14040125","url":null,"abstract":"This study elucidates the effects of Carbon/Nitrogen (C/N) ratios on the respiratory behavior of Paracoccus denitrificans PD1222, a microorganism noted for its metabolic adaptability. We explored its ability to undergo dissimilative denitrification, a less understood process where energy is harnessed from nutrient consumption without resultant growth. By manipulating the C/N ratios and available nitrogen sources in our experimental design, we were able to demonstrate significant shifts in P. denitrificans metabolic behavior. At a C/N ratio of 1.34, with nitrate as the sole nitrogen source, dissimilative denitrification occurred with no observable increase in biomass. Succinate, the provided carbon source, was quickly metabolized without contributing to cell growth. Our results contribute to the understanding of environmental microbiology, specifically denitrification processes, and indicate P. denitrificans’s potential for wastewater treatment scenarios, where pollutant consumption without biomass proliferation is desired.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135590005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-04DOI: 10.3390/microbiolres14040123
Yana Ilieva, Maya Margaritova Zaharieva, Lyudmila Dimitrova, Mila D. Kaleva, Joanna Jordanova, Maya Dimitrova, Michaela Beltcheva, Iliana Aleksieva, Yordan Georgiev, Yordan Manasiev, Hristo Najdenski
Small mammals are bioindicator organisms, and, through their gut microbiota (GM), could be carriers of pathogens and resistant bacteria. Also, wild GM composition has been suggested to have large implications for conservation efforts. Seventeen bacterial species were obtained from intestinal samples of Bulgarian yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) via classic microbiological cultivation and biochemical identification. Twelve Gram-negative—Escherichia coli, Yersinia enterocolitica, Yersinia kristensenii, Hafnia alvei, Serratia liquefaciens, Serratia marcescens, Serratia proteamaculans, Pseudescherichia vulneris, Klebsiella pneumoniae ssp. ozaenae, Enterobacter cloacea, Pantoea agglomerans, Pseudomonas fluorescens group—and five Gram-positive bacteria, Enterococcus faecium, Enterococcus faecalis, Enterococcus hirae, Bacillus thuringiensis, and Lysinibacillus sphaericus, were discovered. Enterobacteriaceae was the most abundant family. The isolates belonged to one of the major reported taxa in rodents, Firmicutes (the Gram-positive species) and to the less abundant, but still among the first, phyla, Proteobacteria (the Gram-negative strains). We did not find any members of the other major phylum, Bacteroidetes, likely due to lack of metagenomic techniques. E. coli and Y. enterocolitica were confirmed with polymerase chain reaction. Almost all strains had pathogenic potential, but the good condition of the test animals suggests their commensal role. The Y. enterocolitica strains did not have the ail pathogenicity gene. There was high prevalence of multi-drug resistance (MDR), but for the expected species with high level of intrinsic resistance, such as the enterococci and S. marcescens. E. coli and some other species had very low antimicrobial resistance (AMR), in line with other studies of wild rodents. Many of the strains had biotechnological potential; e.g., B. thuringiensis is the most used biological insecticide, with its proteins incorporated into the Bt genetically modified maize. The GM of the tested wild mice and voles from Bulgaria proved to be a source of bacterial diversity; many of the strains were promising in terms of biotechnology, and, in addition, the samples did not contain the African swine fever virus.
{"title":"Preliminary Data on Escherichia coli, Yersinia enterocolitica, and Other Bacteria, as well as Absent African Swine Fever Virus in the Gut Microbiota of Wild Mice and Voles from Bulgaria","authors":"Yana Ilieva, Maya Margaritova Zaharieva, Lyudmila Dimitrova, Mila D. Kaleva, Joanna Jordanova, Maya Dimitrova, Michaela Beltcheva, Iliana Aleksieva, Yordan Georgiev, Yordan Manasiev, Hristo Najdenski","doi":"10.3390/microbiolres14040123","DOIUrl":"https://doi.org/10.3390/microbiolres14040123","url":null,"abstract":"Small mammals are bioindicator organisms, and, through their gut microbiota (GM), could be carriers of pathogens and resistant bacteria. Also, wild GM composition has been suggested to have large implications for conservation efforts. Seventeen bacterial species were obtained from intestinal samples of Bulgarian yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) via classic microbiological cultivation and biochemical identification. Twelve Gram-negative—Escherichia coli, Yersinia enterocolitica, Yersinia kristensenii, Hafnia alvei, Serratia liquefaciens, Serratia marcescens, Serratia proteamaculans, Pseudescherichia vulneris, Klebsiella pneumoniae ssp. ozaenae, Enterobacter cloacea, Pantoea agglomerans, Pseudomonas fluorescens group—and five Gram-positive bacteria, Enterococcus faecium, Enterococcus faecalis, Enterococcus hirae, Bacillus thuringiensis, and Lysinibacillus sphaericus, were discovered. Enterobacteriaceae was the most abundant family. The isolates belonged to one of the major reported taxa in rodents, Firmicutes (the Gram-positive species) and to the less abundant, but still among the first, phyla, Proteobacteria (the Gram-negative strains). We did not find any members of the other major phylum, Bacteroidetes, likely due to lack of metagenomic techniques. E. coli and Y. enterocolitica were confirmed with polymerase chain reaction. Almost all strains had pathogenic potential, but the good condition of the test animals suggests their commensal role. The Y. enterocolitica strains did not have the ail pathogenicity gene. There was high prevalence of multi-drug resistance (MDR), but for the expected species with high level of intrinsic resistance, such as the enterococci and S. marcescens. E. coli and some other species had very low antimicrobial resistance (AMR), in line with other studies of wild rodents. Many of the strains had biotechnological potential; e.g., B. thuringiensis is the most used biological insecticide, with its proteins incorporated into the Bt genetically modified maize. The GM of the tested wild mice and voles from Bulgaria proved to be a source of bacterial diversity; many of the strains were promising in terms of biotechnology, and, in addition, the samples did not contain the African swine fever virus.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"38 15","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135773331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-04DOI: 10.3390/microbiolres14040124
Ramón Ignacio Arteaga-Garibay, Raúl Jacobo Delgado-Macuil, Lorena Jacqueline Gómez-Godínez, Carlos Iván Cruz-Cárdenas, Zuamí Villagrán, Silvia Giono-Cerezo, Lily Xochitl Zelaya-Molina, Luis Miguel Anaya-Esparza, José Martín Ruvalcaba-Gómez
Lactic acid bacteria (LAB) comprise a group of microorganisms responsible for developing the sensory and chemical characteristics of several foods and fermented products, particularly cheese. For this reason, after isolation and identification of LAB, validated protocols and procedures for their long-term preservation without compromising its integrity and technological properties, as well as methodologies aiming to assess their viability and integrity are paramount. This study aimed to isolate and identify autochthonous LAB from artisanal Adobera cheese and determine the effect of LAB cryopreservation with thioglycolate broth and glycerol on their viability, membrane integrity, and kinetics. Sixteen LAB were isolated and genetically identified from artisanal cheese samples; eleven of those strains were selected (genus Lactobacillus, Leuconostoc, Streptococcus, and Lactococcus) and included in the cryo-preservation assay. The initial average concentration of the bacterial suspensions was 6.89 log10 CFU mL−1; increasing to 8.9 log10 CFU mL−1 21 days later and slightly reduced at day 42 post-preservation (losses below one logarithm). About 77% of the cells maintained their membrane potential 180 days after their preservation and showed normal Kinetic parameters, maintaining normal adaptation times (Lag phase) and Log phases (9 h average), before reaching the stationary phase. The proposed protocol constitutes a viable alternative to the long-term preservation of different LAB genera because it keeps their viability and integrity. Using flow cytometry allowed the enumeration of viable LAB and provide evidence of the integrity of their membrane.
{"title":"Identification, Viability, and Membrane Potential during the Cryopreservation of Autochthonous Lactic-Acid Bacteria Isolated from Artisanal Adobera Cheese from Los Altos de Jalisco","authors":"Ramón Ignacio Arteaga-Garibay, Raúl Jacobo Delgado-Macuil, Lorena Jacqueline Gómez-Godínez, Carlos Iván Cruz-Cárdenas, Zuamí Villagrán, Silvia Giono-Cerezo, Lily Xochitl Zelaya-Molina, Luis Miguel Anaya-Esparza, José Martín Ruvalcaba-Gómez","doi":"10.3390/microbiolres14040124","DOIUrl":"https://doi.org/10.3390/microbiolres14040124","url":null,"abstract":"Lactic acid bacteria (LAB) comprise a group of microorganisms responsible for developing the sensory and chemical characteristics of several foods and fermented products, particularly cheese. For this reason, after isolation and identification of LAB, validated protocols and procedures for their long-term preservation without compromising its integrity and technological properties, as well as methodologies aiming to assess their viability and integrity are paramount. This study aimed to isolate and identify autochthonous LAB from artisanal Adobera cheese and determine the effect of LAB cryopreservation with thioglycolate broth and glycerol on their viability, membrane integrity, and kinetics. Sixteen LAB were isolated and genetically identified from artisanal cheese samples; eleven of those strains were selected (genus Lactobacillus, Leuconostoc, Streptococcus, and Lactococcus) and included in the cryo-preservation assay. The initial average concentration of the bacterial suspensions was 6.89 log10 CFU mL−1; increasing to 8.9 log10 CFU mL−1 21 days later and slightly reduced at day 42 post-preservation (losses below one logarithm). About 77% of the cells maintained their membrane potential 180 days after their preservation and showed normal Kinetic parameters, maintaining normal adaptation times (Lag phase) and Log phases (9 h average), before reaching the stationary phase. The proposed protocol constitutes a viable alternative to the long-term preservation of different LAB genera because it keeps their viability and integrity. Using flow cytometry allowed the enumeration of viable LAB and provide evidence of the integrity of their membrane.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"38 16","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135773329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geobacter grbiciae can grow via coupling oxidation of ethanol to the reduction of various forms of soluble Fe(III) and poorly crystalline Fe(III) oxide, suggesting that G. grbiciae can act as an electron-donor microbe for forming co-cultures through direct interspecies electron transfer (DIET). In this report, potential co-cultures through DIET of G. grbiciae and Methanosarcina barkeri 800, G. sulfurreducens Δhyb, or Methanospirillum hungatei, as electron-acceptor microbes, were examined. Co-cultures of G. grbiciae and G. sulfurreducens Δhyb were performed with ethanol as the sole electron-donor substance and fumarate as the electron-acceptor substance in the presence of granular activated carbon (GAC), magnetite, or polyester felt. The conditions for co-culturing G. grbiciae and M. barkeri 800 (or M. hungatei) were the same as those for G. grbiciae and G. sulfurreducens Δhyb, except fumarate was absent and different cultivation temperatures were used. All co-cultures were anaerobically cultivated. Samples were regularly withdrawn from the co-cultures to monitor methane, fumarate, and succinate via gas or high-performance liquid chromatography. G. grbiciae formed functional co-cultures with M. barkeri 800 in the presence of GAC or magnetite. No co-culture of G. grbiciae with the H2/formate-utilizing methanogen M. hungatei was observed. Additionally, G. grbiciae formed functional co-cultures with H2/formate-un-utilizing G. sulfurreducens Δhyb without the GAC or magnetite supplement. These findings indicate electron transfer between G. grbiciae and M. barkeri 800/G. sulfurreducens Δhyb is via DIET rather than H2/formate, confirming that G. grbiciae acts as an electron-donor microbe. Although the co-cultures of G. grbiciae and M. barkeri 800 syntrophically converted ethanol to methane through DIET, the conversion of propionate or butyrate to methane was not observed. These findings expand the range of microbes that can act as electron donors for interaction with other microbes through DIET. However, propionate and butyrate metabolism through DIET in mixed microbial communities with methane as a product requires further analysis. This study provides a framework for finding new electron-donor microbes.
{"title":"Geobacter grbiciae—A New Electron Donor in the Formation of Co-Cultures via Direct Interspecies Electron Transfer","authors":"Panbo Deng, Lulu Wang, Xia Li, Jinshan Zhang, Haiming Jiang","doi":"10.3390/microbiolres14040122","DOIUrl":"https://doi.org/10.3390/microbiolres14040122","url":null,"abstract":"Geobacter grbiciae can grow via coupling oxidation of ethanol to the reduction of various forms of soluble Fe(III) and poorly crystalline Fe(III) oxide, suggesting that G. grbiciae can act as an electron-donor microbe for forming co-cultures through direct interspecies electron transfer (DIET). In this report, potential co-cultures through DIET of G. grbiciae and Methanosarcina barkeri 800, G. sulfurreducens Δhyb, or Methanospirillum hungatei, as electron-acceptor microbes, were examined. Co-cultures of G. grbiciae and G. sulfurreducens Δhyb were performed with ethanol as the sole electron-donor substance and fumarate as the electron-acceptor substance in the presence of granular activated carbon (GAC), magnetite, or polyester felt. The conditions for co-culturing G. grbiciae and M. barkeri 800 (or M. hungatei) were the same as those for G. grbiciae and G. sulfurreducens Δhyb, except fumarate was absent and different cultivation temperatures were used. All co-cultures were anaerobically cultivated. Samples were regularly withdrawn from the co-cultures to monitor methane, fumarate, and succinate via gas or high-performance liquid chromatography. G. grbiciae formed functional co-cultures with M. barkeri 800 in the presence of GAC or magnetite. No co-culture of G. grbiciae with the H2/formate-utilizing methanogen M. hungatei was observed. Additionally, G. grbiciae formed functional co-cultures with H2/formate-un-utilizing G. sulfurreducens Δhyb without the GAC or magnetite supplement. These findings indicate electron transfer between G. grbiciae and M. barkeri 800/G. sulfurreducens Δhyb is via DIET rather than H2/formate, confirming that G. grbiciae acts as an electron-donor microbe. Although the co-cultures of G. grbiciae and M. barkeri 800 syntrophically converted ethanol to methane through DIET, the conversion of propionate or butyrate to methane was not observed. These findings expand the range of microbes that can act as electron donors for interaction with other microbes through DIET. However, propionate and butyrate metabolism through DIET in mixed microbial communities with methane as a product requires further analysis. This study provides a framework for finding new electron-donor microbes.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":"50 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135932862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}