Pub Date : 2022-06-30DOI: 10.1142/s1793984422300035
Rishabh Hirday, Grace H. Tam, Audrey A. O'Neill, Mollie S Davis, R. Schloss
Dexamethasone is a synthetic corticosteroid that has historically been used to treat inflammation, such as from osteoarthritis, spinal cord injury and, more recently, COVID-19. The mechanism of action of dexamethasone is generally known to include attenuation of pro-inflammatory responses as well as upregulation of anti-inflammatory elements. A major issue with the use of dexamethasone is its delivery, as it is normally administered in large quantities via methods like bolus injection to attempt to maintain sufficient concentrations days or weeks after administration. In this review, we examine the mechanism of action of dexamethasone and its effects on three major cell types in the context of specific diseases: macrophages in the context of COVID, chondrocytes in the context of osteoarthritis, and astrocytes in the context of neuro-inflammatory disease. From this, we identify the key proinflammatory cytokines interleukin-1 (IL-1) and Tumor Necrosis Factor alpha (TNF-a) as universal effectors of inflammation that should be targeted alongside dexamethasone administration. Additionally, we review current extended release dosing mechanisms for dexamethasone to act over periods of weeks and months. We suggest that dual treatment of dexamethasone with IL-1 and/or TNF-a monoclonal antibodies will be an effective immediate treatment for inflammation, while the addition of fully developed dexamethasone extended release mechanisms will allow for effective long-term control of inflammatory disease. [ FROM AUTHOR] Copyright of Nano Life is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
{"title":"Dexamethasone: Therapeutic Applications, Targets and Translation","authors":"Rishabh Hirday, Grace H. Tam, Audrey A. O'Neill, Mollie S Davis, R. Schloss","doi":"10.1142/s1793984422300035","DOIUrl":"https://doi.org/10.1142/s1793984422300035","url":null,"abstract":"Dexamethasone is a synthetic corticosteroid that has historically been used to treat inflammation, such as from osteoarthritis, spinal cord injury and, more recently, COVID-19. The mechanism of action of dexamethasone is generally known to include attenuation of pro-inflammatory responses as well as upregulation of anti-inflammatory elements. A major issue with the use of dexamethasone is its delivery, as it is normally administered in large quantities via methods like bolus injection to attempt to maintain sufficient concentrations days or weeks after administration. In this review, we examine the mechanism of action of dexamethasone and its effects on three major cell types in the context of specific diseases: macrophages in the context of COVID, chondrocytes in the context of osteoarthritis, and astrocytes in the context of neuro-inflammatory disease. From this, we identify the key proinflammatory cytokines interleukin-1 (IL-1) and Tumor Necrosis Factor alpha (TNF-a) as universal effectors of inflammation that should be targeted alongside dexamethasone administration. Additionally, we review current extended release dosing mechanisms for dexamethasone to act over periods of weeks and months. We suggest that dual treatment of dexamethasone with IL-1 and/or TNF-a monoclonal antibodies will be an effective immediate treatment for inflammation, while the addition of fully developed dexamethasone extended release mechanisms will allow for effective long-term control of inflammatory disease. [ FROM AUTHOR] Copyright of Nano Life is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48033845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-30DOI: 10.1142/s179398442250009x
Harath Nimmala, K. Subramanian, A. Sarkar, Rajakumar Selvarajan
{"title":"Performance Evaluation of SAW based Hydrogen Gas Sensors with different IDT Geometries","authors":"Harath Nimmala, K. Subramanian, A. Sarkar, Rajakumar Selvarajan","doi":"10.1142/s179398442250009x","DOIUrl":"https://doi.org/10.1142/s179398442250009x","url":null,"abstract":"","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45361948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-24DOI: 10.1142/s1793984422500088
Ravinder, D. K. Das, Anuj Kumar
{"title":"Phyto-assisted Preparation of Fe2O3 Nanoflowers and Their Antimicrobial Studies","authors":"Ravinder, D. K. Das, Anuj Kumar","doi":"10.1142/s1793984422500088","DOIUrl":"https://doi.org/10.1142/s1793984422500088","url":null,"abstract":"","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45455151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-30DOI: 10.1142/s1793984422500064
L. Molenaar, M. M. Horstman – van de Loosdrecht, L. Alic, J. Baarlen, J. Meijerink, B. Ten Haken, I. Broeders, D. Lips
En-bloc tumor resection is the standard treatment for locally advanced colorectal cancer (CRC). An extensive histopathological assessment is necessary to evaluate the metastatic spread and adjuvant therapy. Sentinel lymph node biopsy decreases the histopathological burden when only sentinel lymph nodes (SLNs) are examined. This study aims to evaluate the spread of a magnetic tracer throughout the lymphatic system after ex vivo injection in en-bloc resected specimens of patients with CRC. To achieve this, lymph nodes (LNs) were quantified using a new magnetic detection method. Fifteen patients with CRC diagnosed with clinically negative LNs were included in this study and received 2–4 ex vivo magnetic tracer injections (total volume of 2[Formula: see text]mL). Magnetic sample series were acquired to create a look-up table for magnetic tracer quantification. In 80% of the patients, at least one magnetic LN was detected. A total of 33 LNs were marked as magnetic, containing an average of 8.1[Formula: see text][Formula: see text]g iron. In 71% of the patients, metastases were found in nonmagnetic LNs. Ex vivo injection leads to sub-optimal tracer spread and therefore inaccurate diagnosis. This study presents a novel magnetic detection method to quantify magnetic tracer in lymph nodes. Detecting the SLNs in en-bloc resected specimens and involving only these LNs in histopathological investigation enable a decrease in healthcare costs or an increased diagnostic potential.
{"title":"Quantification of Magnetic Nanoparticles in ex vivo Colorectal Lymph Nodes","authors":"L. Molenaar, M. M. Horstman – van de Loosdrecht, L. Alic, J. Baarlen, J. Meijerink, B. Ten Haken, I. Broeders, D. Lips","doi":"10.1142/s1793984422500064","DOIUrl":"https://doi.org/10.1142/s1793984422500064","url":null,"abstract":"En-bloc tumor resection is the standard treatment for locally advanced colorectal cancer (CRC). An extensive histopathological assessment is necessary to evaluate the metastatic spread and adjuvant therapy. Sentinel lymph node biopsy decreases the histopathological burden when only sentinel lymph nodes (SLNs) are examined. This study aims to evaluate the spread of a magnetic tracer throughout the lymphatic system after ex vivo injection in en-bloc resected specimens of patients with CRC. To achieve this, lymph nodes (LNs) were quantified using a new magnetic detection method. Fifteen patients with CRC diagnosed with clinically negative LNs were included in this study and received 2–4 ex vivo magnetic tracer injections (total volume of 2[Formula: see text]mL). Magnetic sample series were acquired to create a look-up table for magnetic tracer quantification. In 80% of the patients, at least one magnetic LN was detected. A total of 33 LNs were marked as magnetic, containing an average of 8.1[Formula: see text][Formula: see text]g iron. In 71% of the patients, metastases were found in nonmagnetic LNs. Ex vivo injection leads to sub-optimal tracer spread and therefore inaccurate diagnosis. This study presents a novel magnetic detection method to quantify magnetic tracer in lymph nodes. Detecting the SLNs in en-bloc resected specimens and involving only these LNs in histopathological investigation enable a decrease in healthcare costs or an increased diagnostic potential.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41867155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-09DOI: 10.1142/s1793984422500052
Ravichander Janapati, Vishwas Dalal, Rakesh Sengupta, Usha Desai, P. V. Raja Shekar, Sreedhar Kollem
Currently, the operational electroencephalography (EEG)-based brain–computer interfaces (BCIs) suffer from problems of BCI latency/lag issues, which restricts the use of interfaces impractical scenarios. One of the reasons behind the present challenges is the application of a purely data-driven approach to the BCI pipeline. Although BCI applications have improved significantly with the research in the fields of artificial intelligence (AI) and machine learning (ML), fundamental issues of data-driven training restrict the latency that can be achieved under current BCI paradigms. This work explores the possibility of future BCI using a combination of data-driven and theory-driven methods. In this study, an EEG-BCI dataset from steady-state visually evoked potentials (SSVEPs) is applied, where the SSVEP signals contain, source components from the occipital, parietal and frontal regions of the brain. Source reconstruction is done with the combination of independent component analysis (ICA) and low-resolution electromagnetic tomography analysis (LORETA). This method was able to predict BCI classification labels 5[Formula: see text]s earlier, based on pre-recorded signals from the scalp. The novelty of the current contribution lies in utilizing the source reconstructed EEG time-series for BCI classification, which allows for retention of classification accuracy up to 70% while working with the reduced data dimensionality. Implementation of this algorithm will allow a significant reduction in lag in online BCIs.
{"title":"Towards a More Theory-Driven BCI Using Source Reconstructed Dynamics of EEG Time-Series","authors":"Ravichander Janapati, Vishwas Dalal, Rakesh Sengupta, Usha Desai, P. V. Raja Shekar, Sreedhar Kollem","doi":"10.1142/s1793984422500052","DOIUrl":"https://doi.org/10.1142/s1793984422500052","url":null,"abstract":"Currently, the operational electroencephalography (EEG)-based brain–computer interfaces (BCIs) suffer from problems of BCI latency/lag issues, which restricts the use of interfaces impractical scenarios. One of the reasons behind the present challenges is the application of a purely data-driven approach to the BCI pipeline. Although BCI applications have improved significantly with the research in the fields of artificial intelligence (AI) and machine learning (ML), fundamental issues of data-driven training restrict the latency that can be achieved under current BCI paradigms. This work explores the possibility of future BCI using a combination of data-driven and theory-driven methods. In this study, an EEG-BCI dataset from steady-state visually evoked potentials (SSVEPs) is applied, where the SSVEP signals contain, source components from the occipital, parietal and frontal regions of the brain. Source reconstruction is done with the combination of independent component analysis (ICA) and low-resolution electromagnetic tomography analysis (LORETA). This method was able to predict BCI classification labels 5[Formula: see text]s earlier, based on pre-recorded signals from the scalp. The novelty of the current contribution lies in utilizing the source reconstructed EEG time-series for BCI classification, which allows for retention of classification accuracy up to 70% while working with the reduced data dimensionality. Implementation of this algorithm will allow a significant reduction in lag in online BCIs.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41825800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-29DOI: 10.1142/s1793984422300023
P. Aravindakshan, A. Krishnamoorthy, C. Pal, Yoon-Young Chang, N. P. Tan
{"title":"A Review on Silver and Zinc Oxide Nanoparticles as Antimicrobial Agents in Water Treatment Technologies","authors":"P. Aravindakshan, A. Krishnamoorthy, C. Pal, Yoon-Young Chang, N. P. Tan","doi":"10.1142/s1793984422300023","DOIUrl":"https://doi.org/10.1142/s1793984422300023","url":null,"abstract":"","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44319867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-11DOI: 10.1142/s1793984422500040
Dipan Bandyopadhyay, S. Nag, D. Das, Srikanta Acharya, B. Tudu, P. Pramanik, R. Bandyopadhyay, R. B. Roy
An electrochemical detection of inositol content using platinum (Pt)-based noble metal electrode is investigated. In this work, the electrochemical behavior of the platinum electrode has been studied and analyzed using a three-electrode system against a silver–silver chloride (Ag/AgCl) reference electrode and a steel counter electrode. Differential pulse voltammetry technique has been employed for this experimental study. A satisfactory linear range of operation was obtained from 50 to 400[Formula: see text][Formula: see text]M with [Formula: see text]M. Electrochemical responses for several inositol concentrations 50, 80, 100, 200, 300 and 400[Formula: see text][Formula: see text]M have also been analyzed using principal component analysis (PCA) with effective data clustering. A good class separability index (SI) was found to be 142.91. In addition, a prediction estimation of inositol contents using partial least square regression (PLSR) and principal component regression (PCR) algorithms were also evaluated and prediction accuracies of 93.69% and 93.71% were obtained, respectively. Moreover, the application of the Pt electrode over real orange juice sample extracts revealed satisfactory recovery rate of 96.18%. Thus, this technique of electrochemical system may be subjected for inositol detection in our daily-life food (especially juice, beverages) consumption.
{"title":"Voltammetric Detection of Inositol Using a Platinum Based Electrode","authors":"Dipan Bandyopadhyay, S. Nag, D. Das, Srikanta Acharya, B. Tudu, P. Pramanik, R. Bandyopadhyay, R. B. Roy","doi":"10.1142/s1793984422500040","DOIUrl":"https://doi.org/10.1142/s1793984422500040","url":null,"abstract":"An electrochemical detection of inositol content using platinum (Pt)-based noble metal electrode is investigated. In this work, the electrochemical behavior of the platinum electrode has been studied and analyzed using a three-electrode system against a silver–silver chloride (Ag/AgCl) reference electrode and a steel counter electrode. Differential pulse voltammetry technique has been employed for this experimental study. A satisfactory linear range of operation was obtained from 50 to 400[Formula: see text][Formula: see text]M with [Formula: see text]M. Electrochemical responses for several inositol concentrations 50, 80, 100, 200, 300 and 400[Formula: see text][Formula: see text]M have also been analyzed using principal component analysis (PCA) with effective data clustering. A good class separability index (SI) was found to be 142.91. In addition, a prediction estimation of inositol contents using partial least square regression (PLSR) and principal component regression (PCR) algorithms were also evaluated and prediction accuracies of 93.69% and 93.71% were obtained, respectively. Moreover, the application of the Pt electrode over real orange juice sample extracts revealed satisfactory recovery rate of 96.18%. Thus, this technique of electrochemical system may be subjected for inositol detection in our daily-life food (especially juice, beverages) consumption.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46510081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-09DOI: 10.1142/s1793984422500015
Swati Singh, P. Chaudhary, Sunanda Singh, Vandana Verma, R. Srivastava, R. K. Tripathi, Kaman Singh, B. Yadav
This paper deals with the facile approach to the synthesis of different metal oxide nanoparticles and their comparative study for humidity sensing application at room temperature. The synthesis of these metal oxide nanoparticles is through co-precipitation method for nickel oxide and tin ferrite and hydrothermal route for cuprous oxide. The SEM and EDX reveal the porous morphology and confirmed composition of the synthesized metal oxides. FTIR detects the presence of functional groups like –OH and confirms the inverse spinal structure in tin ferrite. The optical band gap was determined by UV spectroscopy: 3.86[Formula: see text]eV for NiO, 4.13[Formula: see text]eV for Cu2O, and 4.07[Formula: see text]eV for SnFe2O4. XRD gives the information about the average crystallite size for tin ferrite 2.42[Formula: see text]nm, cuprous oxide 12.88[Formula: see text]nm and nickel oxide 22.51[Formula: see text]nm as the size comes to nano range the surface area increases, which is a good indication for humidity sensing. The humidity sensing of materials was detected by electrical modes. The deposited thin films were prepared by spin coater and observed sensitivity of these films was 0.72[Formula: see text]M[Formula: see text]/%RH for NiO, 1.59[Formula: see text]M[Formula: see text]/%RH for Cu2O, and 2.07[Formula: see text]M[Formula: see text]/%RH for SnFe2O4. The experiments were repeated after few weeks and the aging effects of samples were found negligible which makes the sensor stable.
{"title":"Investigation on Metal Nanoparticles: Nickel Oxide, Cuprous Oxide and Tin Ferrite with Their Humidity Sensing at Room Temperature","authors":"Swati Singh, P. Chaudhary, Sunanda Singh, Vandana Verma, R. Srivastava, R. K. Tripathi, Kaman Singh, B. Yadav","doi":"10.1142/s1793984422500015","DOIUrl":"https://doi.org/10.1142/s1793984422500015","url":null,"abstract":"This paper deals with the facile approach to the synthesis of different metal oxide nanoparticles and their comparative study for humidity sensing application at room temperature. The synthesis of these metal oxide nanoparticles is through co-precipitation method for nickel oxide and tin ferrite and hydrothermal route for cuprous oxide. The SEM and EDX reveal the porous morphology and confirmed composition of the synthesized metal oxides. FTIR detects the presence of functional groups like –OH and confirms the inverse spinal structure in tin ferrite. The optical band gap was determined by UV spectroscopy: 3.86[Formula: see text]eV for NiO, 4.13[Formula: see text]eV for Cu2O, and 4.07[Formula: see text]eV for SnFe2O4. XRD gives the information about the average crystallite size for tin ferrite 2.42[Formula: see text]nm, cuprous oxide 12.88[Formula: see text]nm and nickel oxide 22.51[Formula: see text]nm as the size comes to nano range the surface area increases, which is a good indication for humidity sensing. The humidity sensing of materials was detected by electrical modes. The deposited thin films were prepared by spin coater and observed sensitivity of these films was 0.72[Formula: see text]M[Formula: see text]/%RH for NiO, 1.59[Formula: see text]M[Formula: see text]/%RH for Cu2O, and 2.07[Formula: see text]M[Formula: see text]/%RH for SnFe2O4. The experiments were repeated after few weeks and the aging effects of samples were found negligible which makes the sensor stable.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43039355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-25DOI: 10.1142/s1793984422500039
Ginia Ghosh, S. Misra, P. Karmakar
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein with dual phosphatase activity, is found to be frequently mutated in various cancers. PTEN is post-translationally modulated at various amino acid residues which are crucial for sub-cellular localization as well as its catalytic functions rendering genomic stability. Recent reports suggest that PTEN also acts as a DNA repair protein. But how post-translational modulation of PTEN affects cytological damage and aneuploidy is not studied in detail. Here, we focus on the role of sumoylation of PTEN in context with DNA damage induced cytological damage like micronucleus (MNi), nuclear bud (NB), and nuclear bridge formation. Our data suggest that wild type PTEN but not sumo-dead PTEN significantly reduces cytological damage in PTEN mutant PC3 cells. In case of sumo-dead PTEN, the cytological parameters are increased during 24[Formula: see text]h recovery time point after DNA damage. Next, we measured the effectiveness of the sumo-dead (PTEN-K254R) mutant on aneuploidy, where we found that sumoylation is essential for maintaining chromosome number. As chromosome number variation in daughter cell is due to multiple spindle pole formation, we qualitatively and quantitatively evaluate the [Formula: see text] tubulin pole formation in PTEN-K254R clone transfected cells. We found aberrant pole formation is significantly increased in PTEN-K254R transfected cells compared to wild-type PTEN. Further depletion of sumoylation activity of PTEN increases the expression of phosphorylated form of Aurora kinase A (AURKA) (T288) and PLK1 (T210) proteins with or without nocodazole, a microtubule depolymerizing agent compared to cells expressing wild-type PTEN. Thus, sumoylation of PTEN is essential for maintaining genomic stability.
{"title":"PTEN: Sumoylation Function is the Key to the Maintenance of Genomic Stability of Cell","authors":"Ginia Ghosh, S. Misra, P. Karmakar","doi":"10.1142/s1793984422500039","DOIUrl":"https://doi.org/10.1142/s1793984422500039","url":null,"abstract":"Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein with dual phosphatase activity, is found to be frequently mutated in various cancers. PTEN is post-translationally modulated at various amino acid residues which are crucial for sub-cellular localization as well as its catalytic functions rendering genomic stability. Recent reports suggest that PTEN also acts as a DNA repair protein. But how post-translational modulation of PTEN affects cytological damage and aneuploidy is not studied in detail. Here, we focus on the role of sumoylation of PTEN in context with DNA damage induced cytological damage like micronucleus (MNi), nuclear bud (NB), and nuclear bridge formation. Our data suggest that wild type PTEN but not sumo-dead PTEN significantly reduces cytological damage in PTEN mutant PC3 cells. In case of sumo-dead PTEN, the cytological parameters are increased during 24[Formula: see text]h recovery time point after DNA damage. Next, we measured the effectiveness of the sumo-dead (PTEN-K254R) mutant on aneuploidy, where we found that sumoylation is essential for maintaining chromosome number. As chromosome number variation in daughter cell is due to multiple spindle pole formation, we qualitatively and quantitatively evaluate the [Formula: see text] tubulin pole formation in PTEN-K254R clone transfected cells. We found aberrant pole formation is significantly increased in PTEN-K254R transfected cells compared to wild-type PTEN. Further depletion of sumoylation activity of PTEN increases the expression of phosphorylated form of Aurora kinase A (AURKA) (T288) and PLK1 (T210) proteins with or without nocodazole, a microtubule depolymerizing agent compared to cells expressing wild-type PTEN. Thus, sumoylation of PTEN is essential for maintaining genomic stability.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45398418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-02-25DOI: 10.1142/s1793984422500027
Ruchi Chawla, V. Karri, V. Rani, Mohini Mishra, K. Kumar
Efavirenz (EFV) suffers from poor aqueous solubility which results in low bioavailability of the drug. Nanocarrier-based drug delivery systems offer a suitable alternative for improving the physico-chemical properties of the drug and hence its efficacy. Nanosuspension (NS) of EFV was formulated by solvent-anti solvent precipitation method using PVP K-30 as stabilizer and sodium lauryl sulphate (SLS) as the wetting agent. Multi-level factorial design was applied to select the optimal formulation which was further characterized. The optimal batch exhibited mean particle size of 305[Formula: see text]nm and polydispersity index (PDI) of 0.345. Solid-state characterization studies of the NS conducted using scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction, and differential scanning calorimetry (DSC) revealed compatibility between the drug and the excipients and modest alteration in the crystallinity of the drug. There was progressive increase in the solubility of the drug when incorporated in NS from 17.39[Formula: see text][Formula: see text]g/ml to 256[Formula: see text][Formula: see text]g/ml. Further, drug release studies showed significantly better and controlled drug release pattern in comparison to the free drug due to the presence of nanosized particles in the formulation.
{"title":"Factorial Design-Based Nanocarrier Mediated Formulation of Efavirenz and Its Characterization","authors":"Ruchi Chawla, V. Karri, V. Rani, Mohini Mishra, K. Kumar","doi":"10.1142/s1793984422500027","DOIUrl":"https://doi.org/10.1142/s1793984422500027","url":null,"abstract":"Efavirenz (EFV) suffers from poor aqueous solubility which results in low bioavailability of the drug. Nanocarrier-based drug delivery systems offer a suitable alternative for improving the physico-chemical properties of the drug and hence its efficacy. Nanosuspension (NS) of EFV was formulated by solvent-anti solvent precipitation method using PVP K-30 as stabilizer and sodium lauryl sulphate (SLS) as the wetting agent. Multi-level factorial design was applied to select the optimal formulation which was further characterized. The optimal batch exhibited mean particle size of 305[Formula: see text]nm and polydispersity index (PDI) of 0.345. Solid-state characterization studies of the NS conducted using scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction, and differential scanning calorimetry (DSC) revealed compatibility between the drug and the excipients and modest alteration in the crystallinity of the drug. There was progressive increase in the solubility of the drug when incorporated in NS from 17.39[Formula: see text][Formula: see text]g/ml to 256[Formula: see text][Formula: see text]g/ml. Further, drug release studies showed significantly better and controlled drug release pattern in comparison to the free drug due to the presence of nanosized particles in the formulation.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44437008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}