Pub Date : 2021-10-02DOI: 10.1080/24705314.2021.1902662
Chaoran Xu, C. Fu, Y. Ye, Kuang-yuan Hou, Yifan Zhu
ABSTRACT To improve the fatigue performance of these traffic signs, luminaries and signals structures, the wing plate, a type of aerodynamic damper, is adopted to control the dynamic responses due to wind-induced fatigue load. In this study, one-way 2D fluid-structure interaction (FSI) analysis is conducted to investigate the mitigation ability of the wing plate. Parametric study is involved to investigate the influence on the damping effect caused by the different configuration of the wing plate, as well as the wind speed. The different configurations of signals and signs applied in Maryland, USA, have been studied to find the potential aerodynamic instability due to galloping. The required length of wing plate for the 23-m mast-arm signal structure in Maryland have been analyzed. The study shows that small space between the wing plate and the arm will reduce the mitigation ability. Wing plate may lose mitigation ability due to stalling. Large vortex shedding is observed in the FSI analysis. The wing plate with dimension 610 mm × 610 mm applied by PennDOT can effectively prevent galloping for signal pole structures in Maryland. This research can be used as a reference for the selection of mitigation devices to satisfy the “effective mitigation devices” stated by AASHTO.
摘要:为了改善交通标志、照明灯和信号结构的疲劳性能,采用翼板气动阻尼器控制其在风致疲劳荷载作用下的动力响应。本研究采用单向二维流固耦合分析(FSI)研究翼板的减振能力。通过参数化研究,考察了不同翼板构型和风速对阻尼效果的影响。研究了在美国马里兰州应用的不同配置的信号和标志,以发现由于飞奔而潜在的空气动力学不稳定性。分析了马里兰州23m桅杆臂信号结构所需翼板长度。研究表明,翼板与臂之间的空间过小会降低减振能力。翼板可能因失速而失去减缓能力。在FSI分析中观察到较大的涡脱落。PennDOT应用的尺寸为610 mm × 610 mm的翼板可以有效地防止马里兰州信号杆结构的飞奔。本研究可为缓解装置的选择提供参考,以满足AASHTO提出的“有效缓解装置”。
{"title":"Study of the aerodynamic damping of wing plates on traffic signal structures based on the 2D one-way FSI analysis","authors":"Chaoran Xu, C. Fu, Y. Ye, Kuang-yuan Hou, Yifan Zhu","doi":"10.1080/24705314.2021.1902662","DOIUrl":"https://doi.org/10.1080/24705314.2021.1902662","url":null,"abstract":"ABSTRACT To improve the fatigue performance of these traffic signs, luminaries and signals structures, the wing plate, a type of aerodynamic damper, is adopted to control the dynamic responses due to wind-induced fatigue load. In this study, one-way 2D fluid-structure interaction (FSI) analysis is conducted to investigate the mitigation ability of the wing plate. Parametric study is involved to investigate the influence on the damping effect caused by the different configuration of the wing plate, as well as the wind speed. The different configurations of signals and signs applied in Maryland, USA, have been studied to find the potential aerodynamic instability due to galloping. The required length of wing plate for the 23-m mast-arm signal structure in Maryland have been analyzed. The study shows that small space between the wing plate and the arm will reduce the mitigation ability. Wing plate may lose mitigation ability due to stalling. Large vortex shedding is observed in the FSI analysis. The wing plate with dimension 610 mm × 610 mm applied by PennDOT can effectively prevent galloping for signal pole structures in Maryland. This research can be used as a reference for the selection of mitigation devices to satisfy the “effective mitigation devices” stated by AASHTO.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46224487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-02DOI: 10.1080/24705314.2021.1892573
Aditya Chilukuri, N. Raja, K. Balasubramaniam
ABSTRACT The use of guided ultrasonic waves has been identified as a promising technology for continuous monitoring of pipes and tubes for the detection of corrosion damage defects of cross-sectional area ratio less than 5%, particularly in the process industry applications. Here, we present an approach to use torsional guided wave mode T(0,1) generated using leave-in-place magnetostriction patch sensors for the health monitoring of thin and small diameter stainless steel tubes operating at elevated temperatures in the range of 150°C. These tubes are used in the transportation of gas in the Silicon wafer manufacturing semiconductor industries. The detection of small pitting defects is demonstrated using both numerical and experimental approach. The phenomenon of scattering of the high frequency fundamental torsional guided wave mode T(0,1) from small pitting type defects in thin and small diameter tubes is closely examined, and its excitation parameters are selected using finite element (FE) simulations. The sensitivity of the reflected signal from defects as low as 2% of the cross-sectional area ratio was feasible even at high temperature. This work is of great interest to many processes in semiconductor manufacturing.
{"title":"In-situ pitting corrosion detection using high-frequency T(0,1) guided wave mode in gas distribution tubes at operating temperatures","authors":"Aditya Chilukuri, N. Raja, K. Balasubramaniam","doi":"10.1080/24705314.2021.1892573","DOIUrl":"https://doi.org/10.1080/24705314.2021.1892573","url":null,"abstract":"ABSTRACT The use of guided ultrasonic waves has been identified as a promising technology for continuous monitoring of pipes and tubes for the detection of corrosion damage defects of cross-sectional area ratio less than 5%, particularly in the process industry applications. Here, we present an approach to use torsional guided wave mode T(0,1) generated using leave-in-place magnetostriction patch sensors for the health monitoring of thin and small diameter stainless steel tubes operating at elevated temperatures in the range of 150°C. These tubes are used in the transportation of gas in the Silicon wafer manufacturing semiconductor industries. The detection of small pitting defects is demonstrated using both numerical and experimental approach. The phenomenon of scattering of the high frequency fundamental torsional guided wave mode T(0,1) from small pitting type defects in thin and small diameter tubes is closely examined, and its excitation parameters are selected using finite element (FE) simulations. The sensitivity of the reflected signal from defects as low as 2% of the cross-sectional area ratio was feasible even at high temperature. This work is of great interest to many processes in semiconductor manufacturing.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42649325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-02DOI: 10.1080/24705314.2021.1892574
P. Sathujoda, Aneesh Batchu, Bharath Obalareddy
ABSTRACT Corrosion is an unintentional degradation of a material, which transpires due to harsh environmental conditions. It is a surface phenomenon that results in loss of material, which affects the dynamic characteristics and structural integrity of any structure. Fundamental frequency analysis of a corroded functionally graded (FG) rotor-bearing system using finite element method (FEM) for flexural vibrations is presented in work. A functionally graded (FG) shaft, Stainless Steel as the inner-metal core and Zirconia as the outer-ceramic layer is considered. Exponential gradation law is followed to assign the material properties along the radial direction of the shaft. The exponential temperature distribution (ETD) method based on Fourier law of heat conduction has been used for the temperature distribution across the cross-section of the FG shaft. Finite element formulations of a corroded FG shaft element have been developed using Timoshenko beam theory. An FE code is developed to compute the natural and whirl frequencies of an FG rotor-bearing system for various parameters such as corrosion length, position, depth and thermal gradients to investigate the influence of corrosion on fundamental frequencies. It has been investigated that there is a significant influence of corrosion parameters on the natural and whirl frequencies of an FG rotor-bearing system.
{"title":"Fundamental frequency analysis of a thermally loaded corroded exponentially graded rotor bearing system","authors":"P. Sathujoda, Aneesh Batchu, Bharath Obalareddy","doi":"10.1080/24705314.2021.1892574","DOIUrl":"https://doi.org/10.1080/24705314.2021.1892574","url":null,"abstract":"ABSTRACT Corrosion is an unintentional degradation of a material, which transpires due to harsh environmental conditions. It is a surface phenomenon that results in loss of material, which affects the dynamic characteristics and structural integrity of any structure. Fundamental frequency analysis of a corroded functionally graded (FG) rotor-bearing system using finite element method (FEM) for flexural vibrations is presented in work. A functionally graded (FG) shaft, Stainless Steel as the inner-metal core and Zirconia as the outer-ceramic layer is considered. Exponential gradation law is followed to assign the material properties along the radial direction of the shaft. The exponential temperature distribution (ETD) method based on Fourier law of heat conduction has been used for the temperature distribution across the cross-section of the FG shaft. Finite element formulations of a corroded FG shaft element have been developed using Timoshenko beam theory. An FE code is developed to compute the natural and whirl frequencies of an FG rotor-bearing system for various parameters such as corrosion length, position, depth and thermal gradients to investigate the influence of corrosion on fundamental frequencies. It has been investigated that there is a significant influence of corrosion parameters on the natural and whirl frequencies of an FG rotor-bearing system.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42349370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-02DOI: 10.1080/24705314.2021.1950379
Y. Obaidat, A. Ashteyat, Ala’ Taleb Obaidat, Muna N. Abu-Lebdeh
ABSTRACT Previous studies showed that near-surface mounting (NSM) strengthening technique with rigid CFRP materials has potential advantages over the externally bonded reinforcing (EBR), therefore, it becomes efficient methodology for concrete strengthening. However, rigid NSM-CFRP cannot be wrapped around a deteriorated structural element; the need for the existence of flexible material has appeared. Therefore, in this study the flexible NSM-CFRP (cord) is investigated as strengthening technique instead of rigid NSM-CFRP. The aim of this study is to recognize the parameters affecting the bond performance of carbon fiber-reinforced concrete (CFRP) cord and concrete. These parameters are cords’ bonded length, the ratio between cord’s width and depth, concrete compressive strength, number of CFRP cords used and the distance separating cords in multi-cord specimens. Fifty-four concrete prisms were cast from 25 MPa and 50 MPa concrete compressive strengths. Thirtyeight prisms reinforced by a single cord with various cord sizes were prepared. Twelve and four specimens were reinforced with two and three cords, respectively. In the case of multi-cord specimens, a unified bond length and cord’s aspect ratio were carried out. The main parameter to be studied in this case is the cords’ separating spacing. The test results indicated that increasing (NSMCFRP) cords bonded length, concrete compressive strength, number of applied CFRP cords, the spacing between cords and reducing cords’ aspect ratio (width/depth ratio) cause an increment in the pull-out force, and then a better strengthening is achieved. Rupture was the predominant failure mode for specimens with the same bond and equal cord dimension, while debonding of the CFRP cords is the most frequent failure mode for multi-cords specimens with greater spacing.
{"title":"Bond characteristics between concrete and near-surface mounted carbon fiber reinforced polymer cords","authors":"Y. Obaidat, A. Ashteyat, Ala’ Taleb Obaidat, Muna N. Abu-Lebdeh","doi":"10.1080/24705314.2021.1950379","DOIUrl":"https://doi.org/10.1080/24705314.2021.1950379","url":null,"abstract":"ABSTRACT Previous studies showed that near-surface mounting (NSM) strengthening technique with rigid CFRP materials has potential advantages over the externally bonded reinforcing (EBR), therefore, it becomes efficient methodology for concrete strengthening. However, rigid NSM-CFRP cannot be wrapped around a deteriorated structural element; the need for the existence of flexible material has appeared. Therefore, in this study the flexible NSM-CFRP (cord) is investigated as strengthening technique instead of rigid NSM-CFRP. The aim of this study is to recognize the parameters affecting the bond performance of carbon fiber-reinforced concrete (CFRP) cord and concrete. These parameters are cords’ bonded length, the ratio between cord’s width and depth, concrete compressive strength, number of CFRP cords used and the distance separating cords in multi-cord specimens. Fifty-four concrete prisms were cast from 25 MPa and 50 MPa concrete compressive strengths. Thirtyeight prisms reinforced by a single cord with various cord sizes were prepared. Twelve and four specimens were reinforced with two and three cords, respectively. In the case of multi-cord specimens, a unified bond length and cord’s aspect ratio were carried out. The main parameter to be studied in this case is the cords’ separating spacing. The test results indicated that increasing (NSMCFRP) cords bonded length, concrete compressive strength, number of applied CFRP cords, the spacing between cords and reducing cords’ aspect ratio (width/depth ratio) cause an increment in the pull-out force, and then a better strengthening is achieved. Rupture was the predominant failure mode for specimens with the same bond and equal cord dimension, while debonding of the CFRP cords is the most frequent failure mode for multi-cords specimens with greater spacing.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47740599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-15DOI: 10.1080/24705314.2021.1892572
A. Imam, B. Salami, T. Oyehan
ABSTRACT Concrete produced with ordinary Portland cement (OPC) along with insertion of supplementary materials increases the level of nonlinearity. Due to this increased non-linearity and difficulty in modeling numerically, the focus has increased on the exploration of computational intelligent models like artificial neural network (ANN) to estimate different concrete properties. In this study, a quaternary blend concrete was developed with OPC, fly ash (FA), metakaolin (MK) and rice husk ash (RHA). The experimental data were further used in training the proposed ANN models to approximate its compressive strength. The proposed neural network models were trained and optimized using three different regularization algorithms; the scaled conjugate gradient “trainsc” (SCG), Levenberg–Marquardt “trainlm” (LM) and Bayesian regularized “trainbr” (BR) algorithms. The percent proportion of OPC, FA, MK and RHA making up the quaternary blends and curing days are the five features used as input variables, while the compressive strength of each of the individual concrete mixture is the output variable (target). It was found out that ANN optimized with Bayesian regularization function performed best with the highest correlation coefficient, and lowest MAE, MSE and RMSE. The results obtained from the ANN approach show significant improvement with the experimental observations.
{"title":"Predicting the compressive strength of a quaternary blend concrete using Bayesian regularized neural network","authors":"A. Imam, B. Salami, T. Oyehan","doi":"10.1080/24705314.2021.1892572","DOIUrl":"https://doi.org/10.1080/24705314.2021.1892572","url":null,"abstract":"ABSTRACT Concrete produced with ordinary Portland cement (OPC) along with insertion of supplementary materials increases the level of nonlinearity. Due to this increased non-linearity and difficulty in modeling numerically, the focus has increased on the exploration of computational intelligent models like artificial neural network (ANN) to estimate different concrete properties. In this study, a quaternary blend concrete was developed with OPC, fly ash (FA), metakaolin (MK) and rice husk ash (RHA). The experimental data were further used in training the proposed ANN models to approximate its compressive strength. The proposed neural network models were trained and optimized using three different regularization algorithms; the scaled conjugate gradient “trainsc” (SCG), Levenberg–Marquardt “trainlm” (LM) and Bayesian regularized “trainbr” (BR) algorithms. The percent proportion of OPC, FA, MK and RHA making up the quaternary blends and curing days are the five features used as input variables, while the compressive strength of each of the individual concrete mixture is the output variable (target). It was found out that ANN optimized with Bayesian regularization function performed best with the highest correlation coefficient, and lowest MAE, MSE and RMSE. The results obtained from the ANN approach show significant improvement with the experimental observations.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46721247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-03DOI: 10.1080/24705314.2021.1914806
S. Salawdeh
ABSTRACT The objective of this paper is to investigate and develop seismic design guidelines for multi-storey vertical irregular concentrically braced frames (CBFs). The work develops a direct displacement-based design (DDBD) procedure for irregular CBFs associated with steps in building plan area. In this procedure, design displacements considered are decided upon the code and material drift limits, then the strength required to achieve this displacement is calculated and finally all structural elements are designed. A case study of a 12-storey CBF structure with vertical irregularity is designed using the developed DDBD procedure. The configuration of the vertical irregularity assessed is in the form of setbacks up the vertical axis of the building where the frames have more bays at the base of the building than at the top. Non-linear time history analysis (NLTHA) using seven different accelerograms with displacement response spectra matching the design displacement spectrum are used to record the behaviour of the irregular CBF structure when subjected to real earthquakes. It is found that the design displacements and storey drifts from the DDBD procedure for the case study matched relatively well with those recorded through the NLTHA analyses and a new DDBD procedure for CBFs with vertical irregularity is validated.
{"title":"Applicability of the direct displacement-based design procedure to concentrically braced frames with setbacks","authors":"S. Salawdeh","doi":"10.1080/24705314.2021.1914806","DOIUrl":"https://doi.org/10.1080/24705314.2021.1914806","url":null,"abstract":"ABSTRACT The objective of this paper is to investigate and develop seismic design guidelines for multi-storey vertical irregular concentrically braced frames (CBFs). The work develops a direct displacement-based design (DDBD) procedure for irregular CBFs associated with steps in building plan area. In this procedure, design displacements considered are decided upon the code and material drift limits, then the strength required to achieve this displacement is calculated and finally all structural elements are designed. A case study of a 12-storey CBF structure with vertical irregularity is designed using the developed DDBD procedure. The configuration of the vertical irregularity assessed is in the form of setbacks up the vertical axis of the building where the frames have more bays at the base of the building than at the top. Non-linear time history analysis (NLTHA) using seven different accelerograms with displacement response spectra matching the design displacement spectrum are used to record the behaviour of the irregular CBF structure when subjected to real earthquakes. It is found that the design displacements and storey drifts from the DDBD procedure for the case study matched relatively well with those recorded through the NLTHA analyses and a new DDBD procedure for CBFs with vertical irregularity is validated.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24705314.2021.1914806","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49385755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-03DOI: 10.1080/24705314.2021.1906092
C. McGeown, F. Huseynov, D. Hester, P. McGetrick, E. OBrien, V. Pakrashi
ABSTRACT A recent survey of Europe’s highway infrastructure has concluded that almost half of Europe’s bridges are nearing the end of their design live. Work in the wider Structural Health Monitoring sector is aiming to develop reliable and cost-effective methods for verifying condition, remaining service life and safety of ageing structures. Most bridge condition assessment methods are based on deflection, acceleration or strain measurements. This paper looks at the possibility of using rotation measurements as a main parameter to identify damage. This study looks at numerical analyses of a moving point load on a one-dimensional bridge model to provide the theoretical basis of the proposed damage detection method. It is shown that when local damage occurs, even when it is remote from a sensor location, it results in an increase in the magnitude of rotation measurements. This study looks at how best to exploit this fact for damage detection. A number of damage scenarios, sensor locations, and load arrangements are investigated in this study and their influence on the ability of the algorithm to detect damage are reported.
{"title":"Using measured rotation on a beam to detect changes in its structural condition","authors":"C. McGeown, F. Huseynov, D. Hester, P. McGetrick, E. OBrien, V. Pakrashi","doi":"10.1080/24705314.2021.1906092","DOIUrl":"https://doi.org/10.1080/24705314.2021.1906092","url":null,"abstract":"ABSTRACT A recent survey of Europe’s highway infrastructure has concluded that almost half of Europe’s bridges are nearing the end of their design live. Work in the wider Structural Health Monitoring sector is aiming to develop reliable and cost-effective methods for verifying condition, remaining service life and safety of ageing structures. Most bridge condition assessment methods are based on deflection, acceleration or strain measurements. This paper looks at the possibility of using rotation measurements as a main parameter to identify damage. This study looks at numerical analyses of a moving point load on a one-dimensional bridge model to provide the theoretical basis of the proposed damage detection method. It is shown that when local damage occurs, even when it is remote from a sensor location, it results in an increase in the magnitude of rotation measurements. This study looks at how best to exploit this fact for damage detection. A number of damage scenarios, sensor locations, and load arrangements are investigated in this study and their influence on the ability of the algorithm to detect damage are reported.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24705314.2021.1906092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43579081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-03DOI: 10.1080/24705314.2021.1921952
J. Goggins
Papers contained in this special issue on “Sustainable and Resilient Structures” have been shortlisted from the papers presented at the Civil Engineering Research in Ireland 2020 (CERI2020) conference hosted by Munster Technology University, Ireland, in August 2020. The organisation of the CERI2020 conference was overseen by the Civil Engineering Research Association of Ireland (CERAI) which was formed in 2012 for the purpose of promoting civil engineering research and practice in Ireland, and its communication to academics and practitioners. The shortlisted papers were extended by the authors for this special issue and peer reviewed by international experts. The paper which I co-authored was handled independently by Dr Thomas Kang, Editor-in-Chief of Journal of Structural Integrity and Maintenance. As you will see from the special issue, there has been emphasis on applications, as well as theory, to maintain relevance to both industry and academia. The papers focus on sustainable and resilient structures for a range of applications from civil engineering infrastructures (bridges), to buildings and energy infrastructure (wind energy). I hope that this special issue on “Sustainable and Resilient Structures” will be of interest and use to all and a good reference to both researchers and practicing engineers.
{"title":"Sustainable and resilient structures","authors":"J. Goggins","doi":"10.1080/24705314.2021.1921952","DOIUrl":"https://doi.org/10.1080/24705314.2021.1921952","url":null,"abstract":"Papers contained in this special issue on “Sustainable and Resilient Structures” have been shortlisted from the papers presented at the Civil Engineering Research in Ireland 2020 (CERI2020) conference hosted by Munster Technology University, Ireland, in August 2020. The organisation of the CERI2020 conference was overseen by the Civil Engineering Research Association of Ireland (CERAI) which was formed in 2012 for the purpose of promoting civil engineering research and practice in Ireland, and its communication to academics and practitioners. The shortlisted papers were extended by the authors for this special issue and peer reviewed by international experts. The paper which I co-authored was handled independently by Dr Thomas Kang, Editor-in-Chief of Journal of Structural Integrity and Maintenance. As you will see from the special issue, there has been emphasis on applications, as well as theory, to maintain relevance to both industry and academia. The papers focus on sustainable and resilient structures for a range of applications from civil engineering infrastructures (bridges), to buildings and energy infrastructure (wind energy). I hope that this special issue on “Sustainable and Resilient Structures” will be of interest and use to all and a good reference to both researchers and practicing engineers.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24705314.2021.1921952","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45528180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-03DOI: 10.1080/24705314.2021.1906088
R. Corbally, A. Malekjafarian
ABSTRACT Ongoing inspection and maintenance of bridges poses a challenging task for infrastructure owners who must manage large bridge stocks with limited budgets. Drive-by monitoring approaches, using sensors in a vehicle, provide a promising solution to this challenge. This paper investigates the use of the response at the point-of-contact between the tyre and the bridge as a means of monitoring bridge frequency. An expression is derived to allow the contact-point (CP) response to be inferred directly from in-vehicle measurements, expanding on previous studies by allowing the vehicle suspension characteristics to be considered. The sensitivity of the CP-response to the pavement characteristics is investigated in detail and a rigid-disk model is used to overcome issues with how existing vehicle-bridge interaction models consider the interaction between the wheel and the pavement. The feasibility of the CP-response as a measure of bridge condition is investigated and results show that the CP-response significantly outperforms the response measured directly on the vehicle. The CP-response is successful in identifying the bridge frequency and changes caused by damage, without being influenced by the vehicle frequencies. Incorporating the CP-response into drive-by bridge monitoring will improve accuracy over existing methods which use the vehicle response alone.
{"title":"Examining changes in bridge frequency due to damage using the contact-point response of a passing vehicle","authors":"R. Corbally, A. Malekjafarian","doi":"10.1080/24705314.2021.1906088","DOIUrl":"https://doi.org/10.1080/24705314.2021.1906088","url":null,"abstract":"ABSTRACT Ongoing inspection and maintenance of bridges poses a challenging task for infrastructure owners who must manage large bridge stocks with limited budgets. Drive-by monitoring approaches, using sensors in a vehicle, provide a promising solution to this challenge. This paper investigates the use of the response at the point-of-contact between the tyre and the bridge as a means of monitoring bridge frequency. An expression is derived to allow the contact-point (CP) response to be inferred directly from in-vehicle measurements, expanding on previous studies by allowing the vehicle suspension characteristics to be considered. The sensitivity of the CP-response to the pavement characteristics is investigated in detail and a rigid-disk model is used to overcome issues with how existing vehicle-bridge interaction models consider the interaction between the wheel and the pavement. The feasibility of the CP-response as a measure of bridge condition is investigated and results show that the CP-response significantly outperforms the response measured directly on the vehicle. The CP-response is successful in identifying the bridge frequency and changes caused by damage, without being influenced by the vehicle frequencies. Incorporating the CP-response into drive-by bridge monitoring will improve accuracy over existing methods which use the vehicle response alone.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24705314.2021.1906088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44055081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-07-03DOI: 10.1080/24705314.2021.1906089
J. Lipczynska, R. West, M. Grimes, D. Niall, O. Kinnane, R. O’hegarty
ABSTRACT The traditional means of using precast concrete sandwich panels are restrictive in terms of applications, where thick wythes result in heavy panels which are often unsuitable in retrofitting domestic and commercial buildings. As concrete sandwich panel technology has evolved to make it more widely accessible, recent research work has demonstrated that it is possible to achieve thermally efficient partial composite action within a thin wythe panel provided non-conductive shear connectors are used. This paper examines high performance recycled aggregate concrete in heavily insulated non-load-bearing panels for retrofitting domestic and commercial buildings. A series of concrete mixes were tested to develop one which would be more sustainable than the widely accepted standard mixes for wythes. Different 220 mm thick concrete sandwich panels were tested consisting of 20 mm thick fibre-reinforced recycled aggregate concrete wythes and a 180 mm layer of XPS insulation. Unconnected and shear connected panels were tested in flexure in a displacement control test. The effects of composite action and post-cracking toughness were examined and it was concluded that a shear connected panel comprising sustainable thin recycled aggregate concrete wythes enclosing a thick layer of insulation is a feasible product to use for light high-performance sandwich panels.
{"title":"Composite behaviour of wide sandwich panels with thin high performance recycled aggregate concrete wythes with fibre reinforced polymer shear connectors","authors":"J. Lipczynska, R. West, M. Grimes, D. Niall, O. Kinnane, R. O’hegarty","doi":"10.1080/24705314.2021.1906089","DOIUrl":"https://doi.org/10.1080/24705314.2021.1906089","url":null,"abstract":"ABSTRACT The traditional means of using precast concrete sandwich panels are restrictive in terms of applications, where thick wythes result in heavy panels which are often unsuitable in retrofitting domestic and commercial buildings. As concrete sandwich panel technology has evolved to make it more widely accessible, recent research work has demonstrated that it is possible to achieve thermally efficient partial composite action within a thin wythe panel provided non-conductive shear connectors are used. This paper examines high performance recycled aggregate concrete in heavily insulated non-load-bearing panels for retrofitting domestic and commercial buildings. A series of concrete mixes were tested to develop one which would be more sustainable than the widely accepted standard mixes for wythes. Different 220 mm thick concrete sandwich panels were tested consisting of 20 mm thick fibre-reinforced recycled aggregate concrete wythes and a 180 mm layer of XPS insulation. Unconnected and shear connected panels were tested in flexure in a displacement control test. The effects of composite action and post-cracking toughness were examined and it was concluded that a shear connected panel comprising sustainable thin recycled aggregate concrete wythes enclosing a thick layer of insulation is a feasible product to use for light high-performance sandwich panels.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24705314.2021.1906089","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48229941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}