Mesozoic convergence of the Wrangellia composite terrane with the western margin of North America resulted in the collapse of intervening flysch basins. One of these basins, the Jurassic-Cretaceous Gravina-Nuzotin belt, comprises from south to north, the Gravina sequence and Gravina belt in southeastern Alaska, the Dezadeash Formation in Yukon, and the Nutzotin Mountains sequence in eastern Alaska. Previous work shows that the Gravina sequence and Gravina belt were underthrust > 20 km beneath the margin of North America in mid-Cretaceous time, culminating in amphibolite facies metamorphism. This tectonometamorphic scenario was subsequently applied to the entire Gravina-Nutzotin belt, despite any detailed studies pertaining to the tectonometamorphic evolution of the Dezadeash Formation. The present analysis of the Dezadeash Formation reveals that metamorphic mineral assemblages in sandstone and tuff document subgreenschist, high temperature zeolite facies metamorphism; Kübler indices of illite and Árkai indices of chlorite in mudstone record diagenetic to high anchizone metapelitic conditions; and the color of organic matter (i.e., the Thermal Alteration Index of palynomorphs and the Conodont Alteration Index) and pyrolysis of organic matter in mudstone and hemipelagite beds document thermal maturation at catagenesis to mesogenesis stages. Collectively, the mineralogic and organic thermal indicators in the Dezadeash Formation suggest that strata experienced maximum pressure-temperature conditions of 2.5 ± 0.5 kbar and 250 ± 25 ℃ in the Early Cretaceous. The inferred tectonometamorphic evolution of the Dezadeash Formation does not support the northern part of the Gravina-Nutzotin belt being underthrust > 20 km beneath the western margin of North America in mid-Cretaceous time, thus contrasting sharply with the Gravina sequence and Gravina belt in the southern part of the Gravina-Nutzotin belt. The diverse tectonometamorphic histories recorded by the southern and northern parts of the Gravina-Nutzotin belt may be a manifestation of oblique collision and diachronous south-to-north accretion of the Wrangellia composite terrane to North America.
{"title":"Very low-grade metamorphism of the Dezadeash Formation (Jura-Cretaceous): Constraints on the tectonometamorphic history of the Dezadeash flysch basin and implications regarding the tectonic evolution of the Northern Cordillera of Alaska and Yukon","authors":"G. Lowey, Yukon Whitehorse","doi":"10.3934/geosci.2021022","DOIUrl":"https://doi.org/10.3934/geosci.2021022","url":null,"abstract":"Mesozoic convergence of the Wrangellia composite terrane with the western margin of North America resulted in the collapse of intervening flysch basins. One of these basins, the Jurassic-Cretaceous Gravina-Nuzotin belt, comprises from south to north, the Gravina sequence and Gravina belt in southeastern Alaska, the Dezadeash Formation in Yukon, and the Nutzotin Mountains sequence in eastern Alaska. Previous work shows that the Gravina sequence and Gravina belt were underthrust > 20 km beneath the margin of North America in mid-Cretaceous time, culminating in amphibolite facies metamorphism. This tectonometamorphic scenario was subsequently applied to the entire Gravina-Nutzotin belt, despite any detailed studies pertaining to the tectonometamorphic evolution of the Dezadeash Formation. The present analysis of the Dezadeash Formation reveals that metamorphic mineral assemblages in sandstone and tuff document subgreenschist, high temperature zeolite facies metamorphism; Kübler indices of illite and Árkai indices of chlorite in mudstone record diagenetic to high anchizone metapelitic conditions; and the color of organic matter (i.e., the Thermal Alteration Index of palynomorphs and the Conodont Alteration Index) and pyrolysis of organic matter in mudstone and hemipelagite beds document thermal maturation at catagenesis to mesogenesis stages. Collectively, the mineralogic and organic thermal indicators in the Dezadeash Formation suggest that strata experienced maximum pressure-temperature conditions of 2.5 ± 0.5 kbar and 250 ± 25 ℃ in the Early Cretaceous. The inferred tectonometamorphic evolution of the Dezadeash Formation does not support the northern part of the Gravina-Nutzotin belt being underthrust > 20 km beneath the western margin of North America in mid-Cretaceous time, thus contrasting sharply with the Gravina sequence and Gravina belt in the southern part of the Gravina-Nutzotin belt. The diverse tectonometamorphic histories recorded by the southern and northern parts of the Gravina-Nutzotin belt may be a manifestation of oblique collision and diachronous south-to-north accretion of the Wrangellia composite terrane to North America.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Fiorentino, S. Warden, M. Bano, P. Sailhac, T. Perrier
: The remediation of a polluted site relies, as a first stage, on the proper delineation of the contamination sources. In classical investigations, soil and water samples are collected throughout the field. These measurements allow a quantitative characterization of the gathered materials but only provide information about the medium in the vicinity of the points where they were collected. On the other hand, geophysical techniques can provide a quasi-continuous coverage of the investigated field. This paper describes a geophysical survey that was performed on an industrial site impacted by a chlorinated DNAPL. The precise location of the contamination was needed for the treatment of the saturated zone, while the unsaturated zone was remediated by general excavation of the sediments, followed by separate treatment. As this excavation allowed to get closer to the saturated zone, geophysical measurements were conducted at the bottom of the pit. Whereas Electrical Resistivity Tomography measurements only brought little information, Ground Penetrating Radar drew the remediation operations towards an area that preliminary point measurements had not identified as a possible source location.
{"title":"One-off geophysical detection of chlorinated DNAPL during remediation of an industrial site: a case study","authors":"E. Fiorentino, S. Warden, M. Bano, P. Sailhac, T. Perrier","doi":"10.3934/GEOSCI.2021001","DOIUrl":"https://doi.org/10.3934/GEOSCI.2021001","url":null,"abstract":": The remediation of a polluted site relies, as a first stage, on the proper delineation of the contamination sources. In classical investigations, soil and water samples are collected throughout the field. These measurements allow a quantitative characterization of the gathered materials but only provide information about the medium in the vicinity of the points where they were collected. On the other hand, geophysical techniques can provide a quasi-continuous coverage of the investigated field. This paper describes a geophysical survey that was performed on an industrial site impacted by a chlorinated DNAPL. The precise location of the contamination was needed for the treatment of the saturated zone, while the unsaturated zone was remediated by general excavation of the sediments, followed by separate treatment. As this excavation allowed to get closer to the saturated zone, geophysical measurements were conducted at the bottom of the pit. Whereas Electrical Resistivity Tomography measurements only brought little information, Ground Penetrating Radar drew the remediation operations towards an area that preliminary point measurements had not identified as a possible source location.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"36 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Urban growth in Trikomo (Yeni İskele) region in Cyprus has dramatically increased recently. The unorganized and uncontrolled development process has started to consume land resources; loss of landcover, valuable agricultural lands, and change of wetlands of stream beds or ponds occurred. In addition, partial and fragmented housing development projects bring only housing and second housing to the coastal region. As a result, environmental and economic problems occurred in sustainable urban growth (SUG) in the Trikomo (Yeni İskele) region. Due to the lack of planning instruments in Trikomo, urban expansion policies and alternatives have been ignored. In this regard, this research tries to investigate spatial SUG and expansion alternatives by using Multi-Criteria Evaluation (MCE) and fuzzy logic within geographical information systems (GIS). Compact growth, environmental protection, and equal accessibility to local services were used for multi-criteria analysis to construct spatial SUG problems. Then they were converted to spatial layers within the (GIS) environment. Results show that; 6 percent of the study area is in a shallow suitability zone. Forty-four percent of it has very low and low suitability for SUG. Also, 41 percent of the area is suitable. Only 12 percent of the area has high and very high suitability values. These findings showed that approximately 118 square kilometers (56 percent) of the city is within the same level appropriate for urban development.
{"title":"The multi-criteria analysis for sustainable urban growth by using Fuzzy Method: case study Trikomo, Cyprus","authors":"C. Kara, N. Akçit","doi":"10.3934/geosci.2021038","DOIUrl":"https://doi.org/10.3934/geosci.2021038","url":null,"abstract":"The Urban growth in Trikomo (Yeni İskele) region in Cyprus has dramatically increased recently. The unorganized and uncontrolled development process has started to consume land resources; loss of landcover, valuable agricultural lands, and change of wetlands of stream beds or ponds occurred. In addition, partial and fragmented housing development projects bring only housing and second housing to the coastal region. As a result, environmental and economic problems occurred in sustainable urban growth (SUG) in the Trikomo (Yeni İskele) region. Due to the lack of planning instruments in Trikomo, urban expansion policies and alternatives have been ignored. In this regard, this research tries to investigate spatial SUG and expansion alternatives by using Multi-Criteria Evaluation (MCE) and fuzzy logic within geographical information systems (GIS). Compact growth, environmental protection, and equal accessibility to local services were used for multi-criteria analysis to construct spatial SUG problems. Then they were converted to spatial layers within the (GIS) environment. Results show that; 6 percent of the study area is in a shallow suitability zone. Forty-four percent of it has very low and low suitability for SUG. Also, 41 percent of the area is suitable. Only 12 percent of the area has high and very high suitability values. These findings showed that approximately 118 square kilometers (56 percent) of the city is within the same level appropriate for urban development.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Lugeri, P. Farabollini, F. De Pascale, N. Lugeri
The need of protection of the territory is a priority for the society, which is an integral part of it (unfortunately, this coincidence is often forgotten): the new environmental issues require the development of innovative management strategies and of appropriate knowledge and models. The balanced use of resources, essential for the survival and well-being of society, can be optimised through the promotion of the territory. The identification and the sustainable development of local resources can only be achieved by directing development policies towards a path of integration between ecological needs, protection of the landscape and socio-economic and cultural needs. The landscape, read as a result of the interaction between human and natural processes, is a rich heritage to safeguard, enhance and promote. The key requirement underlying each cultural and environmental enhancement project is the knowledge of the territory in its manifold aspects; knowledge that can be properly synthesised through cartographic representation: maps are tools to make data easily accessible and meaningful. In this contribution, after having carried out a review of the literature on GIS technologies and having provided some work examples, we analyse some proposals about the application of PPGIS on communication of environmental promotion initiatives; PPGIS, in fact, are effective in risk communication and information and in the consequent prevention of disasters. The mediated and participatory use of PPGIS technologies, furthermore, allows a community-based approach, fundamental for reducing the disaster risk.
{"title":"PPGIS applied to environmental communication and hazards for a community-based approach: a dualism in the Southern Italy \"calanchi\" landscape","authors":"F. Lugeri, P. Farabollini, F. De Pascale, N. Lugeri","doi":"10.3934/geosci.2021028","DOIUrl":"https://doi.org/10.3934/geosci.2021028","url":null,"abstract":"The need of protection of the territory is a priority for the society, which is an integral part of it (unfortunately, this coincidence is often forgotten): the new environmental issues require the development of innovative management strategies and of appropriate knowledge and models. The balanced use of resources, essential for the survival and well-being of society, can be optimised through the promotion of the territory. The identification and the sustainable development of local resources can only be achieved by directing development policies towards a path of integration between ecological needs, protection of the landscape and socio-economic and cultural needs. The landscape, read as a result of the interaction between human and natural processes, is a rich heritage to safeguard, enhance and promote. The key requirement underlying each cultural and environmental enhancement project is the knowledge of the territory in its manifold aspects; knowledge that can be properly synthesised through cartographic representation: maps are tools to make data easily accessible and meaningful. In this contribution, after having carried out a review of the literature on GIS technologies and having provided some work examples, we analyse some proposals about the application of PPGIS on communication of environmental promotion initiatives; PPGIS, in fact, are effective in risk communication and information and in the consequent prevention of disasters. The mediated and participatory use of PPGIS technologies, furthermore, allows a community-based approach, fundamental for reducing the disaster risk.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"32 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teresa Vera San Martín, L. Gutierrez, M. Palacios, E. Mas, A. Bruno, S. Koshimura
The current study investigated the probable impact from a tsunami to a populated area located along the northwest ecuadorian coast, specifically in the key oil-industrial city of esmeraldas. a numerical tsunami simulation was performed considering the seismological and tectonic aspects of the area. The damage probability was calculated using fragility functions (ffs). Briefly, 16 cases of source models with slightly different fault parameters were tested, where one was selected as the worst scenario of tsunami inundation. This scenario was a hypothetic earthquake case (mw 8.7) located in front of esmeraldas city, approximately 100 km offshore along the ecuador—colombia trench, with three shallow fault segments (top depth of 10 km), a strike aligned with the trench axis, a middle dip angle of 28°, assuming large slips of 5 to 15 m, and a rake angle of 90°. The results from the numerical simulation were comparable to a similar study previously conducted and with those of historically documented data. The tsunami damage estimation using FFs resulted in estimated damages of 50% and 44% in exposed buildings and population, respectively. Results also showed that the most impacted areas were located next to the coastal shoreline and river. tourism, oil exports, and port activities, in general, would be affected in this scenario; thus, compromising important industries that support the national budget. Results from this study would assist in designing or improving tsunami risk reduction strategies, disaster management, use of coastal zones, and planning better policies.
{"title":"Tsunami damage estimation in Esmeraldas, Ecuador using fragility functions","authors":"Teresa Vera San Martín, L. Gutierrez, M. Palacios, E. Mas, A. Bruno, S. Koshimura","doi":"10.3934/geosci.2021040","DOIUrl":"https://doi.org/10.3934/geosci.2021040","url":null,"abstract":"The current study investigated the probable impact from a tsunami to a populated area located along the northwest ecuadorian coast, specifically in the key oil-industrial city of esmeraldas. a numerical tsunami simulation was performed considering the seismological and tectonic aspects of the area. The damage probability was calculated using fragility functions (ffs). Briefly, 16 cases of source models with slightly different fault parameters were tested, where one was selected as the worst scenario of tsunami inundation. This scenario was a hypothetic earthquake case (mw 8.7) located in front of esmeraldas city, approximately 100 km offshore along the ecuador—colombia trench, with three shallow fault segments (top depth of 10 km), a strike aligned with the trench axis, a middle dip angle of 28°, assuming large slips of 5 to 15 m, and a rake angle of 90°. The results from the numerical simulation were comparable to a similar study previously conducted and with those of historically documented data. The tsunami damage estimation using FFs resulted in estimated damages of 50% and 44% in exposed buildings and population, respectively. Results also showed that the most impacted areas were located next to the coastal shoreline and river. tourism, oil exports, and port activities, in general, would be affected in this scenario; thus, compromising important industries that support the national budget. Results from this study would assist in designing or improving tsunami risk reduction strategies, disaster management, use of coastal zones, and planning better policies.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study evaluated the impact of land use and land cover changes on the water balance of the Couffo catchment (Benin) using the Soil and Water Assessment Tool (SWAT). To that end, soil, land uses, hydro-meteorological data including rainfall, temperatures (maximum and minimum), wind speed, solar radiation, relative humidity and discharge data were used as main inputs. To assess the impact of land uses on the catchment water balance, three different land uses (2000, 2006 and 2011) were used. Results showed that from 2000 to 2011, croplands and fallows increased by 34% while the shrub and grass savannahs decreased respectively by 34 and 24%. In addition, agroforestry and gallery forest decreased by 63% and 58% respectively while a rapid increase in settlement. The study outcome suggested that the SWAT provided satisfactory results for discharge with R2, NSE, KGE and absolute percent of bias (absPBIAS) ranged between (0.7–0.9), (0.6–0.9). (0.6–0.9) and (5.3–34) respectively. Moreover, the evaluation of land use and land cover changes on the catchment water balance resulted in an increase in annual surface water and water yield, while the groundwater and actual evapotranspiration (ETa) have decreased. Findings of this study may be a great contribution to water resource management in the Couffo catchment. This may contribute to better allocate water for the actual catchment population demand without dampening those of the future generation.
{"title":"Hydrological response to land use and land cover changes in a tropical West African catchment (Couffo, Benin)","authors":"Quentin Fiacre Togbévi, L. Sintondji","doi":"10.3934/geosci.2021021","DOIUrl":"https://doi.org/10.3934/geosci.2021021","url":null,"abstract":"This study evaluated the impact of land use and land cover changes on the water balance of the Couffo catchment (Benin) using the Soil and Water Assessment Tool (SWAT). To that end, soil, land uses, hydro-meteorological data including rainfall, temperatures (maximum and minimum), wind speed, solar radiation, relative humidity and discharge data were used as main inputs. To assess the impact of land uses on the catchment water balance, three different land uses (2000, 2006 and 2011) were used. Results showed that from 2000 to 2011, croplands and fallows increased by 34% while the shrub and grass savannahs decreased respectively by 34 and 24%. In addition, agroforestry and gallery forest decreased by 63% and 58% respectively while a rapid increase in settlement. The study outcome suggested that the SWAT provided satisfactory results for discharge with R2, NSE, KGE and absolute percent of bias (absPBIAS) ranged between (0.7–0.9), (0.6–0.9). (0.6–0.9) and (5.3–34) respectively. Moreover, the evaluation of land use and land cover changes on the catchment water balance resulted in an increase in annual surface water and water yield, while the groundwater and actual evapotranspiration (ETa) have decreased. Findings of this study may be a great contribution to water resource management in the Couffo catchment. This may contribute to better allocate water for the actual catchment population demand without dampening those of the future generation.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosazlin Abdullah, Firuza Begham Mustafa, S. Bhassu, Nur Aziaty Amirah Azhar, B. E. Bwadi, Nursyahira Ahmad, Aaronn Avit Ajeng
Water and soil qualities play significant roles in the farming of giant freshwater prawn. The study evaluated water and soil qualities for giant freshwater prawn farming site suitability by using Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) in Jelebu, Malaysia. The water quality parameters measured were biochemical oxygen demand, chemical oxygen demand, ammonia nitrogen, pH, dissolved oxygen, water temperature, total suspended solids, nitrite concentration and phosphate concentration, meanwhile soil qualities investigated were land use, slope, pH, texture, organic carbon and organic matter. Site suitability analysis can assist to identify the best location for prawn production. Specialist's opinions were used to rank the level of preference and significance of each of the parameter while the pairwise comparison matrix was applied to calculate the weight of each parameter for prawn farming. There are about 45.41% of the land was most suitable, 28.89% was moderately suitable while 25.69% was found unsuitable for prawn farming. The combination of AHP and GIS could give a better database and guide map for planners and decision-makers to take more rewarding decisions when apportioning the land for prawn farming, for better productivity.
{"title":"Evaluation of water and soil qualities for giant freshwater prawn farming site suitability by using the AHP and GIS approaches in Jelebu, Negeri Sembilan, Malaysia","authors":"Rosazlin Abdullah, Firuza Begham Mustafa, S. Bhassu, Nur Aziaty Amirah Azhar, B. E. Bwadi, Nursyahira Ahmad, Aaronn Avit Ajeng","doi":"10.3934/geosci.2021029","DOIUrl":"https://doi.org/10.3934/geosci.2021029","url":null,"abstract":"Water and soil qualities play significant roles in the farming of giant freshwater prawn. The study evaluated water and soil qualities for giant freshwater prawn farming site suitability by using Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) in Jelebu, Malaysia. The water quality parameters measured were biochemical oxygen demand, chemical oxygen demand, ammonia nitrogen, pH, dissolved oxygen, water temperature, total suspended solids, nitrite concentration and phosphate concentration, meanwhile soil qualities investigated were land use, slope, pH, texture, organic carbon and organic matter. Site suitability analysis can assist to identify the best location for prawn production. Specialist's opinions were used to rank the level of preference and significance of each of the parameter while the pairwise comparison matrix was applied to calculate the weight of each parameter for prawn farming. There are about 45.41% of the land was most suitable, 28.89% was moderately suitable while 25.69% was found unsuitable for prawn farming. The combination of AHP and GIS could give a better database and guide map for planners and decision-makers to take more rewarding decisions when apportioning the land for prawn farming, for better productivity.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the current scenario, worldwide renewable energy systems receive renewed interest because of the global reduction of greenhouse gas emissions. This paper proposes a long-term wind speed prediction model based on various artificial neural network approaches such as Improved Back-Propagation Network (IBPN), Multilayer Perceptron Network (MLPN), Recursive Radial Basis Function Network (RRBFN), and Elman Network with five inputs such as wind direction, temperature, relative humidity, precipitation of water content and wind speed. The proposed ANN-based wind speed forecasting models help plan, integrate, and control power systems and wind farms. The simulation result confirms that the proposed Recursive Radial Basis Function Network (RRBFN) model improves the wind speed prediction accuracy and minimizes the error to a minimum compared to other proposed IBPN, MLPN, and Elman Network-based wind speed prediction models.
{"title":"Long-term wind speed prediction using artificial neural network-based approaches","authors":"M. Madhiarasan","doi":"10.3934/geosci.2021031","DOIUrl":"https://doi.org/10.3934/geosci.2021031","url":null,"abstract":"In the current scenario, worldwide renewable energy systems receive renewed interest because of the global reduction of greenhouse gas emissions. This paper proposes a long-term wind speed prediction model based on various artificial neural network approaches such as Improved Back-Propagation Network (IBPN), Multilayer Perceptron Network (MLPN), Recursive Radial Basis Function Network (RRBFN), and Elman Network with five inputs such as wind direction, temperature, relative humidity, precipitation of water content and wind speed. The proposed ANN-based wind speed forecasting models help plan, integrate, and control power systems and wind farms. The simulation result confirms that the proposed Recursive Radial Basis Function Network (RRBFN) model improves the wind speed prediction accuracy and minimizes the error to a minimum compared to other proposed IBPN, MLPN, and Elman Network-based wind speed prediction models.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Hernández, J. G. Berlanga, I. Tormos, C. García, S. A. C. Sociedad de Fomento Agrícola Castellonense, Castellón de la Plana Spain Mayor –
The decrease in soil productivity and quality caused by the continuous and abusive use of mineral fertilizers makes necessary to adopt more sustainable agricultural soil management strategies that help to maintain soil edaphic fertility. In light of these considerations, we have evaluated the effect of organic vs. inorganic fertilization on soil microbial communities, soil quality, and crop yield in a melon crop. The following treatments were tested: i) aerobic sewage sludge from a conventional wastewater treatment plant (WWTP) using aerobic bacteria (SS); ii) aerobic sewage sludge from a WWTP using a bacteria-microalgae consortium (B); iii) N-P-K mineral fertilizer (M); iv) a treatment in which 50% of the N was contributed by SS and 50% by mineral fertilizer (M + SS); v) a treatment in which 50% of the N was contributed by B and 50% by mineral fertilizer (M + B); and vi) a no-fertilized control soil. Melon yield and fruit quality were determined in addition to several soil physical, chemical, biochemical and microbiological parameters. Organic fertilizers (SS and B) increased the percentage of soil water-stable aggregates (52 and 60% respectively) as well as the content of organic C (18 and 31%), water soluble C (21 and 41%), N (15 and 41%) and available P content (41 and 82%) compared to inorganic fertilization. They also stimulated bacterial and fungal abundance to a greater extent than mineral fertilizers (189 and 242% vs 85%, and 57 and 122% vs 29%, respectively), as well as soil respiration, and dehydrogenase, β-glucosidase, phosphatase, urease, and glycine aminopectidase activities. The analysis of principal components with parameters linked to soil quality clearly showed that organic fertilizers cause a greater improvement in soil characteristics and microbial community than mineral fertilizers. Results demonstrate that organic and combined fertilization could be used as substitutes for nitrogen mineral fertilizers in melon crop, since these treatments led to similar melon production and quality while improving soil characteristics and microbial population size and activity.
{"title":"Organic versus inorganic fertilizers: Response of soil properties and crop yield","authors":"T. Hernández, J. G. Berlanga, I. Tormos, C. García, S. A. C. Sociedad de Fomento Agrícola Castellonense, Castellón de la Plana Spain Mayor –","doi":"10.3934/geosci.2021024","DOIUrl":"https://doi.org/10.3934/geosci.2021024","url":null,"abstract":"The decrease in soil productivity and quality caused by the continuous and abusive use of mineral fertilizers makes necessary to adopt more sustainable agricultural soil management strategies that help to maintain soil edaphic fertility. In light of these considerations, we have evaluated the effect of organic vs. inorganic fertilization on soil microbial communities, soil quality, and crop yield in a melon crop. The following treatments were tested: i) aerobic sewage sludge from a conventional wastewater treatment plant (WWTP) using aerobic bacteria (SS); ii) aerobic sewage sludge from a WWTP using a bacteria-microalgae consortium (B); iii) N-P-K mineral fertilizer (M); iv) a treatment in which 50% of the N was contributed by SS and 50% by mineral fertilizer (M + SS); v) a treatment in which 50% of the N was contributed by B and 50% by mineral fertilizer (M + B); and vi) a no-fertilized control soil. Melon yield and fruit quality were determined in addition to several soil physical, chemical, biochemical and microbiological parameters. Organic fertilizers (SS and B) increased the percentage of soil water-stable aggregates (52 and 60% respectively) as well as the content of organic C (18 and 31%), water soluble C (21 and 41%), N (15 and 41%) and available P content (41 and 82%) compared to inorganic fertilization. They also stimulated bacterial and fungal abundance to a greater extent than mineral fertilizers (189 and 242% vs 85%, and 57 and 122% vs 29%, respectively), as well as soil respiration, and dehydrogenase, β-glucosidase, phosphatase, urease, and glycine aminopectidase activities. The analysis of principal components with parameters linked to soil quality clearly showed that organic fertilizers cause a greater improvement in soil characteristics and microbial community than mineral fertilizers. Results demonstrate that organic and combined fertilization could be used as substitutes for nitrogen mineral fertilizers in melon crop, since these treatments led to similar melon production and quality while improving soil characteristics and microbial population size and activity.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Gunathilake, Thamashi Senerath, Upaka S. Rathnayake
The developments of satellite technologies and remote sensing (RS) have provided a way forward with potential for tremendous progress in estimating precipitation in many regions of the world. These products are especially useful in developing countries and regions, where ground-based rain gauge (RG) networks are either sparse or do not exist. In the present study the hydrologic utility of three satellite-based precipitation products (SbPPs) namely, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), PERSIANN-Cloud Classification System (PERSIANN-CCS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Dynamic Infrared Rain Rate near real-time (PDIR-NOW) were examined by using them to drive the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) hydrologic model for the Seethawaka watershed, a sub-basin of the Kelani River Basin of Sri Lanka. The hydrologic utility of SbPPs was examined by comparing the outputs of this modelling exercise against observed discharge records at the Deraniyagala streamflow gauging station during two extreme rainfall events from 2016 and 2017. The observed discharges were simulated considerably better by the model when RG data was used to drive it than when these SbPPs. The results demonstrated that PERSIANN family of precipitation products are not capable of producing peak discharges and timing of peaks essential for near-real time flood-forecasting applications in the Seethawaka watershed. The difference in performance is quantified using the Nash-Sutcliffe Efficiency, which was > 0.80 for the model when driven by RGs, and < 0.08 when driven by the SbPPs. Amongst the SbPPs, PERSIANN performed best. The outcomes of this study will provide useful insights and recommendations for future research expected to be carried out in the Seethawaka watershed using SbPPs. The results of this study calls for the refinement of retrieval algorithms in rainfall estimation techniques of PERSIANN family of rainfall products for the tropical region.
{"title":"Artificial neural network based PERSIANN data sets in evaluation of hydrologic utility of precipitation estimations in a tropical watershed of Sri Lanka","authors":"M. Gunathilake, Thamashi Senerath, Upaka S. Rathnayake","doi":"10.3934/geosci.2021027","DOIUrl":"https://doi.org/10.3934/geosci.2021027","url":null,"abstract":"The developments of satellite technologies and remote sensing (RS) have provided a way forward with potential for tremendous progress in estimating precipitation in many regions of the world. These products are especially useful in developing countries and regions, where ground-based rain gauge (RG) networks are either sparse or do not exist. In the present study the hydrologic utility of three satellite-based precipitation products (SbPPs) namely, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), PERSIANN-Cloud Classification System (PERSIANN-CCS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Dynamic Infrared Rain Rate near real-time (PDIR-NOW) were examined by using them to drive the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) hydrologic model for the Seethawaka watershed, a sub-basin of the Kelani River Basin of Sri Lanka. The hydrologic utility of SbPPs was examined by comparing the outputs of this modelling exercise against observed discharge records at the Deraniyagala streamflow gauging station during two extreme rainfall events from 2016 and 2017. The observed discharges were simulated considerably better by the model when RG data was used to drive it than when these SbPPs. The results demonstrated that PERSIANN family of precipitation products are not capable of producing peak discharges and timing of peaks essential for near-real time flood-forecasting applications in the Seethawaka watershed. The difference in performance is quantified using the Nash-Sutcliffe Efficiency, which was > 0.80 for the model when driven by RGs, and < 0.08 when driven by the SbPPs. Amongst the SbPPs, PERSIANN performed best. The outcomes of this study will provide useful insights and recommendations for future research expected to be carried out in the Seethawaka watershed using SbPPs. The results of this study calls for the refinement of retrieval algorithms in rainfall estimation techniques of PERSIANN family of rainfall products for the tropical region.","PeriodicalId":43999,"journal":{"name":"AIMS Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70249473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}