G. Stępień, Artur Kujawski, A. Tomczak, R. Hałaburda, K. Borczyk
Abstract Main aim of the paper is to use a single non-metric camera to support the determination of the position of. Authors propose to use the existing infrastructure of CCTV cameras mounted on bridges and wharves to determine the position of inland waterway vessels. Image from cameras giving the pixel coordinates of moving object is transformed to the geodetic data domain using a modified projective transformation method. Novel approach is to use of Sequential Projection Transformation (SPT) which additionally uses virtual reference points. The transformation coefficients calculated using the virtual points are used to determine the position of the vessels and are also simultaneously used to calibrate the industrial camera. The method has been verified under real conditions, and the results obtained are average 30% more accurate compared to the traditionally used projective transformation using a small number of real points.
{"title":"Method of Improving Incomplete Spatial-Temporal Data in Inland Navigation, on the Basis of Industrial Camera Images – West Oder River Case Study","authors":"G. Stępień, Artur Kujawski, A. Tomczak, R. Hałaburda, K. Borczyk","doi":"10.2478/ttj-2022-0005","DOIUrl":"https://doi.org/10.2478/ttj-2022-0005","url":null,"abstract":"Abstract Main aim of the paper is to use a single non-metric camera to support the determination of the position of. Authors propose to use the existing infrastructure of CCTV cameras mounted on bridges and wharves to determine the position of inland waterway vessels. Image from cameras giving the pixel coordinates of moving object is transformed to the geodetic data domain using a modified projective transformation method. Novel approach is to use of Sequential Projection Transformation (SPT) which additionally uses virtual reference points. The transformation coefficients calculated using the virtual points are used to determine the position of the vessels and are also simultaneously used to calibrate the industrial camera. The method has been verified under real conditions, and the results obtained are average 30% more accurate compared to the traditionally used projective transformation using a small number of real points.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"65 1","pages":"48 - 61"},"PeriodicalIF":1.4,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83113702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nisa Özge Önal Tuğrul, Cennet Başer, Esra Ergün, K. Karaçuha, V. Tabatadze, S. Eker, E. Karaçuha, Kevser Şimşek
Abstract Today, operators have become the resource of telecommunications data. Therefore, knowledge about subscriptions is easily available for most countries. In recent years, high-speed mobile internet access subscriptions are also increasing rapidly. There are two important subscriptions reviewed by The International Telecommunication Union (ITU): mobile broadband (MBB) subscriptions and Fixed broadband (FBB) subscriptions. In this study, we proposed an original mathematical model employing the fractional analysis theory and evaluate its validity by modeling the mobile broadband and fixed broadband subscriptions of six countries including France, Italy, Turkey, Germany, Spain, and the U.K. Later, we compared the Fractional Model we developed with the Polynomial Model. The results show that the Fractional Model is superior to the conventional Polynomial Model in modeling broadband subscriptions. For all selected countries, our proposed Fractional approach outperforms conventional polynomial regression. For all investigation categories, on average, the fractional approach works better by at least 10% and at most 30%.
{"title":"Modeling of Mobile and Fixed Broadband Subscriptions of Countries with Fractional Calculus","authors":"Nisa Özge Önal Tuğrul, Cennet Başer, Esra Ergün, K. Karaçuha, V. Tabatadze, S. Eker, E. Karaçuha, Kevser Şimşek","doi":"10.2478/ttj-2022-0001","DOIUrl":"https://doi.org/10.2478/ttj-2022-0001","url":null,"abstract":"Abstract Today, operators have become the resource of telecommunications data. Therefore, knowledge about subscriptions is easily available for most countries. In recent years, high-speed mobile internet access subscriptions are also increasing rapidly. There are two important subscriptions reviewed by The International Telecommunication Union (ITU): mobile broadband (MBB) subscriptions and Fixed broadband (FBB) subscriptions. In this study, we proposed an original mathematical model employing the fractional analysis theory and evaluate its validity by modeling the mobile broadband and fixed broadband subscriptions of six countries including France, Italy, Turkey, Germany, Spain, and the U.K. Later, we compared the Fractional Model we developed with the Polynomial Model. The results show that the Fractional Model is superior to the conventional Polynomial Model in modeling broadband subscriptions. For all selected countries, our proposed Fractional approach outperforms conventional polynomial regression. For all investigation categories, on average, the fractional approach works better by at least 10% and at most 30%.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"59 1","pages":"1 - 10"},"PeriodicalIF":1.4,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74468157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Managing container loading and unloading operations at a container terminal using Intelligent Autonomous Vehicle (IAV) is challenging, especially at intersections in the yard, which are often inevitable. For ensuring efficient and accident-free management of these intersections, the IAV must cooperate by exchanging messages. Due to signal obstruction at these intersections, indirect communication is established through an additional relay node to ensure reliable communication. This paper proposes distributed approach using Unmanned Aerial Vehicle (UAV) connectivity to avoid collision and deadlock between IAV at intersections. Due to the obstacles formed by stacked containers blocking the radio transmissions, the proposed algorithm automatically switches the ongoing communication through the UAV to ensure successful communication at intersections. Thus, the idea of introducing UAV as communication relay in a container terminal is an interesting solution that we have adopted in this work. Simulation techniques are used to evaluate our proposal. The obtained results confirm that our UAV-based approach ensures reliable communication and automated intersections management in the yard while further ensuring the safety of IAV traffic.
{"title":"Reliable and Seamless Communications of Networked IAV in Container Terminal Using UAV Technology","authors":"Nacera Bahnes, Bouabdellah Kechar, H. Haffaf","doi":"10.2478/ttj-2022-0004","DOIUrl":"https://doi.org/10.2478/ttj-2022-0004","url":null,"abstract":"Abstract Managing container loading and unloading operations at a container terminal using Intelligent Autonomous Vehicle (IAV) is challenging, especially at intersections in the yard, which are often inevitable. For ensuring efficient and accident-free management of these intersections, the IAV must cooperate by exchanging messages. Due to signal obstruction at these intersections, indirect communication is established through an additional relay node to ensure reliable communication. This paper proposes distributed approach using Unmanned Aerial Vehicle (UAV) connectivity to avoid collision and deadlock between IAV at intersections. Due to the obstacles formed by stacked containers blocking the radio transmissions, the proposed algorithm automatically switches the ongoing communication through the UAV to ensure successful communication at intersections. Thus, the idea of introducing UAV as communication relay in a container terminal is an interesting solution that we have adopted in this work. Simulation techniques are used to evaluate our proposal. The obtained results confirm that our UAV-based approach ensures reliable communication and automated intersections management in the yard while further ensuring the safety of IAV traffic.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"10 1","pages":"33 - 47"},"PeriodicalIF":1.4,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86886951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alamirew Mulugeta Tola, T. A. Demissie, F. Saathoff, A. Gebissa
Abstract Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it.
{"title":"Crash Distribution Dataset: Development and Validation for the Undivided Rural Roads in Oromia, Ethiopia","authors":"Alamirew Mulugeta Tola, T. A. Demissie, F. Saathoff, A. Gebissa","doi":"10.2478/ttj-2022-0002","DOIUrl":"https://doi.org/10.2478/ttj-2022-0002","url":null,"abstract":"Abstract Predicting the number of crashes that may occur as a result of specific highway features is critical in evaluating different treatment or design alternatives. Since different highway geometric characteristics can influence crash distribution datasets, Highway Safety Manual’s (HSM’s) predictive method encourages users to predict crashes based on their severity and collision type proportions. This study used crash data from rural two-way two-lane road segments in the Oromia region over seven years to develop Oromia’s fixed crash distribution dataset on Interactive Highway Safety Design Model (IHSDM) software. The crash distribution dataset has two parts; the crash severity proportions and the collision type percentages. The developed Oromia’s fixed crash distribution dataset was compared and validated against the default HSM crash configuration. As a result, the Crash Prediction Model (CPM) evaluation results confirmed that the developed crash severity proportion (the first part of the crash distribution dataset) estimates are more accurate and closer to the observed values. Furthermore, the findings show that crashes in the Oromia region are severer than in the states where the HSM crash configuration was developed. According to the second part of the crash distribution dataset evaluation (collision type percentage), the developed fixed crash distribution dataset outperforms the default HSM configuration in most collision type proportions, but not in all. For instance, from the ten collision type proportions developed, Right-Angle and sides-wipe collision proportions are predicted more precisely by the default HSM configuration. This points to the need for developing collision type proportion (the second part of the crash distribution dataset) as a function rather than a fixed configuration for a better result, based on the availability of complete crash data (i.e. crash location). In general, the study revealed that in order to exploit the full potential of HSM’s predictive approach, researchers must develop a jurisdiction crash distribution dataset using local crash data. The methodology demonstrated in this study to develop the jurisdiction’s crash distribution dataset has been validated as true thus, safety practitioners are encouraged to adopt it.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"13 1","pages":"11 - 24"},"PeriodicalIF":1.4,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84810922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The international shipping industry transports about 90 per cent of the global trade volume and is responsible for only two per cent of the anthropogenic carbon dioxide emissions. Consequently, the shipping sector is considered as an environmentally friendly transport mode. Nevertheless, global shipping can also improve its environmental footprint. So that in recent years clean shipping initiatives have been placed on the political agenda with the implementation of the Sulphur Emission Control Area (SECA) and Nitrogen Emission Control Area (ECA) regulations and the Global Cap. The next target of the International Maritime Organisation (IMO) in the sequel of the Paris Agreement of climate protection is dedicated to reduction of the Greenhouse Gas (GHG) emissions by up to 50 % until the year 2050. The paper investigates and discusses the research questions to what extent ammonia can be used in Baltic Sea Region (BSR) to propel merchant vessels and how ammonia can fulfil future demands under technical, economic and infrastructural aspects to become the green fuel for the Baltic Sea Region (BSR) shipping industry. The study benchmarks the properties of ammonia as marine fuel against Marine Gas Oil (MGO) and Liquified Natural Gas (LNG). The research is based on secondary data analysis that is complemented by expert interviews and case studies, and the results are empirically validated by data that were collected during the EU projects “EnviSuM”, “GoLNG”, “CSHIPP” and “Connect2SmallPorts” that took place within the last four years in the BSR.
{"title":"Ammonia as Clean Shipping Fuel for the Baltic Sea Region","authors":"L. Gerlitz, Eike Mildenstrey, G. Prause","doi":"10.2478/ttj-2022-0010","DOIUrl":"https://doi.org/10.2478/ttj-2022-0010","url":null,"abstract":"Abstract The international shipping industry transports about 90 per cent of the global trade volume and is responsible for only two per cent of the anthropogenic carbon dioxide emissions. Consequently, the shipping sector is considered as an environmentally friendly transport mode. Nevertheless, global shipping can also improve its environmental footprint. So that in recent years clean shipping initiatives have been placed on the political agenda with the implementation of the Sulphur Emission Control Area (SECA) and Nitrogen Emission Control Area (ECA) regulations and the Global Cap. The next target of the International Maritime Organisation (IMO) in the sequel of the Paris Agreement of climate protection is dedicated to reduction of the Greenhouse Gas (GHG) emissions by up to 50 % until the year 2050. The paper investigates and discusses the research questions to what extent ammonia can be used in Baltic Sea Region (BSR) to propel merchant vessels and how ammonia can fulfil future demands under technical, economic and infrastructural aspects to become the green fuel for the Baltic Sea Region (BSR) shipping industry. The study benchmarks the properties of ammonia as marine fuel against Marine Gas Oil (MGO) and Liquified Natural Gas (LNG). The research is based on secondary data analysis that is complemented by expert interviews and case studies, and the results are empirically validated by data that were collected during the EU projects “EnviSuM”, “GoLNG”, “CSHIPP” and “Connect2SmallPorts” that took place within the last four years in the BSR.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"432 1","pages":"102 - 112"},"PeriodicalIF":1.4,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91326595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract One of the primary causes of poor public transport performance is delays at intersections. Among the efficient and sustainable solutions to boost mass transportation performance, Bus Rapid Transit (BRT) consists of infrastructures integrating dedicated bus lanes and smart operational service with different ITS technologies like Transit Signal Priority (TSP). This research studies the competence of buses operating on junctions of the BRT corridor where they have Signal Priority on the dedicated lane. The studied intersection is located around the center of the Addis Ababa BRT-B2 line, which is relatively gentle grade and characterized by the high traffic and pedestrian volume. Microscopic models were created for the chosen intersection, along with possible calibration and validation; moreover, a statistical comparison was performed to evaluate different scenarios with the goal of displaying the deployment benefits. To assess the performance of BRT buses and their overall influence on general traffic, scenarios with and without TSP were evaluated. PTV VISSIM and the VisVAP add-on simulation program were used to examine TSP alternatives. Incorporating TSP reduced the travel time by up to 4.78% in the priority direction, the average travel speed increased by 7.25%, and the queue length also reduced by a maximum of 6%, whereas in the non-priority direction, the queue length increased by a maximum of 2.5%. Moreover, the overall average passenger delay has reduced by an average amount of 15%. One of the simplest ways to improve transit performance could be signal priority strategies, which has a minor influence on the general traffic.
{"title":"Competence of Bus Rapid Transit Systems Coupled with Transit Signal Priority at Signalized Junctions","authors":"Robel Desta, J. Tóth","doi":"10.2478/ttj-2022-0008","DOIUrl":"https://doi.org/10.2478/ttj-2022-0008","url":null,"abstract":"Abstract One of the primary causes of poor public transport performance is delays at intersections. Among the efficient and sustainable solutions to boost mass transportation performance, Bus Rapid Transit (BRT) consists of infrastructures integrating dedicated bus lanes and smart operational service with different ITS technologies like Transit Signal Priority (TSP). This research studies the competence of buses operating on junctions of the BRT corridor where they have Signal Priority on the dedicated lane. The studied intersection is located around the center of the Addis Ababa BRT-B2 line, which is relatively gentle grade and characterized by the high traffic and pedestrian volume. Microscopic models were created for the chosen intersection, along with possible calibration and validation; moreover, a statistical comparison was performed to evaluate different scenarios with the goal of displaying the deployment benefits. To assess the performance of BRT buses and their overall influence on general traffic, scenarios with and without TSP were evaluated. PTV VISSIM and the VisVAP add-on simulation program were used to examine TSP alternatives. Incorporating TSP reduced the travel time by up to 4.78% in the priority direction, the average travel speed increased by 7.25%, and the queue length also reduced by a maximum of 6%, whereas in the non-priority direction, the queue length increased by a maximum of 2.5%. Moreover, the overall average passenger delay has reduced by an average amount of 15%. One of the simplest ways to improve transit performance could be signal priority strategies, which has a minor influence on the general traffic.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"27 1","pages":"81 - 92"},"PeriodicalIF":1.4,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85976714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The geographic routing protocols in Vehicular Ad Hoc Networks (VANETs) are contemplated as most efficacious protocols. Though, such types of protocols communicate a huge quantity of data that influence the network connectivity negatively. Also, out of bound issue is the second major disadvantage of geographic routing protocols. To provide a solution to these impediments, a novel K-PGRP (Kalman filter-Predictive Geographic Routing Protocol) routing protocol is proposed in this paper. K-PGRP is an improvement to PGRP (Predictive Geographic Routing Protocol) routing protocol and wields Kalman filter as a prediction module in PGRP routing protocol in order to anticipate the neighbor location and to select the propitious neighbor for advancing packets in both urban and highway framework which leads to efficient connectivity in the network and improves road safety. K-PGRP is then compared with PGRP, GPSR (Greedy Perimeter Stateless Routing) and GPCR (Greedy Perimeter Coordinator Routing) routing protocols in terms of throughput and packet delivery ratio metrics and outperformed all the simulation cases. The simulations were performed on MATLAB R2018a along with traffic simulator SUMO.
{"title":"A Kalman Filter Based Hybrid Routing Protocol for Efficient Vehicle Connectivity and Traffic Management","authors":"Divya Punia, Rajender Kumar","doi":"10.2478/ttj-2022-0003","DOIUrl":"https://doi.org/10.2478/ttj-2022-0003","url":null,"abstract":"Abstract The geographic routing protocols in Vehicular Ad Hoc Networks (VANETs) are contemplated as most efficacious protocols. Though, such types of protocols communicate a huge quantity of data that influence the network connectivity negatively. Also, out of bound issue is the second major disadvantage of geographic routing protocols. To provide a solution to these impediments, a novel K-PGRP (Kalman filter-Predictive Geographic Routing Protocol) routing protocol is proposed in this paper. K-PGRP is an improvement to PGRP (Predictive Geographic Routing Protocol) routing protocol and wields Kalman filter as a prediction module in PGRP routing protocol in order to anticipate the neighbor location and to select the propitious neighbor for advancing packets in both urban and highway framework which leads to efficient connectivity in the network and improves road safety. K-PGRP is then compared with PGRP, GPSR (Greedy Perimeter Stateless Routing) and GPCR (Greedy Perimeter Coordinator Routing) routing protocols in terms of throughput and packet delivery ratio metrics and outperformed all the simulation cases. The simulations were performed on MATLAB R2018a along with traffic simulator SUMO.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"1 1","pages":"25 - 32"},"PeriodicalIF":1.4,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88377894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Muthalagu, Anudeepsekhar Bolimera, Dhruv Duseja, Shaun Fernandes
Abstract The main objective of this work is to develop a perception algorithm for self-driving cars which is based on pure vision data or camera data. The work is divided into two major parts. In part one of the work, we develop a powerful and robust lane detection algorithm which can determine the safely drive-able region in front of the car. In part two we develop and end to end driving model based on CNNs to learn from the drivers driving data and can drive the car with only the camera data from on-board cameras. Performance of the proposed system is observed by the implementation of the autonomous car that can be able to detect and classify the stop signs and other vehicles.
{"title":"Object and Lane Detection Technique for Autonomous Car Using Machine Learning Approach","authors":"R. Muthalagu, Anudeepsekhar Bolimera, Dhruv Duseja, Shaun Fernandes","doi":"10.2478/ttj-2021-0029","DOIUrl":"https://doi.org/10.2478/ttj-2021-0029","url":null,"abstract":"Abstract The main objective of this work is to develop a perception algorithm for self-driving cars which is based on pure vision data or camera data. The work is divided into two major parts. In part one of the work, we develop a powerful and robust lane detection algorithm which can determine the safely drive-able region in front of the car. In part two we develop and end to end driving model based on CNNs to learn from the drivers driving data and can drive the car with only the camera data from on-board cameras. Performance of the proposed system is observed by the implementation of the autonomous car that can be able to detect and classify the stop signs and other vehicles.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"1 1","pages":"383 - 391"},"PeriodicalIF":1.4,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83112183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Autonomous navigation is important not only in autonomous cars but also in other transportation systems. In many applications, an autonomous vehicle has to follow the curvature of a real or artificial road or in other words lane lines. In those application, the key is the lane detection. In this paper, we present a real-time lane line tracking algorithm mainly designed to mini vehicles with relatively low computation capacity and single camera sensor. The proposed algorithm exploits computer vision techniques in combination with digital filtering. To demonstrate the performance of the method, experiments are conducted in an indoor, self-made test track where the effect of several external influencing factors can be observed. Experimental results show that the proposed algorithm works well independently of shadows, bends, reflection and lighting changes.
{"title":"Real-Time Lane Line Tracking Algorithm to Mini Vehicles","authors":"J. Suto","doi":"10.2478/ttj-2021-0036","DOIUrl":"https://doi.org/10.2478/ttj-2021-0036","url":null,"abstract":"Abstract Autonomous navigation is important not only in autonomous cars but also in other transportation systems. In many applications, an autonomous vehicle has to follow the curvature of a real or artificial road or in other words lane lines. In those application, the key is the lane detection. In this paper, we present a real-time lane line tracking algorithm mainly designed to mini vehicles with relatively low computation capacity and single camera sensor. The proposed algorithm exploits computer vision techniques in combination with digital filtering. To demonstrate the performance of the method, experiments are conducted in an indoor, self-made test track where the effect of several external influencing factors can be observed. Experimental results show that the proposed algorithm works well independently of shadows, bends, reflection and lighting changes.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"22 1","pages":"461 - 470"},"PeriodicalIF":1.4,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82444313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The paper considers an approach to building various mathematical models for homogeneous groups of intersections manifested through the use of clustering methods. This is because of a significant spread in their traffic capacity, as well as the influence of several random factors. The initial data on the traffic flow of many intersections was obtained from real-time recorders of the convolutional neural network. As a result of the analysis, we revealed statistically significant differences between the groups of intersections and compiled their linear regression models as a basis for the subsequent formation of generic management decisions. To demonstrate visually the influence of random factors on the traffic capacity of intersections, we built distribution fields based on the fuzzy logic methods for one of the clusters consisting of 14 homogeneous intersections. Modeling was based on the Gaussian type of membership functions as it most fully reflects the random nature of the pedestrian flow and its discontinuity.
{"title":"Development of Reliable Models of Signal-Controlled Intersections","authors":"A. Glushkov, V. Shepelev","doi":"10.2478/ttj-2021-0032","DOIUrl":"https://doi.org/10.2478/ttj-2021-0032","url":null,"abstract":"Abstract The paper considers an approach to building various mathematical models for homogeneous groups of intersections manifested through the use of clustering methods. This is because of a significant spread in their traffic capacity, as well as the influence of several random factors. The initial data on the traffic flow of many intersections was obtained from real-time recorders of the convolutional neural network. As a result of the analysis, we revealed statistically significant differences between the groups of intersections and compiled their linear regression models as a basis for the subsequent formation of generic management decisions. To demonstrate visually the influence of random factors on the traffic capacity of intersections, we built distribution fields based on the fuzzy logic methods for one of the clusters consisting of 14 homogeneous intersections. Modeling was based on the Gaussian type of membership functions as it most fully reflects the random nature of the pedestrian flow and its discontinuity.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"55 1","pages":"417 - 424"},"PeriodicalIF":1.4,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83314747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}