Objective: The objective of this study is to demonstrate the potential of utilizing mid-energy x-rays for in-line phase-sensitive breast cancer imaging by phantom studies.
Methods: The midenergy (50-80kV) in-line phase sensitive imaging prototype was used to acquire images of the contrast-detail mammography (CDMAM) phantom, an ACR accreditation phantom, and an acrylic edge phantom. The low-dose mid-energy phase-sensitive images were acquired at 60 kV with a radiation dose of 0.9 mGy, while the high-energy phase-sensitive images were acquired at 90 kV with a radiation dose of 1.2 mGy. The Phase-Attenuation Duality (PAD) principle for soft tissue was used for the phase retrieval. A blind observer study was conducted and paired-sample T-test were performed to compare the mean differences in the two imaging systems.
Results: The correct detection ratio for the CDMAM phantom for phase-contrast images acquired by the low-dose mid-energy system was 56.91%, whereas images acquired by the high-energy system correctly revealed only 40.97% of discs. The correct detection ratios were 57.88% and 43.41% for phase-retrieved images acquired by the low-dose mid-energy and high-energy imaging systems, respectively. The reading scores for all three groups of objects in the ACR phantom were higher for the mid energy imaging system as compared to the high-energy system for both phase-contrast and phase- retrieved images. The calculated edge enhancement index (EEI) from the acrylic edge phantom image for the mid-energy system was higher than that calculated for the high-energy imaging system. The quantitative analyses showed a higher Contrast to Noise Ratio (CNR) as well as a higher Figure of Merit (FOM) in images acquired by the low-dose mid-energy imaging system.
Conclusion: The PAD based retrieval method can be applied in mid-energy system without remarkably affecting the image quality, and in fact, it improves the lesion detectability with a patient dose saving of 25%.
Background and objective: In hyperacute ischaemic stroke, T2 of cerebral water increases with time. Quantifying this change may be informative of the extent of tissue damage and onset time. Our objective was to develop a user-unbiased method to measure the effect of cerebral ischaemia on T2 to study stroke onset time-dependency in human acute stroke lesions.
Methods: Six rats were subjected to permanent middle cerebral occlusion to induce focal ischaemia, and a consecutive cohort of acute stroke patients (n = 38) were recruited within 9 hours from symptom onset. T1-weighted structural, T2 relaxometry, and diffusion MRI for apparent diffusion coefficient (ADC) were acquired. Ischaemic lesions were defined as regions of lowered ADC. The median T2 difference (ΔT2) between lesion and contralateral non-ischaemic control region was determined by the newly-developed spherical reference method, and data compared to that obtained by the mirror reference method. Linear regressions and receiver operating characteristics (ROC) were compared between the two methods.
Results: ΔT2 increases linearly in rat brain ischaemia by 1.9 ± 0.8 ms/h during the first 6 hours, as determined by the spherical reference method. In patients, ΔT2 linearly increases by 1.6 ± 1.4 and 1.9 ± 0.9 ms/h in the lesion, as determined by the mirror reference and spherical reference method, respectively. ROC analyses produced areas under the curve of 0.83 and 0.71 for the spherical and mirror reference methods, respectively.
Conclusions: Data from the spherical reference method showed that the median T2 increase in the ischaemic lesion is correlated with stroke onset time in a rat as well as in a human patient cohort, opening the possibility of using the approach as a timing tool in clinics.

