Pub Date : 2024-08-22DOI: 10.1088/2515-7647/ad6ed2
Michael Raju, Baptiste Jayet, Stefan Andersson-Engels
We developed a 2D Finite-difference time-domain (FDTD) method for modeling a space-time modulated guidestar targeting wavefront shaping applications in disordered media. Space-time modulation in general (a particular example being the acousto-optic effect) is used here as a guidestar for the transverse confinement of light around the tagged region surrounded by disorder. Together with the guidestar, the iterative optical phase conjugation (IOPC) method is used to overcome the diffusion of light due to multiple scattering. A phase sensitive lock-in detection technique is utilized to estimate the steady-state amplitude and phase of the modulated wavefronts emerging from the guidestar region continuously operating in the Raman-Nath regime. As the IOPC scheme naturally converges to the maximally transmitting eigenchannel profile, one could use the position of the guidestar within the disorder to channelize the maximal transmission through the tagged region. The associated code developed in MATLAB® is provided as an open source (The MIT License) package. The code package is referred by the acronym STAR-FDTD where STAR stands for Space-Time modulated Acousto-optic guidestaR.
我们开发了一种二维有限差分时域(FDTD)方法,用于模拟无序介质中波前整形应用的时空调制导星。时空调制一般(声光效应就是一个特别的例子)在这里被用作光在无序环绕的标记区域周围横向限制的导星。迭代光学相位共轭(IOPC)方法与导星一起用于克服多重散射导致的光扩散。利用相位敏感的锁相检测技术来估算从导星区域出现的调制波面的稳态振幅和相位,这些波面在拉曼-纳特机制下持续工作。由于 IOPC 方案会自然收敛到最大传输特征通道轮廓,因此可以利用导星在无序状态中的位置来引导通过标记区域的最大传输。用 MATLAB® 开发的相关代码以开放源代码(MIT 许可)的形式提供。代码包的缩写为 STAR-FDTD,其中 STAR 代表时空调制声光导引星。
{"title":"STAR-FDTD: space-time modulated acousto-optic guidestar in disordered media","authors":"Michael Raju, Baptiste Jayet, Stefan Andersson-Engels","doi":"10.1088/2515-7647/ad6ed2","DOIUrl":"https://doi.org/10.1088/2515-7647/ad6ed2","url":null,"abstract":"We developed a 2D Finite-difference time-domain (FDTD) method for modeling a space-time modulated guidestar targeting wavefront shaping applications in disordered media. Space-time modulation in general (a particular example being the acousto-optic effect) is used here as a guidestar for the transverse confinement of light around the tagged region surrounded by disorder. Together with the guidestar, the iterative optical phase conjugation (IOPC) method is used to overcome the diffusion of light due to multiple scattering. A phase sensitive lock-in detection technique is utilized to estimate the steady-state amplitude and phase of the modulated wavefronts emerging from the guidestar region continuously operating in the Raman-Nath regime. As the IOPC scheme naturally converges to the maximally transmitting eigenchannel profile, one could use the position of the guidestar within the disorder to channelize the maximal transmission through the tagged region. The associated code developed in MATLAB<sup>®</sup> is provided as an open source (The MIT License) package. The code package is referred by the acronym STAR-FDTD where STAR stands for <bold>S</bold>pace-<bold>T</bold>ime modulated <bold>A</bold>cousto-optic guidesta<bold>R</bold>.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"4 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1088/2515-7647/ad6abc
Claudia Daffara, Dario Ambrosini
Nondestructive optical techniques are crucial in heritage science for monitoring the condition of artworks in full field. Various imaging methods based on infrared and interferometry techniques have been proposed, but they often require specialized training and expensive equipment. This paper explores the emerging field of smartphone science and its potential to revolutionize artwork diagnostics, especially for cultural institutions with limited budgets. The smartphone science approach is divided into using the device ‘as is’ or enhancing it with add-on sensors. After a concise overview of smartphone sensing in different fields, the paper demonstrates smartphone-based optical diagnostics on traditional wooden painting models, employing coherent techniques like laser speckle imaging and moiré fringe technique, and infrared techniques like reflectography and thermography. The comparison of obtained results with established instrumentation in the field clearly shows that smartphone-based diagnostics have the potential to greatly contribute to cultural heritage preservation and conservation, transforming the field’s accessibility and cost-effectiveness.
{"title":"Smartphone-based diagnostics with coherent and infrared imaging for cultural heritage","authors":"Claudia Daffara, Dario Ambrosini","doi":"10.1088/2515-7647/ad6abc","DOIUrl":"https://doi.org/10.1088/2515-7647/ad6abc","url":null,"abstract":"Nondestructive optical techniques are crucial in heritage science for monitoring the condition of artworks in full field. Various imaging methods based on infrared and interferometry techniques have been proposed, but they often require specialized training and expensive equipment. This paper explores the emerging field of smartphone science and its potential to revolutionize artwork diagnostics, especially for cultural institutions with limited budgets. The smartphone science approach is divided into using the device ‘as is’ or enhancing it with add-on sensors. After a concise overview of smartphone sensing in different fields, the paper demonstrates smartphone-based optical diagnostics on traditional wooden painting models, employing coherent techniques like laser speckle imaging and moiré fringe technique, and infrared techniques like reflectography and thermography. The comparison of obtained results with established instrumentation in the field clearly shows that smartphone-based diagnostics have the potential to greatly contribute to cultural heritage preservation and conservation, transforming the field’s accessibility and cost-effectiveness.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"3 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1088/2515-7647/ad68de
Yudong Ren, Xinrui Li, Ning Han, Li Zhang, Rui Zhao, Qiaolu Chen, Yuze Hu, Mingyu Tong, Song Han, Yihao Yang
Topological photonics offers a powerful platform for next-generation nanophotonic chips, capitalizing on their remarkable resilience to disorder and defects. Among the two-dimensional (2D) photonic topological insulators, valley-Hall (VH) and pseudo-spin-Hall (PSH) topological insulators have emerged as the most practical designs, as they do not require breaking time-reversal symmetry. These photonic topological insulators support robust edge states, demonstrating promising potential for a wide range of applications, from on-chip communication to optical computing and sensing. However, the conversion between distinct topological phases (VH and PSH) in terahertz (THz) band has not been achieved. Here we experimentally demonstrate a THz on-chip spin–valley converter through adiabatic evolution in 2D parameter space without closing the bulk bandgap. By leveraging the adiabatic phase transition, we confirm the high-efficiency conversion between two valley states in a valley–spin–valley converter. In addition, we verify the robustness of THz PSH topological energy transport through sharply twisted corners. Our findings not only advance the understanding of topological phases in photonics but also hold promise for the development of innovative photonic devices with enhanced performance and functionality.
{"title":"Topological THz on-chip valley–spin converter","authors":"Yudong Ren, Xinrui Li, Ning Han, Li Zhang, Rui Zhao, Qiaolu Chen, Yuze Hu, Mingyu Tong, Song Han, Yihao Yang","doi":"10.1088/2515-7647/ad68de","DOIUrl":"https://doi.org/10.1088/2515-7647/ad68de","url":null,"abstract":"Topological photonics offers a powerful platform for next-generation nanophotonic chips, capitalizing on their remarkable resilience to disorder and defects. Among the two-dimensional (2D) photonic topological insulators, valley-Hall (VH) and pseudo-spin-Hall (PSH) topological insulators have emerged as the most practical designs, as they do not require breaking time-reversal symmetry. These photonic topological insulators support robust edge states, demonstrating promising potential for a wide range of applications, from on-chip communication to optical computing and sensing. However, the conversion between distinct topological phases (VH and PSH) in terahertz (THz) band has not been achieved. Here we experimentally demonstrate a THz on-chip spin–valley converter through adiabatic evolution in 2D parameter space without closing the bulk bandgap. By leveraging the adiabatic phase transition, we confirm the high-efficiency conversion between two valley states in a valley–spin–valley converter. In addition, we verify the robustness of THz PSH topological energy transport through sharply twisted corners. Our findings not only advance the understanding of topological phases in photonics but also hold promise for the development of innovative photonic devices with enhanced performance and functionality.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"6 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.1088/2515-7647/ad6963
Vaswati Biswas and R Vijaya
A plasmonic metasurface containing nanobumps of sub-wavelength feature size arranged in a hexagonal pattern on a flexible substrate and covered with a thin film of gold is investigated as a refractive index (RI) sensor. The chosen polymer patterns coated with gold aid in activating the surface plasmon polariton modes. Using numerical calculations, it is shown that this surface can exhibit plasmonic effect with extremely shallow pattern height of 92.5 nm and minimal thickness of 25 nm of gold over it. The excitation of the plasmonic modes is confirmed using electric field profiles calculated at the relevant wavelengths. As the surface is highly sensitive to changes in the cladding index, and the chosen design aids in exciting three plasmon modes that are suitably well-separated in wavelength, this surface can be used for an extremely wide range of RI sensing because each mode contributes uniquely to a different range of RI. The results establish that the metasurface is suitable for a variety of applications, including gas detection with a sensitivity of 633 nm RIU−1 using mode-1, identifying SARS-CoV-2 viral molecules with a sensitivity of 428 nm RIU−1 using mode-2 and 238 nm RIU−1 using mode-3, and discriminating between normal and diseased brain tissues in the cerebrospinal fluid in the high-index range using mode-3. The prototype metasurface is made using a cost-effective soft lithography technique using an economical master mould. The inexpensive technique of fabrication, use of very thin metal film, and wavelength of detection lying within the visible to near infrared range imply a low-cost sensor. The structural and optical characterization of the prototype validates the numerical study of the sample.
{"title":"Multi-modal flexible and inexpensive plasmonic metasurface for wide range of refractive index sensing","authors":"Vaswati Biswas and R Vijaya","doi":"10.1088/2515-7647/ad6963","DOIUrl":"https://doi.org/10.1088/2515-7647/ad6963","url":null,"abstract":"A plasmonic metasurface containing nanobumps of sub-wavelength feature size arranged in a hexagonal pattern on a flexible substrate and covered with a thin film of gold is investigated as a refractive index (RI) sensor. The chosen polymer patterns coated with gold aid in activating the surface plasmon polariton modes. Using numerical calculations, it is shown that this surface can exhibit plasmonic effect with extremely shallow pattern height of 92.5 nm and minimal thickness of 25 nm of gold over it. The excitation of the plasmonic modes is confirmed using electric field profiles calculated at the relevant wavelengths. As the surface is highly sensitive to changes in the cladding index, and the chosen design aids in exciting three plasmon modes that are suitably well-separated in wavelength, this surface can be used for an extremely wide range of RI sensing because each mode contributes uniquely to a different range of RI. The results establish that the metasurface is suitable for a variety of applications, including gas detection with a sensitivity of 633 nm RIU−1 using mode-1, identifying SARS-CoV-2 viral molecules with a sensitivity of 428 nm RIU−1 using mode-2 and 238 nm RIU−1 using mode-3, and discriminating between normal and diseased brain tissues in the cerebrospinal fluid in the high-index range using mode-3. The prototype metasurface is made using a cost-effective soft lithography technique using an economical master mould. The inexpensive technique of fabrication, use of very thin metal film, and wavelength of detection lying within the visible to near infrared range imply a low-cost sensor. The structural and optical characterization of the prototype validates the numerical study of the sample.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"2 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1088/2515-7647/ad68dd
Daniele Ancora, Alessandro Zunino, Giuseppe Vicidomini and Alvaro H Crevenna
Confocal laser scanning microscopy (CLSM) stands out as one of the most widely used microscopy techniques thanks to its three-dimensional imaging capability and its sub-diffraction spatial resolution, achieved through the closure of a pinhole in front of a single-element detector. However, the pinhole also rejects useful photons, and beating the diffraction limit comes at the price of irremediably compromising the signal-to-noise ratio (SNR) of the data. Image scanning microscopy (ISM) emerged as the rational evolution of CLSM, exploiting a small array detector in place of the pinhole and the single-element detector. Each sensitive element is small enough to achieve sub-diffraction resolution through the confocal effect, but the size of the whole detector is large enough to guarantee excellent collection efficiency and SNR. However, the raw data produced by an ISM setup consists of a 4D dataset, which can be seen as a set of confocal-like images. Thus, fusing the dataset into a single super-resolved image requires a dedicated reconstruction algorithm. Conventional methods are multi-image deconvolution, which requires prior knowledge of the system point spread functions (PSFs), or adaptive pixel reassignment (APR), which is effective only on a limited range of experimental conditions. In this work, we describe and validate a novel concept for ISM image reconstruction based on autocorrelation inversion. We leverage unique properties of the autocorrelation to discard low-frequency components and maximize the resolution of the reconstructed image without any assumption on the image or any knowledge of the PSF. Our results push the quality of the ISM reconstruction beyond the level provided by APR and open new perspectives for multi-dimensional image processing.
共焦激光扫描显微镜(CLSM)是应用最广泛的显微镜技术之一,这要归功于它的三维成像能力和亚衍射空间分辨率。然而,针孔也会阻挡有用的光子,突破衍射极限的代价是数据的信噪比(SNR)受到不可挽回的损害。图像扫描显微镜(ISM)的出现是 CLSM 的合理发展,它利用小型阵列探测器取代了针孔和单元素探测器。每个敏感元件都足够小,可以通过共焦效应达到亚衍射分辨率,但整个探测器的尺寸足够大,可以保证出色的收集效率和信噪比。然而,ISM 设置产生的原始数据由 4D 数据集组成,可以看作是一组类似共焦的图像。因此,将数据集融合为单个超分辨图像需要专门的重建算法。传统的方法有多图像解卷积(需要事先了解系统点扩散函数(PSF))或自适应像素重配(APR),后者仅在有限的实验条件下有效。在这项工作中,我们描述并验证了一种基于自相关反演的 ISM 图像重建新概念。我们利用自相关的独特性质摒弃了低频成分,最大限度地提高了重建图像的分辨率,而无需对图像或 PSF 做任何假设。我们的研究结果使 ISM 重建的质量超越了 APR 所提供的水平,为多维图像处理开辟了新的前景。
{"title":"Image scanning microscopy reconstruction by autocorrelation inversion","authors":"Daniele Ancora, Alessandro Zunino, Giuseppe Vicidomini and Alvaro H Crevenna","doi":"10.1088/2515-7647/ad68dd","DOIUrl":"https://doi.org/10.1088/2515-7647/ad68dd","url":null,"abstract":"Confocal laser scanning microscopy (CLSM) stands out as one of the most widely used microscopy techniques thanks to its three-dimensional imaging capability and its sub-diffraction spatial resolution, achieved through the closure of a pinhole in front of a single-element detector. However, the pinhole also rejects useful photons, and beating the diffraction limit comes at the price of irremediably compromising the signal-to-noise ratio (SNR) of the data. Image scanning microscopy (ISM) emerged as the rational evolution of CLSM, exploiting a small array detector in place of the pinhole and the single-element detector. Each sensitive element is small enough to achieve sub-diffraction resolution through the confocal effect, but the size of the whole detector is large enough to guarantee excellent collection efficiency and SNR. However, the raw data produced by an ISM setup consists of a 4D dataset, which can be seen as a set of confocal-like images. Thus, fusing the dataset into a single super-resolved image requires a dedicated reconstruction algorithm. Conventional methods are multi-image deconvolution, which requires prior knowledge of the system point spread functions (PSFs), or adaptive pixel reassignment (APR), which is effective only on a limited range of experimental conditions. In this work, we describe and validate a novel concept for ISM image reconstruction based on autocorrelation inversion. We leverage unique properties of the autocorrelation to discard low-frequency components and maximize the resolution of the reconstructed image without any assumption on the image or any knowledge of the PSF. Our results push the quality of the ISM reconstruction beyond the level provided by APR and open new perspectives for multi-dimensional image processing.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"78 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-04DOI: 10.1088/2515-7647/ad6799
Kyle Wynne, Marjan Bazian and Mark C Harrison
One challenge of using nonlinear optical phenomena for practical applications is the need to perform phase-matching. Recently, epsilon-near-zero materials have been shown to demonstrate strong optical nonlinearities, in addition to their other unique properties. As suggested by their name, the permittivity of the material is close to zero for a certain wavelength range. We demonstrate that this small permittivity allows for efficient three-wave mixing interactions to take place in indium–tin–oxide thin films without the need for phase matching the pump and signal beams. The efficiency of the second-order nonlinear interactions is characterized, and cascaded three-wave mixing is demonstrated.
{"title":"Three-wave mixing experiments in indium–tin–oxide thin-films with no phase matching","authors":"Kyle Wynne, Marjan Bazian and Mark C Harrison","doi":"10.1088/2515-7647/ad6799","DOIUrl":"https://doi.org/10.1088/2515-7647/ad6799","url":null,"abstract":"One challenge of using nonlinear optical phenomena for practical applications is the need to perform phase-matching. Recently, epsilon-near-zero materials have been shown to demonstrate strong optical nonlinearities, in addition to their other unique properties. As suggested by their name, the permittivity of the material is close to zero for a certain wavelength range. We demonstrate that this small permittivity allows for efficient three-wave mixing interactions to take place in indium–tin–oxide thin films without the need for phase matching the pump and signal beams. The efficiency of the second-order nonlinear interactions is characterized, and cascaded three-wave mixing is demonstrated.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"34 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141937380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brillouin spectroscopy is commonly used to study the acoustic properties of materials. Here we explored its feasibility in studying the photoinduced isomerization of azobenzene. The isomerization of azobenzene changes the solution elastic modulus, and Brillouin scattering is sensitive to these changes. In this study, we experimentally demonstrated the photoswitching of azobenzene in DMSO using our home-made virtually imaged phased array-based high-resolution optical Brillouin spectrometer, and confirmed the results by ultraviolet–visible spectrophotometry. Remarkable Brillouin frequency shift variations were quantitatively recorded upon irradiation, and it was found that this method can indeed be used to monitor the isomerization process in situ. Importantly, our strategy also allows us to provide the relationship between the fraction of trans- and cis- azobenzene and the Brillouin frequency shift. This shows that Brillouin spectroscopy has broad prospects for the characterization of azobenzene isomerization and other photoresponsive materials.
{"title":"Monitoring cis-to-trans isomerization of azobenzene using Brillouin microscopy","authors":"Zhe Wang, Qiyang Jiang, Chantal Barwig, Ankit Mishra, Krishna Ramesh and Christine Selhuber-Unkel","doi":"10.1088/2515-7647/ad5bd1","DOIUrl":"https://doi.org/10.1088/2515-7647/ad5bd1","url":null,"abstract":"Brillouin spectroscopy is commonly used to study the acoustic properties of materials. Here we explored its feasibility in studying the photoinduced isomerization of azobenzene. The isomerization of azobenzene changes the solution elastic modulus, and Brillouin scattering is sensitive to these changes. In this study, we experimentally demonstrated the photoswitching of azobenzene in DMSO using our home-made virtually imaged phased array-based high-resolution optical Brillouin spectrometer, and confirmed the results by ultraviolet–visible spectrophotometry. Remarkable Brillouin frequency shift variations were quantitatively recorded upon irradiation, and it was found that this method can indeed be used to monitor the isomerization process in situ. Importantly, our strategy also allows us to provide the relationship between the fraction of trans- and cis- azobenzene and the Brillouin frequency shift. This shows that Brillouin spectroscopy has broad prospects for the characterization of azobenzene isomerization and other photoresponsive materials.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"35 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1088/2515-7647/ad46a6
Ziming Chen, Robert L Z Hoye, Hin-Lap Yip, Nadesh Fiuza-Maneiro, Iago López-Fernández, Clara Otero-Martínez, Lakshminarayana Polavarapu, Navendu Mondal, Alessandro Mirabelli, Miguel Anaya, Samuel D Stranks, Hui Liu, Guangyi Shi, Zhengguo Xiao, Nakyung Kim, Yunna Kim, Byungha Shin, Jinquan Shi, Mengxia Liu, Qianpeng Zhang, Zhiyong Fan, James C Loy, Lianfeng Zhao, Barry P Rand, Habibul Arfin, Sajid Saikia, Angshuman Nag, Chen Zou, Lih Y Lin, Hengyang Xiang, Haibo Zeng, Denghui Liu, Shi-Jian Su, Chenhui Wang, Haizheng Zhong, Tong-Tong Xuan, Rong-Jun Xie, Chunxiong Bao, Feng Gao, Xiang Gao, Chuanjiang Qin, Young-Hoon Kim and Matthew C Beard
In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to over 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community’s perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization.
{"title":"Roadmap on perovskite light-emitting diodes","authors":"Ziming Chen, Robert L Z Hoye, Hin-Lap Yip, Nadesh Fiuza-Maneiro, Iago López-Fernández, Clara Otero-Martínez, Lakshminarayana Polavarapu, Navendu Mondal, Alessandro Mirabelli, Miguel Anaya, Samuel D Stranks, Hui Liu, Guangyi Shi, Zhengguo Xiao, Nakyung Kim, Yunna Kim, Byungha Shin, Jinquan Shi, Mengxia Liu, Qianpeng Zhang, Zhiyong Fan, James C Loy, Lianfeng Zhao, Barry P Rand, Habibul Arfin, Sajid Saikia, Angshuman Nag, Chen Zou, Lih Y Lin, Hengyang Xiang, Haibo Zeng, Denghui Liu, Shi-Jian Su, Chenhui Wang, Haizheng Zhong, Tong-Tong Xuan, Rong-Jun Xie, Chunxiong Bao, Feng Gao, Xiang Gao, Chuanjiang Qin, Young-Hoon Kim and Matthew C Beard","doi":"10.1088/2515-7647/ad46a6","DOIUrl":"https://doi.org/10.1088/2515-7647/ad46a6","url":null,"abstract":"In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to over 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community’s perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"23 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1088/2515-7647/ad5bd0
Veerpal Kaur, Demelza Wright, Samuel Mathew, Matthew Peters, Maria Zacharopoulou, Shang Hua Yang, Laura S Itzhaki, Ivet Bahar, Reuven Gordon
We demonstrate the trapping and analysis of individual proteins using a portable optical fiber tweezer setup with a double-nanohole in a gold film coating the fiber’s end and aligned with the fiber core. The instrument was used to trap and analyze cytochrome c, carbonic anhydrase, bovine serum albumin, and PR65 (wild-type and various point mutants). This approach was compared with a free-space optical tweezer setup that requires alignment of the laser focus to the aperture, whereas the fiber-based approach is both portable and alignment-free, which holds promise for applications in antibody discovery, small molecule drug discovery, protein interaction analysis and other applications using the standard well-plate format.
{"title":"Portable fiber-based double nanohole optical tweezer for trapping small proteins","authors":"Veerpal Kaur, Demelza Wright, Samuel Mathew, Matthew Peters, Maria Zacharopoulou, Shang Hua Yang, Laura S Itzhaki, Ivet Bahar, Reuven Gordon","doi":"10.1088/2515-7647/ad5bd0","DOIUrl":"https://doi.org/10.1088/2515-7647/ad5bd0","url":null,"abstract":"We demonstrate the trapping and analysis of individual proteins using a portable optical fiber tweezer setup with a double-nanohole in a gold film coating the fiber’s end and aligned with the fiber core. The instrument was used to trap and analyze cytochrome c, carbonic anhydrase, bovine serum albumin, and PR65 (wild-type and various point mutants). This approach was compared with a free-space optical tweezer setup that requires alignment of the laser focus to the aperture, whereas the fiber-based approach is both portable and alignment-free, which holds promise for applications in antibody discovery, small molecule drug discovery, protein interaction analysis and other applications using the standard well-plate format.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"29 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1088/2515-7647/ad5bd2
Kamil Gradkowski, Padraic E Morrissey and Peter O’Brien
We propose a method for aligning and attaching micro-lens arrays to photonic integrated circuits (PICs). Unlike the conventional approach of assessing power coupled to a fiber directly, our method utilizes a beam profiler. This profiler allows us to optimize the lens position by analyzing the transmitted beam shape from the PIC edge coupler through the lens. In conjunction, we employ grating couplers to introduce external light, acting as a ‘beacon’ for optimization. The use of grating couplers enables efficient coupling of external light into the PIC, providing a reference point for alignment. Importantly, our method accommodates both regular waveguide-side-up and upside-down (through-Silicon) orientations of the PIC. This versatility allows us to reproduce coupling results across a 6-channel array, demonstrating robust performance. This innovative approach not only ensures precise alignment and attachment but also opens up new possibilities for photonic packaging. The flexibility to work in different orientations is likely to lead to advancements in the design and assembly of photonic devices.
{"title":"Packaging of micro-lens arrays to photonic integrated circuits using beam shape evaluation","authors":"Kamil Gradkowski, Padraic E Morrissey and Peter O’Brien","doi":"10.1088/2515-7647/ad5bd2","DOIUrl":"https://doi.org/10.1088/2515-7647/ad5bd2","url":null,"abstract":"We propose a method for aligning and attaching micro-lens arrays to photonic integrated circuits (PICs). Unlike the conventional approach of assessing power coupled to a fiber directly, our method utilizes a beam profiler. This profiler allows us to optimize the lens position by analyzing the transmitted beam shape from the PIC edge coupler through the lens. In conjunction, we employ grating couplers to introduce external light, acting as a ‘beacon’ for optimization. The use of grating couplers enables efficient coupling of external light into the PIC, providing a reference point for alignment. Importantly, our method accommodates both regular waveguide-side-up and upside-down (through-Silicon) orientations of the PIC. This versatility allows us to reproduce coupling results across a 6-channel array, demonstrating robust performance. This innovative approach not only ensures precise alignment and attachment but also opens up new possibilities for photonic packaging. The flexibility to work in different orientations is likely to lead to advancements in the design and assembly of photonic devices.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":"138 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141516849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}