Pub Date : 2023-12-15DOI: 10.3390/microbiolres14040143
Bonface M. Nthuku, Esther W. Kahariri, Johnson K. Kinyua, Evans N. Nyaboga
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), significantly affects the productivity of the banana crop in the field. Currently, there are no effective control measures available, and therefore, there is an urgent need to develop novel strategies to control the spread of the disease. Biological control is a promising strategy for the management and control of the disease. The aim of this study was to identify fungal endophytes associated with Moringa (Moringa oleifera), Neem tree (Azadirachta indica) and Lavender (Lavandula angustifolia) and their antifungal activities against Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). We isolated 69 fungal endophytes from different tissues of M. oleifera, A. indica and L. angustifolia and screened for antifungal activity against Foc TR4. Six fungal endophytes exhibited highest antagonistic activity against Foc TR4 based on dual-culture assays. Based on morphology and ITS gene sequence analysis, the selected six endophytes were identified to be related to Alternaria alternata (MB7 and NR3), Neofusicoccum parvum (LB1), Fusarium oxysporum (LR1), Talaromyces amestolkiae (MB14) and Alternaria tenuissima (NB6). The culture filtrates of the six fungal endophytes (LB1, LR1, MB7, MB14, NB6 and NR3) exhibited more than 50% inhibition of mycelial growth of Foc TR4 in vitro and were producers of β-1,3-glucanase. The six fungal endophytes showed biocontrol efficacy against Fusarium wilt in pot experiments. The findings from this study demonstrate that fungal endophytes LB1, LR1, MB7, MB14, NB6 and NR3 should be explored as biocontrol agents and biofertilizers in banana production.
{"title":"Fungal Endophytes of Moringa (Moringa oleifera L.), Neem (Azadirachta indica) and Lavender (Lavandula angustifolia) and Their Biological Control of Fusarium Wilt of Banana","authors":"Bonface M. Nthuku, Esther W. Kahariri, Johnson K. Kinyua, Evans N. Nyaboga","doi":"10.3390/microbiolres14040143","DOIUrl":"https://doi.org/10.3390/microbiolres14040143","url":null,"abstract":"Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), significantly affects the productivity of the banana crop in the field. Currently, there are no effective control measures available, and therefore, there is an urgent need to develop novel strategies to control the spread of the disease. Biological control is a promising strategy for the management and control of the disease. The aim of this study was to identify fungal endophytes associated with Moringa (Moringa oleifera), Neem tree (Azadirachta indica) and Lavender (Lavandula angustifolia) and their antifungal activities against Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). We isolated 69 fungal endophytes from different tissues of M. oleifera, A. indica and L. angustifolia and screened for antifungal activity against Foc TR4. Six fungal endophytes exhibited highest antagonistic activity against Foc TR4 based on dual-culture assays. Based on morphology and ITS gene sequence analysis, the selected six endophytes were identified to be related to Alternaria alternata (MB7 and NR3), Neofusicoccum parvum (LB1), Fusarium oxysporum (LR1), Talaromyces amestolkiae (MB14) and Alternaria tenuissima (NB6). The culture filtrates of the six fungal endophytes (LB1, LR1, MB7, MB14, NB6 and NR3) exhibited more than 50% inhibition of mycelial growth of Foc TR4 in vitro and were producers of β-1,3-glucanase. The six fungal endophytes showed biocontrol efficacy against Fusarium wilt in pot experiments. The findings from this study demonstrate that fungal endophytes LB1, LR1, MB7, MB14, NB6 and NR3 should be explored as biocontrol agents and biofertilizers in banana production.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138996425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-09DOI: 10.3390/microbiolres14040141
Nadia El Allaoui, Hiba Yahyaoui, A. Douira, A. Benbouazza, Moha Ferrahi, E. Achbani, K. Habbadi
Environmental concerns are gradually reducing the global yield capacity of agricultural systems, with climate change representing the most significant challenge. Globally, Potatoes are the most essential non-cereal crop. Therefore, understanding the potential impacts of climate change on potato production is crucial for maintaining future global food security. This study aims to explore the roles played by PGPMs in two distinct regions, which are characterized by different climatic conditions, to assess their influence on two potato varieties, namely Siena and Bellini. Inoculation with these strains, particularly the Aureobasidium pullulans strains Ach1-1 and Ach1-2, resulted in significant improvements in growth and yield. In 2018, impressive yields of 194.1 kg/0.05 ha and 186.6 kg/0.05 ha were recorded for the two strains, with the Ain Taoujdate site achieving yields of 157.1 kg/0.05 ha and 151.1 kg/0.05 ha for each of the two strains. Additionally, further observations revealed that the Siena variety is more susceptible to rot than the Bellini variety. However, Ach1-1 and Ach1-2 strains had a significant effect on this rot, showcasing their potential to mitigate this negative issue in the Bellini variety. These promising results underscore the potential of PGPMs to enhance potato production in the Fez–Meknes region of Morocco, contributing to global food security amid climate change.
{"title":"Assessment of the Impacts of Plant Growth-Promoting Micro-Organisms on Potato Farming in Different Climatic Conditions in Morocco","authors":"Nadia El Allaoui, Hiba Yahyaoui, A. Douira, A. Benbouazza, Moha Ferrahi, E. Achbani, K. Habbadi","doi":"10.3390/microbiolres14040141","DOIUrl":"https://doi.org/10.3390/microbiolres14040141","url":null,"abstract":"Environmental concerns are gradually reducing the global yield capacity of agricultural systems, with climate change representing the most significant challenge. Globally, Potatoes are the most essential non-cereal crop. Therefore, understanding the potential impacts of climate change on potato production is crucial for maintaining future global food security. This study aims to explore the roles played by PGPMs in two distinct regions, which are characterized by different climatic conditions, to assess their influence on two potato varieties, namely Siena and Bellini. Inoculation with these strains, particularly the Aureobasidium pullulans strains Ach1-1 and Ach1-2, resulted in significant improvements in growth and yield. In 2018, impressive yields of 194.1 kg/0.05 ha and 186.6 kg/0.05 ha were recorded for the two strains, with the Ain Taoujdate site achieving yields of 157.1 kg/0.05 ha and 151.1 kg/0.05 ha for each of the two strains. Additionally, further observations revealed that the Siena variety is more susceptible to rot than the Bellini variety. However, Ach1-1 and Ach1-2 strains had a significant effect on this rot, showcasing their potential to mitigate this negative issue in the Bellini variety. These promising results underscore the potential of PGPMs to enhance potato production in the Fez–Meknes region of Morocco, contributing to global food security amid climate change.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138983271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-09DOI: 10.3390/microbiolres14040142
Aleksandra Kalinina, Vladimir Naumov, Alena Verakhina, Svetlana Ovchinnikova, Diana Yakovleva, Aleksandr Dobrov, Tatyana Sokolova, Julia Lukyanova, Polina Afanasieva
The use of algae for carbon dioxide fixation is based on their natural ability to photosynthesize. Dynamic experiments make it possible to calculate the short-term photosynthetic activity of microalgae strains in photobioreactors. In this study, the effect of temperature and culture time on the intensity of reproduction and on CO2 absorption by some microalgae was evaluated. It was found that the maximum increase in biomass occurred during algae cultivation at 29–32 °C and pH = 8.4. A ratio of ~2.0 was observed between CO2 absorption and the increase in biomass for different microalgae. When using the Chlorella genus, the increase in biomass under comparable conditions was greater than when cultivating microalgae of the Scenedesmus genus.
{"title":"Study of the Influence of the Temperature and Time of Microalgae Cultivation on the Reproduction Rate of Chlorella and Scenedesmus Microalgae When Cultured in a Tubular Photobioreactor","authors":"Aleksandra Kalinina, Vladimir Naumov, Alena Verakhina, Svetlana Ovchinnikova, Diana Yakovleva, Aleksandr Dobrov, Tatyana Sokolova, Julia Lukyanova, Polina Afanasieva","doi":"10.3390/microbiolres14040142","DOIUrl":"https://doi.org/10.3390/microbiolres14040142","url":null,"abstract":"The use of algae for carbon dioxide fixation is based on their natural ability to photosynthesize. Dynamic experiments make it possible to calculate the short-term photosynthetic activity of microalgae strains in photobioreactors. In this study, the effect of temperature and culture time on the intensity of reproduction and on CO2 absorption by some microalgae was evaluated. It was found that the maximum increase in biomass occurred during algae cultivation at 29–32 °C and pH = 8.4. A ratio of ~2.0 was observed between CO2 absorption and the increase in biomass for different microalgae. When using the Chlorella genus, the increase in biomass under comparable conditions was greater than when cultivating microalgae of the Scenedesmus genus.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138983081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-08DOI: 10.3390/microbiolres14040140
Esra Aksoy, Nilgün Güler, Ibrahim Sözdutmaz, Serkan Kökkaya, Engin Berber, Ayşe Gençay Göksu
Bovine rotaviruses (BRVs) are significant causative agents of severe diarrhea in newborn calves, resulting in substantial economic losses in the livestock industry. Inhibition of bovine rotavirus using extracts prepared from a Cucurbitaceae plant, which contains trypsin protease inhibitors, might offer a potential anti-rotaviral effect in vitro. Ecballium elaterium (E. elaterium) belongs to the Cucurbitaceae family, indigenous to the Mediterranean, contains E. elaterium trypsin isoinhibitors (EETIso), and has been used in traditional medicine. This study aimed to evaluate the in vitro efficacy of E. elaterium extract against bovine rotavirus infections. Ethanol extracts were prepared from E. elaterium seeds and fruit juice, and their non-toxic concentrations were determined using MA-104 cells. The cells were infected with bovine rotavirus in the presence of E. elaterium extract. The results demonstrated a significant decrease in the rotavirus titer in vitro upon treatment with the E. elaterium extract, suggesting its potential as a therapeutic agent against bovine rotavirus-induced diarrhea in calves. The utilization of E. elaterium extract may contribute to reduced calf mortality, lower medication costs, and improved economic value in cattle farming.
牛轮状病毒(brv)是新生牛犊严重腹泻的重要病原体,给畜牧业造成巨大的经济损失。从葫芦科植物中提取的含有胰蛋白酶抑制剂的提取物抑制牛轮状病毒,可能在体外提供潜在的抗轮状病毒作用。elballium elaterium (E. elaterium)属于葫芦科,原产于地中海,含有elballium elaterium胰蛋白酶同工抑制剂(etiso),已被用于传统医学。本研究旨在评价白莲叶提取物对牛轮状病毒感染的体外抑制作用。采用MA-104细胞法对莲蓬种子和果汁的乙醇提取物进行无毒浓度测定。在牛乳提取物存在的情况下,用牛轮状病毒感染细胞。结果表明,经牛乳提取物处理后,体外轮状病毒滴度显著降低,表明其有潜力作为治疗小牛轮状病毒引起的腹泻的药物。利用牛乳提取物可以降低小牛死亡率,降低药物成本,提高养牛业的经济价值。
{"title":"In Vitro Antiviral Potential of Cucurbitaceae Ecballium elaterium and Its Extract Containing Protease Inhibitors against Bovine Rotavirus","authors":"Esra Aksoy, Nilgün Güler, Ibrahim Sözdutmaz, Serkan Kökkaya, Engin Berber, Ayşe Gençay Göksu","doi":"10.3390/microbiolres14040140","DOIUrl":"https://doi.org/10.3390/microbiolres14040140","url":null,"abstract":"Bovine rotaviruses (BRVs) are significant causative agents of severe diarrhea in newborn calves, resulting in substantial economic losses in the livestock industry. Inhibition of bovine rotavirus using extracts prepared from a Cucurbitaceae plant, which contains trypsin protease inhibitors, might offer a potential anti-rotaviral effect in vitro. Ecballium elaterium (E. elaterium) belongs to the Cucurbitaceae family, indigenous to the Mediterranean, contains E. elaterium trypsin isoinhibitors (EETIso), and has been used in traditional medicine. This study aimed to evaluate the in vitro efficacy of E. elaterium extract against bovine rotavirus infections. Ethanol extracts were prepared from E. elaterium seeds and fruit juice, and their non-toxic concentrations were determined using MA-104 cells. The cells were infected with bovine rotavirus in the presence of E. elaterium extract. The results demonstrated a significant decrease in the rotavirus titer in vitro upon treatment with the E. elaterium extract, suggesting its potential as a therapeutic agent against bovine rotavirus-induced diarrhea in calves. The utilization of E. elaterium extract may contribute to reduced calf mortality, lower medication costs, and improved economic value in cattle farming.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138588419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.3390/microbiolres14040139
L. Hernández-Montiel, Juan P. Ciscomani-Larios, E. Sánchez-Chávez, I. Vargas-Arispuro, A. Hashem, E. F. Abd_Allah, G. Ávila-Quezada
Enhancing crop nutrition though biofortification with essential minerals can, in some circumstances, increase the resistance of plants to the attack by pathogens. As a result, plants activate their defense mechanisms and produce bioactive compounds (BCs) in response. To date, there has been no investigation into the response of green bean plants fortified with magnesium (Mg) salts to the presence of Colletotrichum lindemuthianum. This research involved two Mg sources applied by the edaphic route. The pathogen was inoculated on green bean pods, and subsequent analysis was conducted on the accumulation of BCs, including total anthocyanins, total phenols, and total flavonoids, within both symptomatic and healthy tissues. Remarkably, the plant’s defense system was activated, as evidenced by the significantly higher concentration of anthocyanins (p ≤ 0.05) observed in the symptomatic tissues following treatments with both MgCl2 and MgSO4. Further, green bean plants treated with MgSO4 displayed notably elevated concentrations of phenols (p ≤ 0.05) in the inoculated tissues of the pods, suggesting a plausible plant defense mechanism. The levels of BCs were considerably higher in green bean pods of the biofortified plants compared to those which were nonbiofortified. However, perhaps one of the most noteworthy findings is that there were no discernible differences between biofortified and nonbiofortified treatments in stopping anthracnose in green bean pods. These results provide valuable insights contributing to a deeper understanding of this interaction.
{"title":"Response of Biofortified Green Bean Plants to Colletotrichum lindemuthianum","authors":"L. Hernández-Montiel, Juan P. Ciscomani-Larios, E. Sánchez-Chávez, I. Vargas-Arispuro, A. Hashem, E. F. Abd_Allah, G. Ávila-Quezada","doi":"10.3390/microbiolres14040139","DOIUrl":"https://doi.org/10.3390/microbiolres14040139","url":null,"abstract":"Enhancing crop nutrition though biofortification with essential minerals can, in some circumstances, increase the resistance of plants to the attack by pathogens. As a result, plants activate their defense mechanisms and produce bioactive compounds (BCs) in response. To date, there has been no investigation into the response of green bean plants fortified with magnesium (Mg) salts to the presence of Colletotrichum lindemuthianum. This research involved two Mg sources applied by the edaphic route. The pathogen was inoculated on green bean pods, and subsequent analysis was conducted on the accumulation of BCs, including total anthocyanins, total phenols, and total flavonoids, within both symptomatic and healthy tissues. Remarkably, the plant’s defense system was activated, as evidenced by the significantly higher concentration of anthocyanins (p ≤ 0.05) observed in the symptomatic tissues following treatments with both MgCl2 and MgSO4. Further, green bean plants treated with MgSO4 displayed notably elevated concentrations of phenols (p ≤ 0.05) in the inoculated tissues of the pods, suggesting a plausible plant defense mechanism. The levels of BCs were considerably higher in green bean pods of the biofortified plants compared to those which were nonbiofortified. However, perhaps one of the most noteworthy findings is that there were no discernible differences between biofortified and nonbiofortified treatments in stopping anthracnose in green bean pods. These results provide valuable insights contributing to a deeper understanding of this interaction.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138596550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-04DOI: 10.3390/microbiolres14040138
A. Omara, Fatma M. El-maghraby
Because agricultural wastes are abundant in biologically active substances, they can be used as a substitute source to produce highly valuable products while lowering pollution levels in the environment. Therefore, we aimed at determining the best agricultural wastes to increase the biomass production rate and the effectiveness of the biocontrol strain Trichoderma lixii SARS 111 in a solid-state fermentation system. The potential for its use in enhancing growth dynamics and controlling the Fusarium oxysporum NCAIM-F-00779-caused damping-off disease of cowpea plants grown in greenhouse conditions was also studied. Using a one-factor-at-a-time experiment, five cheap agricultural waste substrates (faba bean, cowpea, sweet potato, pumpkin, and cassava) were studied using the Plackett–Burman design (PBD) and the central composite design (CCD) to optimize the nutritional and growth conditions to maximize the production of Trichoderma conidia. The findings demonstrated that increasing Candida production quantitatively required the use of 3 g of sweet potato, 3 g of cassava, pH 6, 25 °C, and pre-treatment with dH2O. The shelf life and viability of T. lixii strain were measured as log10 CFU g−1 per substrate at room temperature (RT, 25 °C) at the beginning of month 0 and subsequently at 2-month intervals for 12 months. Data showed that the fungal counts increased with the use of 4 g of sweet potato + 2 g of cassava up to 7 months and then sharply decreased, lasting up to 12 months. Additionally, this bioformulation was applied to cowpea plants in a greenhouse experiment, where a significantly higher level of plant growth traits, photosynthetic pigments, antioxidant enzymes, and chemical content in the leaves, as well as lower incidence of the damping-off disease, were noted. Accordingly, it is possible to suggest 4 g of sweet potato and 2 g of cassava as a suitable bioformulation for the industrial-scale production of the T. lixii strain, which may be a potential biocontrol agent for preventing the cowpea damping-off disease caused by F. oxysporum and improving the growth dynamics.
由于农业废弃物中含有丰富的生物活性物质,它们可以作为生产高价值产品的替代来源,同时降低对环境的污染水平。因此,我们旨在确定最佳的农业废弃物,以提高生物防治菌株利希木霉SARS 111在固态发酵系统中的生物量产量和有效性。研究了其在提高豇豆生长动态和防治温室条件下由尖孢镰刀菌ncam - f -00779引起的枯萎病方面的应用潜力。采用单因素试验,采用Plackett-Burman设计(PBD)和中心复合设计(CCD)对5种廉价农业废弃物(蚕豆、豇豆、甘薯、南瓜和木薯)进行营养和生长条件优化,以最大限度地提高分生木霉的产量。结果表明,增加念珠菌产量需要使用3g甘薯和3g木薯,pH为6,温度为25°C, dH2O预处理。在室温(RT, 25°C)下,从第0个月开始,以log10 CFU g−1 /底物为单位,每隔2个月测量一次,共12个月。数据显示,使用4 g甘薯+ 2 g木薯7个月后,真菌数量增加,然后急剧下降,持续时间长达12个月。此外,在温室试验中,将这种生物制剂应用于豇豆植物,发现植物生长性状、光合色素、抗氧化酶和叶片中的化学成分水平显著提高,并且降低了萎蔫病的发病率。因此,可以建议4 g甘薯和2 g木薯作为lixii T. lixii菌株工业化生产的合适生物制剂,该菌株可能是一种潜在的生物防治剂,可以预防由尖孢镰刀菌引起的豇豆干枯病,改善其生长动态。
{"title":"Novel Bioformulations with Trichoderma lixii to Improve the Growth Dynamics and Biocontrol of the Cowpea Damping-Off Disease","authors":"A. Omara, Fatma M. El-maghraby","doi":"10.3390/microbiolres14040138","DOIUrl":"https://doi.org/10.3390/microbiolres14040138","url":null,"abstract":"Because agricultural wastes are abundant in biologically active substances, they can be used as a substitute source to produce highly valuable products while lowering pollution levels in the environment. Therefore, we aimed at determining the best agricultural wastes to increase the biomass production rate and the effectiveness of the biocontrol strain Trichoderma lixii SARS 111 in a solid-state fermentation system. The potential for its use in enhancing growth dynamics and controlling the Fusarium oxysporum NCAIM-F-00779-caused damping-off disease of cowpea plants grown in greenhouse conditions was also studied. Using a one-factor-at-a-time experiment, five cheap agricultural waste substrates (faba bean, cowpea, sweet potato, pumpkin, and cassava) were studied using the Plackett–Burman design (PBD) and the central composite design (CCD) to optimize the nutritional and growth conditions to maximize the production of Trichoderma conidia. The findings demonstrated that increasing Candida production quantitatively required the use of 3 g of sweet potato, 3 g of cassava, pH 6, 25 °C, and pre-treatment with dH2O. The shelf life and viability of T. lixii strain were measured as log10 CFU g−1 per substrate at room temperature (RT, 25 °C) at the beginning of month 0 and subsequently at 2-month intervals for 12 months. Data showed that the fungal counts increased with the use of 4 g of sweet potato + 2 g of cassava up to 7 months and then sharply decreased, lasting up to 12 months. Additionally, this bioformulation was applied to cowpea plants in a greenhouse experiment, where a significantly higher level of plant growth traits, photosynthetic pigments, antioxidant enzymes, and chemical content in the leaves, as well as lower incidence of the damping-off disease, were noted. Accordingly, it is possible to suggest 4 g of sweet potato and 2 g of cassava as a suitable bioformulation for the industrial-scale production of the T. lixii strain, which may be a potential biocontrol agent for preventing the cowpea damping-off disease caused by F. oxysporum and improving the growth dynamics.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138605057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.3390/microbiolres14040137
Dimartino Valentina, Scopelliti Fernanda, Cattani Caterina, Nicolella Gianluca, Cavani Andrea
The rising migration and travel from and towards endemic areas has brought renewed concerns about many parasitic infections, including neglected tropical diseases, such as schistosomiasis. Although serology is the most widely used method for the screening of schistosomiasis in non-endemic countries, this technique lacks sensitivity, especially to distinguish between past and ongoing infections. More recently, a molecular test based on the detection of Schistosoma cell-free DNA in the serum has been proposed as a diagnostic procedure for parasitosis. To test the performance of a blood PCR assay, this work investigated 102 serum samples collected from migrants coming from endemic areas by using primers specific to genomic regions of S. mansoni and S. haematobium patients. The results were then compared with the detection of specific IgG Abs with serological tests. Molecular analysis detected Schistosoma DNA in 32 patients. Among them, we characterized nine S. haematobium, 20 S. mansoni, and three coinfections. Compared with molecular assay, serological analysis detected specific antibodies against Schistosoma antigens in 52 out of 102 patients. Concordance between the two tests was found in 76 out of 102 patients (74.51%): in particular, both diagnostic tests were positive in 29 patients (28.43%) and negative in 47 (46.08%). The specificity of the molecular test was 94%. Overall, our data suggest that serological diagnosis could be combined with the molecular approach, providing the clinician with the serotyping of the parasite and useful information about the infection as well as the required further diagnostic procedures.
{"title":"The Detection of Circulating Cell-Free DNA for the Diagnosis of Schistosoma in Immigrants from African Countries in Italy","authors":"Dimartino Valentina, Scopelliti Fernanda, Cattani Caterina, Nicolella Gianluca, Cavani Andrea","doi":"10.3390/microbiolres14040137","DOIUrl":"https://doi.org/10.3390/microbiolres14040137","url":null,"abstract":"The rising migration and travel from and towards endemic areas has brought renewed concerns about many parasitic infections, including neglected tropical diseases, such as schistosomiasis. Although serology is the most widely used method for the screening of schistosomiasis in non-endemic countries, this technique lacks sensitivity, especially to distinguish between past and ongoing infections. More recently, a molecular test based on the detection of Schistosoma cell-free DNA in the serum has been proposed as a diagnostic procedure for parasitosis. To test the performance of a blood PCR assay, this work investigated 102 serum samples collected from migrants coming from endemic areas by using primers specific to genomic regions of S. mansoni and S. haematobium patients. The results were then compared with the detection of specific IgG Abs with serological tests. Molecular analysis detected Schistosoma DNA in 32 patients. Among them, we characterized nine S. haematobium, 20 S. mansoni, and three coinfections. Compared with molecular assay, serological analysis detected specific antibodies against Schistosoma antigens in 52 out of 102 patients. Concordance between the two tests was found in 76 out of 102 patients (74.51%): in particular, both diagnostic tests were positive in 29 patients (28.43%) and negative in 47 (46.08%). The specificity of the molecular test was 94%. Overall, our data suggest that serological diagnosis could be combined with the molecular approach, providing the clinician with the serotyping of the parasite and useful information about the infection as well as the required further diagnostic procedures.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138619421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.3390/microbiolres14040136
I. Liekniņa, Anna Kozlova, Marina Šaško, I. Akopjana, K. Brangulis, K. Tārs
Lyme disease affects several hundred thousand people worldwide annually, yet there is no registered vaccine for the disease available for human use. The disease is caused by Borrelia burgdorferi sensu lato complex bacteria, which harbor numerous outer surface proteins, and many of which have been targeted for vaccine development. However, to effectively combat various Borrelia species, the target protein should ideally be conserved and located in the chromosome. In this study, we evaluated the potential of seven conservative, chromosome-encoded outer surface proteins as vaccine candidates. Unfortunately, four of the initial candidates could not be produced in E. coli. The remaining BB0028, BB0158, and BB0689 proteins were administered to mice in both the free form and as conjugates with virus-like particles (VLPs). In most cases, high antibody titers were obtained, confirming the good immunogenicity of the selected proteins. However, for BB0158 and BB0689 proteins, adverse effects were observed following the injection of free proteins, which were not observed when they were coupled to VLPs. Bactericidity tests of the obtained antibodies suggested that none of the vaccine candidates could induce the production of bactericidal antibodies.
{"title":"Evaluation of Outer Surface Protein Vaccine Candidates of Borrelia burgdorferi for Lyme Disease","authors":"I. Liekniņa, Anna Kozlova, Marina Šaško, I. Akopjana, K. Brangulis, K. Tārs","doi":"10.3390/microbiolres14040136","DOIUrl":"https://doi.org/10.3390/microbiolres14040136","url":null,"abstract":"Lyme disease affects several hundred thousand people worldwide annually, yet there is no registered vaccine for the disease available for human use. The disease is caused by Borrelia burgdorferi sensu lato complex bacteria, which harbor numerous outer surface proteins, and many of which have been targeted for vaccine development. However, to effectively combat various Borrelia species, the target protein should ideally be conserved and located in the chromosome. In this study, we evaluated the potential of seven conservative, chromosome-encoded outer surface proteins as vaccine candidates. Unfortunately, four of the initial candidates could not be produced in E. coli. The remaining BB0028, BB0158, and BB0689 proteins were administered to mice in both the free form and as conjugates with virus-like particles (VLPs). In most cases, high antibody titers were obtained, confirming the good immunogenicity of the selected proteins. However, for BB0158 and BB0689 proteins, adverse effects were observed following the injection of free proteins, which were not observed when they were coupled to VLPs. Bactericidity tests of the obtained antibodies suggested that none of the vaccine candidates could induce the production of bactericidal antibodies.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139219248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.3390/microbiolres14040135
Esteban Charria-Girón, A. Vasco-Palacios, Bibiana Moncada, Y. Marin-Felix
The current list of fungi from Colombia updated in the present review contains a total of 7619 species. The Ascomycota appears as the most diverse group, with 4818 species, followed by the Basidiomycota, with 2555 species. Despite this, we presume that the actual fungal diversity in Colombia could amount to between 105,600 and 300,000 species. Fungi represent an underestimated resource, indispensable for human well-being. Even though the current knowledge on potential applications of Colombian fungi is still limited, the number of studies on areas such as natural products discovery, biological control, and food and beverages, among other biotechnological applications, are increasing. With the current review, we aim to present a comprehensive update on the fungal diversity in Colombia and its potential applications. Colombia’s native fungal biodiversity holds much potential within the country’s current social-economical context, and the future must ensure efforts to preserve both the biodiversity and the untapped resources of the fungi in Colombia, which in alignment with the Sustainable Development Goals (SDGs) might result in new bioeconomy avenues for the country.
{"title":"Colombian Fungal Diversity: Untapped Potential for Diverse Applications","authors":"Esteban Charria-Girón, A. Vasco-Palacios, Bibiana Moncada, Y. Marin-Felix","doi":"10.3390/microbiolres14040135","DOIUrl":"https://doi.org/10.3390/microbiolres14040135","url":null,"abstract":"The current list of fungi from Colombia updated in the present review contains a total of 7619 species. The Ascomycota appears as the most diverse group, with 4818 species, followed by the Basidiomycota, with 2555 species. Despite this, we presume that the actual fungal diversity in Colombia could amount to between 105,600 and 300,000 species. Fungi represent an underestimated resource, indispensable for human well-being. Even though the current knowledge on potential applications of Colombian fungi is still limited, the number of studies on areas such as natural products discovery, biological control, and food and beverages, among other biotechnological applications, are increasing. With the current review, we aim to present a comprehensive update on the fungal diversity in Colombia and its potential applications. Colombia’s native fungal biodiversity holds much potential within the country’s current social-economical context, and the future must ensure efforts to preserve both the biodiversity and the untapped resources of the fungi in Colombia, which in alignment with the Sustainable Development Goals (SDGs) might result in new bioeconomy avenues for the country.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139215496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marine yeasts have versatile applications in the industrial, medical, and environmental fields. However, they have received little attention compared to terrestrial yeasts and filamentous fungi. In this study, a phylogenetic analysis of 11 marine-derived yeasts was conducted using internal transcribed spacers and nuclear large subunit rDNA, and their bioactivities, such as antioxidant, antibacterial, and tyrosinase inhibition activities, were investigated. The 11 marine-derived yeasts were identified to belong to seven species including Geotrichum candidum, Metschnikowia bicuspidata, Papiliotrema fonsecae, Rhodotorula mucilaginosa, Vishniacozyma carnescens, Yamadazyma olivae, and Yarrowia lipolytica, and three strains of these were candidates for new species of the genera Aureobasidium, Rhodotorula, and Vishniacozyma. Most extracts showed antioxidant activity, whereas seven strains exhibited antibacterial activities against Bacillus subtilis. Only Aureobasidium sp. US-Sd3 among the 11 isolates showed tyrosinase inhibition. Metschnikowia bicuspidata BP-Up1 and Yamadazyma olivae K2-6 showed notable radical-scavenging activity, which has not been previously reported. Moreover, Aureobasidium sp. US-Sd3 exhibited the highest antibacterial and tyrosinase inhibitory activities. These results demonstrate the potential of marine-derived yeasts as a source of bioactive compounds for improving industrial applications.
{"title":"Characterization and Biological Activities of Yeasts Isolated from Marine Environments","authors":"Woon-Jong Yu, Dawoon Chung, Seung Seob Bae, Y. Kwon, Eun-Seo Cho, Grace Choi","doi":"10.3390/microbiolres14040134","DOIUrl":"https://doi.org/10.3390/microbiolres14040134","url":null,"abstract":"Marine yeasts have versatile applications in the industrial, medical, and environmental fields. However, they have received little attention compared to terrestrial yeasts and filamentous fungi. In this study, a phylogenetic analysis of 11 marine-derived yeasts was conducted using internal transcribed spacers and nuclear large subunit rDNA, and their bioactivities, such as antioxidant, antibacterial, and tyrosinase inhibition activities, were investigated. The 11 marine-derived yeasts were identified to belong to seven species including Geotrichum candidum, Metschnikowia bicuspidata, Papiliotrema fonsecae, Rhodotorula mucilaginosa, Vishniacozyma carnescens, Yamadazyma olivae, and Yarrowia lipolytica, and three strains of these were candidates for new species of the genera Aureobasidium, Rhodotorula, and Vishniacozyma. Most extracts showed antioxidant activity, whereas seven strains exhibited antibacterial activities against Bacillus subtilis. Only Aureobasidium sp. US-Sd3 among the 11 isolates showed tyrosinase inhibition. Metschnikowia bicuspidata BP-Up1 and Yamadazyma olivae K2-6 showed notable radical-scavenging activity, which has not been previously reported. Moreover, Aureobasidium sp. US-Sd3 exhibited the highest antibacterial and tyrosinase inhibitory activities. These results demonstrate the potential of marine-derived yeasts as a source of bioactive compounds for improving industrial applications.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139245050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}