{"title":"Methodology for 3D image reconstruction of the female pelvis from upright open MRI (MRO) 2D imaging","authors":"Marwa Abdulaziz, L. Stothers, A. Macnab","doi":"10.3233/BSI-180178","DOIUrl":"https://doi.org/10.3233/BSI-180178","url":null,"abstract":"","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"7 1","pages":"81-96"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-180178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69857382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vacuum-ultraviolet circular dichroism study of oligosaccharides using a synchrotron-radiation spectrophotometer","authors":"K. Matsuo","doi":"10.3233/BSI-170169","DOIUrl":"https://doi.org/10.3233/BSI-170169","url":null,"abstract":"","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"6 1","pages":"111-121"},"PeriodicalIF":0.0,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-170169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43380779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel P Myatt, L. Hatter, Sarah E Rogers, A. Terry, L. Clifton
Protein small angle scattering (SAS) has become increasing important in structural biochemistry, due to the increased performance and specification of new instruments and advances in the software and hardware used to analyse the data. Whilst all of this is encouraging, there is a lack of standardised experimental methodology within the community. Although a number of protein standards are currently used in SAS experiments to allow accurate molecular weight determination, each has specific advantages and disadvantages. We therefore propose the use of a mutated monomeric enhanced green fluorescent protein, as a protein standard, abbreviated to m-eGFP. It has a number of advantages over the currently used protein standards, for example it is cheap and easy to produce. It can be expressed in large amounts (>40 mg/L) in both hydrogenated and deuterated form. The mutation means it is highly monodisperse and GFP being a beta-barrel structure is thermodynamically stable over a number of days, giving highly reproducible results. We therefore believe m-eGFP is a good protein standard for small angle scattering (SAS).
{"title":"Monomeric green fluorescent protein as a protein standard for small angle scattering","authors":"Daniel P Myatt, L. Hatter, Sarah E Rogers, A. Terry, L. Clifton","doi":"10.3233/BSI-170167","DOIUrl":"https://doi.org/10.3233/BSI-170167","url":null,"abstract":"Protein small angle scattering (SAS) has become increasing important in structural biochemistry, due to the increased performance and specification of new instruments and advances in the software and hardware used to analyse the data. Whilst all of this is encouraging, there is a lack of standardised experimental methodology within the community. Although a number of protein standards are currently used in SAS experiments to allow accurate molecular weight determination, each has specific advantages and disadvantages. We therefore propose the use of a mutated monomeric enhanced green fluorescent protein, as a protein standard, abbreviated to m-eGFP. It has a number of advantages over the currently used protein standards, for example it is cheap and easy to produce. It can be expressed in large amounts (>40 mg/L) in both hydrogenated and deuterated form. The mutation means it is highly monodisperse and GFP being a beta-barrel structure is thermodynamically stable over a number of days, giving highly reproducible results. We therefore believe m-eGFP is a good protein standard for small angle scattering (SAS).","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"6 1","pages":"123-134"},"PeriodicalIF":0.0,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-170167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43720760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The file attached to this record is the author's final version. The Publisher's final version can be found by following the DOI link
附在这条记录上的文件是作者的最终版本。发布者的最终版本可以通过DOI链接找到
{"title":"We must not forget that 99% of the total number of molecules present in a living organism is water","authors":"P. Haris","doi":"10.3233/BSI-170172","DOIUrl":"https://doi.org/10.3233/BSI-170172","url":null,"abstract":"The file attached to this record is the author's final version. The Publisher's final version can be found by following the DOI link","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"6 1","pages":"83-84"},"PeriodicalIF":0.0,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-170172","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45442134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BACKGROUND: We use a temporal template method, the motion history image (MHI), to visualize the hypoperfusion (decreased blood flow) during an acute cerebral ischemic event in a mouse brain. The MHI method was implemented on the dynamic fluorescent (DF) data images. AIMS: Our aim was to implement the MHI method on the DF imaging data and visualize the regions where perfusion evolves with time. METHODOLOGY: The MHI method was used to process the DF data images recorded during an acute cerebral ischemic event in a mouse brain. RESULTS: We demonstrate that, the MHI images clearly illustrates the locations where perfusion decreases during occlusion and that is more easily obtained in comparison to a visual inspection of all of the raw DF images constituting the recordings. CONCLUSION: MHI can be a useful tool for the clinical and research studies.
{"title":"Application of motion history image (MHI) on dynamic fluorescent imaging for monitoring cerebral ischemia induced by occlusion of middle cerebral artery (MCA) in mouse brain","authors":"M. Z. Ansari, A. Mujeeb","doi":"10.3233/BSI-170170","DOIUrl":"https://doi.org/10.3233/BSI-170170","url":null,"abstract":"BACKGROUND: We use a temporal template method, the motion history image (MHI), to visualize the hypoperfusion (decreased blood flow) during an acute cerebral ischemic event in a mouse brain. The MHI method was implemented on the dynamic fluorescent (DF) data images. AIMS: Our aim was to implement the MHI method on the DF imaging data and visualize the regions where perfusion evolves with time. METHODOLOGY: The MHI method was used to process the DF data images recorded during an acute cerebral ischemic event in a mouse brain. RESULTS: We demonstrate that, the MHI images clearly illustrates the locations where perfusion decreases during occlusion and that is more easily obtained in comparison to a visual inspection of all of the raw DF images constituting the recordings. CONCLUSION: MHI can be a useful tool for the clinical and research studies.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"6 1","pages":"135-142"},"PeriodicalIF":0.0,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-170170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46058231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since the first EPR/ESR spectrum of a paramagnetic substance was published over 70 years ago, the technical improvements did not occur until after/during World War II with the advent of radar technology. The approaches to biomedical problems started somewhat later with the real burst of activity starting after the birth of the spin label technique about 50 years ago. The applications to proteins, then membranes and nucleic acids, and later applications to cells and eventually in-vivo on small animals and now humans has led EPR/ESR to finally being recognized as a uniquely powerful technique in the toolbox of techniques probing macromolecules and their interactions, free radical biology and its eventual value as a diagnostic technique. This article gives an overview of EPR/ESR studies of biomedically related systems, including proteins and enzymes. It presents a very personal historical perspective, briefly reviews the origins of the technique and reflects on possible future directions. As with NMR, advances in molecular biology and technology drastically changed the nature and focus of the technique, particularly the site directed spin labeling method that has been invaluable in determining protein and macromolecular structure by both EPR and NMR.
{"title":"The evolution of biomedical EPR (ESR)","authors":"L. Berliner","doi":"10.3233/BSI-150128","DOIUrl":"https://doi.org/10.3233/BSI-150128","url":null,"abstract":"Since the first EPR/ESR spectrum of a paramagnetic substance was published over 70 years ago, the technical improvements did not occur until after/during World War II with the advent of radar technology. The approaches to biomedical problems started somewhat later with the real burst of activity starting after the birth of the spin label technique about 50 years ago. The applications to proteins, then membranes and nucleic acids, and later applications to cells and eventually in-vivo on small animals and now humans has led EPR/ESR to finally being recognized as a uniquely powerful technique in the toolbox of techniques probing macromolecules and their interactions, free radical biology and its eventual value as a diagnostic technique. This article gives an overview of EPR/ESR studies of biomedically related systems, including proteins and enzymes. It presents a very personal historical perspective, briefly reviews the origins of the technique and reflects on possible future directions. As with NMR, advances in molecular biology and technology drastically changed the nature and focus of the technique, particularly the site directed spin labeling method that has been invaluable in determining protein and macromolecular structure by both EPR and NMR.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"5 1","pages":"5-26"},"PeriodicalIF":0.0,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-150128","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45350596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lawrence Berliner (see Figs 1–3) was born in 1941 in Los Angeles (California, USA). He completed his undergraduate studies in Chemistry at UCLA in 1963 and went on to complete his PhD in Chemistry at Stanford University in 1967. His PhD supervisor, the late Harden M. McConnel, is considered to be one of the leading physical chemists of the last half-century. Whilst Larry was a PhD student at Stanford, McConnel and his team first synthesised spin labels in 1965 [8] for use in the study of biological macromolecules using electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy.
{"title":"Lawrence Berliner: Pioneer, educator and champion of biomedical EPR spectroscopy","authors":"P. Haris","doi":"10.3233/BSI-150131","DOIUrl":"https://doi.org/10.3233/BSI-150131","url":null,"abstract":"Lawrence Berliner (see Figs 1–3) was born in 1941 in Los Angeles (California, USA). He completed his undergraduate studies in Chemistry at UCLA in 1963 and went on to complete his PhD in Chemistry at Stanford University in 1967. His PhD supervisor, the late Harden M. McConnel, is considered to be one of the leading physical chemists of the last half-century. Whilst Larry was a PhD student at Stanford, McConnel and his team first synthesised spin labels in 1965 [8] for use in the study of biological macromolecules using electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"5 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-150131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49147890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Terence J T Norton, Marcelo Pereyra, Michael J Knight, Bryony M McGarry, Kimmo T Jokivarsi, Olli H J Gröhn, Risto A Kauppinen
Background: Objective timing of stroke in emergency departments is expected to improve patient stratification. Magnetic resonance imaging (MRI) relaxations times, T2 and T1ρ , in abnormal diffusion delineated ischaemic tissue were used as proxies of stroke time in a rat model.
Methods: Both 'non-ischaemic reference'-dependent and -independent estimators were generated. Apparent diffusion coefficient (ADC), T2 and T1ρ , were sequentially quantified for up to 6 hours of stroke in rats (n = 8) at 4.7T. The ischaemic lesion was identified as a contiguous collection of voxels with low ADC. T2 and T1ρ in the ischaemic lesion and in the contralateral non-ischaemic brain tissue were determined. Differences in mean MRI relaxation times between ischaemic and non-ischaemic volumes were used to create reference-dependent estimator. For the reference-independent procedure, only the parameters associated with log-logistic fits to the T2 and T1ρ distributions within the ADC-delineated lesions were used for the onset time estimation.
Result: The reference-independent estimators from T2 and T1ρ data provided stroke onset time with precisions of ±32 and ±27 minutes, respectively. The reference-dependent estimators yielded respective precisions of ±47 and ±54 minutes.
Conclusions: A 'non-ischaemic anatomical reference'-independent estimator for stroke onset time from relaxometric MRI data is shown to yield greater timing precision than previously obtained through reference-dependent procedures.
{"title":"Stroke Onset Time Determination Using MRI Relaxation Times without Non-Ischaemic Reference in A Rat Stroke Model.","authors":"Terence J T Norton, Marcelo Pereyra, Michael J Knight, Bryony M McGarry, Kimmo T Jokivarsi, Olli H J Gröhn, Risto A Kauppinen","doi":"10.3233/BSI-160155","DOIUrl":"https://doi.org/10.3233/BSI-160155","url":null,"abstract":"<p><strong>Background: </strong>Objective timing of stroke in emergency departments is expected to improve patient stratification. Magnetic resonance imaging (MRI) relaxations times, T<sub>2</sub> and T<sub>1<i>ρ</i></sub> , in abnormal diffusion delineated ischaemic tissue were used as proxies of stroke time in a rat model.</p><p><strong>Methods: </strong>Both 'non-ischaemic reference'-dependent and -independent estimators were generated. Apparent diffusion coefficient (ADC), T<sub>2</sub> and T<sub>1<i>ρ</i></sub> , were sequentially quantified for up to 6 hours of stroke in rats (n = 8) at 4.7T. The ischaemic lesion was identified as a contiguous collection of voxels with low ADC. T<sub>2</sub> and T<sub>1<i>ρ</i></sub> in the ischaemic lesion and in the contralateral non-ischaemic brain tissue were determined. Differences in mean MRI relaxation times between ischaemic and non-ischaemic volumes were used to create reference-dependent estimator. For the reference-independent procedure, only the parameters associated with log-logistic fits to the T<sub>2</sub> and T<sub>1<i>ρ</i></sub> distributions within the ADC-delineated lesions were used for the onset time estimation.</p><p><strong>Result: </strong>The reference-independent estimators from T<sub>2</sub> and T<sub>1<i>ρ</i></sub> data provided stroke onset time with precisions of ±32 and ±27 minutes, respectively. The reference-dependent estimators yielded respective precisions of ±47 and ±54 minutes.</p><p><strong>Conclusions: </strong>A 'non-ischaemic anatomical reference'-independent estimator for stroke onset time from relaxometric MRI data is shown to yield greater timing precision than previously obtained through reference-dependent procedures.</p>","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"6 1-2","pages":"25-35"},"PeriodicalIF":0.0,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-160155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35148559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BACKGROUND Hydrogel-based cell cultures are excellent tools for studying physiological events occurring in the growth and proliferation of cells, including cancer cells. Diffusion magnetic resonance is a physical technique that has been widely used for the characterisation of biological systems as well as hydrogels. In this work, we applied diffusion magnetic resonance imaging (MRI) to hydrogel-based cultures of human ovarian cancer cells. METHODS Diffusion-weighted spin-echo MRI measurements were used to obtain spatially-resolved maps of apparent diffusivities for hydrogel samples with different compositions, cell loads and drug (Taxol) treatment regimes. The samples were then characterised using their diffusivity histograms, mean diffusivities and the respective standard deviations, and pairwise Mann-Whitney tests. The elastic moduli of the samples were determined using mechanical compression testing. RESULTS The mean apparent diffusivity of the hydrogels was sensitive to the polymer content, cell load and Taxol treatment. For a given sample composition, the mean apparent diffusivity and the elastic modulus of the hydrogels exhibited a negative correlation. CONCLUSIONS Diffusivity of hydrogel-based cancer cell culture constructs is sensitive to both cell proliferation and Taxol treatment. This suggests that diffusion-weighted imaging is a promising technique for non-invasive monitoring of cancer cell proliferation in hydrogel-based, cellularly-sparse 3D cell cultures. The negative correlation between mean apparent diffusivity and elastic modulus suggests that the diffusion coefficient is indicative of the average density of the physical microenvironment within the hydrogel construct.
{"title":"Magnetic resonance microimaging of cancer cell spheroid constructs","authors":"K. Momot, Onur Bas, N. P. Holzapfel, D. Loessner","doi":"10.3233/BSI-150130","DOIUrl":"https://doi.org/10.3233/BSI-150130","url":null,"abstract":"BACKGROUND \u0000 \u0000Hydrogel-based cell cultures are excellent tools for studying physiological events occurring in the growth and proliferation of cells, including cancer cells. Diffusion magnetic resonance is a physical technique that has been widely used for the characterisation of biological systems as well as hydrogels. In this work, we applied diffusion magnetic resonance imaging (MRI) to hydrogel-based cultures of human ovarian cancer cells. \u0000 \u0000METHODS \u0000 \u0000Diffusion-weighted spin-echo MRI measurements were used to obtain spatially-resolved maps of apparent diffusivities for hydrogel samples with different compositions, cell loads and drug (Taxol) treatment regimes. The samples were then characterised using their diffusivity histograms, mean diffusivities and the respective standard deviations, and pairwise Mann-Whitney tests. The elastic moduli of the samples were determined using mechanical compression testing. \u0000 \u0000RESULTS \u0000 \u0000The mean apparent diffusivity of the hydrogels was sensitive to the polymer content, cell load and Taxol treatment. For a given sample composition, the mean apparent diffusivity and the elastic modulus of the hydrogels exhibited a negative correlation. \u0000 \u0000CONCLUSIONS \u0000 \u0000Diffusivity of hydrogel-based cancer cell culture constructs is sensitive to both cell proliferation and Taxol treatment. This suggests that diffusion-weighted imaging is a promising technique for non-invasive monitoring of cancer cell proliferation in hydrogel-based, cellularly-sparse 3D cell cultures. The negative correlation between mean apparent diffusivity and elastic modulus suggests that the diffusion coefficient is indicative of the average density of the physical microenvironment within the hydrogel construct.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"5 1","pages":"41-54"},"PeriodicalIF":0.0,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-150130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49468665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deepti Upadhyay, U. Sharma, G. Makharia, N. Jagannathan
Metabonomics study provides a comprehensive metabolic profile of biological samples using techniques like mass spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The metabolites identified are later analysed using mul- tivariate statistical methods. Metabonomics has the potential to provide putative biomarker/s for disease diagnosis and for monitoring the disease progression and can be used in patient management. Recently, a few metabonomics studies have been reported on blood sera, urine and intestinal mucosal biopsies of celiac disease (CeD) patients using proton NMR. Significantly decreased levels of amino acids, methylamine, lactate, lipids, pyruvate, creatinine, choline and glycoprotein and increased levels of glucose and β-hydroxybutyrate have been reported in blood sera of CeD patients. In intestinal mucosal biopsies of CeD patients, a higher concentration of isoleucine, leucine, aspartate, succinate and pyruvate and lower concentration of glycerophosphocholine was seen as compared to controls. These studies indicates that the metabonomics study of CeD using in-vitro NMR spectroscopy helps in the determination of metabolic signature/s of the disease. It also provides an insight into the biochemistry of the disease and also helps in the identification of metabolites that could serve as putative biomarker/s for the diagnosis of CeD. This review focuses on the application of NMR based metabonomics in CeD and highlights the potential of NMR based metabonomics in the identification of biomarker/s for diagnosis and prognosis.
{"title":"Role of NMR metabonomics in Celiac Disease (CeD)","authors":"Deepti Upadhyay, U. Sharma, G. Makharia, N. Jagannathan","doi":"10.3233/BSI-150129","DOIUrl":"https://doi.org/10.3233/BSI-150129","url":null,"abstract":"Metabonomics study provides a comprehensive metabolic profile of biological samples using techniques like mass spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The metabolites identified are later analysed using mul- tivariate statistical methods. Metabonomics has the potential to provide putative biomarker/s for disease diagnosis and for monitoring the disease progression and can be used in patient management. Recently, a few metabonomics studies have been reported on blood sera, urine and intestinal mucosal biopsies of celiac disease (CeD) patients using proton NMR. Significantly decreased levels of amino acids, methylamine, lactate, lipids, pyruvate, creatinine, choline and glycoprotein and increased levels of glucose and β-hydroxybutyrate have been reported in blood sera of CeD patients. In intestinal mucosal biopsies of CeD patients, a higher concentration of isoleucine, leucine, aspartate, succinate and pyruvate and lower concentration of glycerophosphocholine was seen as compared to controls. These studies indicates that the metabonomics study of CeD using in-vitro NMR spectroscopy helps in the determination of metabolic signature/s of the disease. It also provides an insight into the biochemistry of the disease and also helps in the identification of metabolites that could serve as putative biomarker/s for the diagnosis of CeD. This review focuses on the application of NMR based metabonomics in CeD and highlights the potential of NMR based metabonomics in the identification of biomarker/s for diagnosis and prognosis.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"5 1","pages":"27-40"},"PeriodicalIF":0.0,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-150129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44733402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}