Pub Date : 2023-11-06DOI: 10.24425/AME.2019.129680
Natalia Strawa, P. Malczyk
In times of rapidly progressing globalization, the possibility of fast long-distance travel between high traffic cities has become an extremely important issue. Cur-rently, available transportation systems have numerous limitations, therefore, the idea of a high-speed transportation system moving in reduced-pressure conditions has emerged recently. This paper presents an approach to the modelling and simulation of the dynamic behaviour of a simplified high-speed vehicle that hovers over the track as a magnetically levitated system. The developed model is used for control system design. The purpose of passive and active suspension discussed in the text is to improve both the performance and stability of the vehicle as well as ride comfort of passengers travelling in a compartment. Comparative numerical studies are performed and the results of the simulations are reported in the paper with the intent to demonstrate the benefits of the approach employed here.
{"title":"Modeling and control of a simplified high-speed vehicle moving in reduced-pressure conditions","authors":"Natalia Strawa, P. Malczyk","doi":"10.24425/AME.2019.129680","DOIUrl":"https://doi.org/10.24425/AME.2019.129680","url":null,"abstract":"In times of rapidly progressing globalization, the possibility of fast long-distance travel between high traffic cities has become an extremely important issue. Cur-rently, available transportation systems have numerous limitations, therefore, the idea of a high-speed transportation system moving in reduced-pressure conditions has emerged recently. This paper presents an approach to the modelling and simulation of the dynamic behaviour of a simplified high-speed vehicle that hovers over the track as a magnetically levitated system. The developed model is used for control system design. The purpose of passive and active suspension discussed in the text is to improve both the performance and stability of the vehicle as well as ride comfort of passengers travelling in a compartment. Comparative numerical studies are performed and the results of the simulations are reported in the paper with the intent to demonstrate the benefits of the approach employed here.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68945188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ame.2019.131356
G. S. Kononov, S. Artemov, S. S. Dubrovskyi, D. Kravtsova
{"title":"Research of air movement in the labyrinth seal of rollers of conveyor belt","authors":"G. S. Kononov, S. Artemov, S. S. Dubrovskyi, D. Kravtsova","doi":"10.24425/ame.2019.131356","DOIUrl":"https://doi.org/10.24425/ame.2019.131356","url":null,"abstract":"","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68945237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ame.2009.132102
A. Maczyński, S. Wojciech
The peculiarity of offshore cranes, i. e. cranes based on ships or drilling platforms, is not only a significant motion of their base, but also the taut-slack phenomenon. Under some circumstances a rope can temporarily go completely slack, while a moment later, the force in the rope can increase to nominal or even higher value. Periodic occurrence of such phenomena can be damaging to the supporting structure of the crane and its driver. In the paper, mathematical models of offshore cranes that allow for analysis of the taut-slack phenomenon are presented. Results of numerical calculations show that the method of load stabilization proposed by the authors in their earlier works can eliminate this problem.
{"title":"The influence of stabilization of load positioning in an offshore crane on taut-slack phenomenon in a rope","authors":"A. Maczyński, S. Wojciech","doi":"10.24425/ame.2009.132102","DOIUrl":"https://doi.org/10.24425/ame.2009.132102","url":null,"abstract":"The peculiarity of offshore cranes, i. e. cranes based on ships or drilling platforms, is not only a significant motion of their base, but also the taut-slack phenomenon. Under some circumstances a rope can temporarily go completely slack, while a moment later, the force in the rope can increase to nominal or even higher value. Periodic occurrence of such phenomena can be damaging to the supporting structure of the crane and its driver. In the paper, mathematical models of offshore cranes that allow for analysis of the taut-slack phenomenon are presented. Results of numerical calculations show that the method of load stabilization proposed by the authors in their earlier works can eliminate this problem.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"11 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ame.2008.131625
G. Tora
The author suggests that a mobile counterweight mechanism could be introduced to the excavator structure for coupling the hydraulic system with the excavating equipment. It is shown that the mobile counterweight mechanism reduces power demand, at the same time improving stability of the excavator.
{"title":"Application of a hydraulic–linkage mechanism to balance the excavating equipment in heavy machines","authors":"G. Tora","doi":"10.24425/ame.2008.131625","DOIUrl":"https://doi.org/10.24425/ame.2008.131625","url":null,"abstract":"The author suggests that a mobile counterweight mechanism could be introduced to the excavator structure for coupling the hydraulic system with the excavating equipment. It is shown that the mobile counterweight mechanism reduces power demand, at the same time improving stability of the excavator.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"10 21","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ame.2009.132092
R. Petrović, A. Banaszek
Axial piston pumps with constant pressure and variable flow have extraordinary possibilities for controlling the flow by change of pressure. Owing to pressure feed-back, volumetric control of the pump provides a wide application of these pumps in complex hydraulic systems, particularly in aeronautics and space engineering. Mathematical modeling is the first phase in defining the conception of a design and it has been carried out at the beginning of the project. Next very important phase is the check-out of the characteristics at the physical model when the pump has been produced. Optimal solution to the hydropump design has been reached by thorough analysis of the parameters obtained at the physical model by means of the simulation results of the mathematical model. The paper presents the possibilities for selecting the most influential parameters, their correction for certain values, and eventually the simulation at the mathematical model which shows the change of hydropump performances. After all these analyses, appropriate changes are made in design documentation which will serve for prototype production. Finally, when all kinds of tests are done at the prototypes along with fine adjustment of design solution, the series production of hydropump will be organized.
{"title":"Experimental research of characteristic parameters hydrodynamic processes of axial piston pumps with constant pressure and variable flow","authors":"R. Petrović, A. Banaszek","doi":"10.24425/ame.2009.132092","DOIUrl":"https://doi.org/10.24425/ame.2009.132092","url":null,"abstract":"Axial piston pumps with constant pressure and variable flow have extraordinary possibilities for controlling the flow by change of pressure. Owing to pressure feed-back, volumetric control of the pump provides a wide application of these pumps in complex hydraulic systems, particularly in aeronautics and space engineering. Mathematical modeling is the first phase in defining the conception of a design and it has been carried out at the beginning of the project. Next very important phase is the check-out of the characteristics at the physical model when the pump has been produced. Optimal solution to the hydropump design has been reached by thorough analysis of the parameters obtained at the physical model by means of the simulation results of the mathematical model. The paper presents the possibilities for selecting the most influential parameters, their correction for certain values, and eventually the simulation at the mathematical model which shows the change of hydropump performances. After all these analyses, appropriate changes are made in design documentation which will serve for prototype production. Finally, when all kinds of tests are done at the prototypes along with fine adjustment of design solution, the series production of hydropump will be organized.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"10 19","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ame.2009.132095
J. R. Piechna
This paper presents an idea and results of 2D and 3D numerical CFD simulations of the proposed ring-engine construction dedicated for air propulsion or generation of electric power. The engine is designed as the simplest construction realizing the idea of pulsating reaction chamber utilizing a constant volume combustion principle. An atypical fuel (hydrogen peroxide) is used in the analyzed construction. The proposed ring-engine has reaction chambers forming a part of a ring periodically filled by cooling air and hydrogen peroxide vapour. The H 2 O 2 is decomposed in exothermic reaction increasing pressure inside the chamber of constant volume. High pressure gas contents of the reaction chambers are periodically decompressed by jet nozzles generating torque. The paper contains the description of the ring-engine idea, the schematic engine geometry and a set of data visualizing pressure, velocity, temperature and species distribution inside the engine components being results of numerical simulations.
{"title":"Numerical analysis of micro ring-engine fluid dynamics","authors":"J. R. Piechna","doi":"10.24425/ame.2009.132095","DOIUrl":"https://doi.org/10.24425/ame.2009.132095","url":null,"abstract":"This paper presents an idea and results of 2D and 3D numerical CFD simulations of the proposed ring-engine construction dedicated for air propulsion or generation of electric power. The engine is designed as the simplest construction realizing the idea of pulsating reaction chamber utilizing a constant volume combustion principle. An atypical fuel (hydrogen peroxide) is used in the analyzed construction. The proposed ring-engine has reaction chambers forming a part of a ring periodically filled by cooling air and hydrogen peroxide vapour. The H 2 O 2 is decomposed in exothermic reaction increasing pressure inside the chamber of constant volume. High pressure gas contents of the reaction chambers are periodically decompressed by jet nozzles generating torque. The paper contains the description of the ring-engine idea, the schematic engine geometry and a set of data visualizing pressure, velocity, temperature and species distribution inside the engine components being results of numerical simulations.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"31 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ame.2009.132091
W. C. Selerowicz
The paper presents numerical simulations related to the problem of how to obtain correct results in transonic wind tunnel during tests at high airfoil angles of attack. At this flow conditions, significant pressure losses appear in the test section, what leads to significant errors in measured data. Regarding the possible ways of tunnel reconstruction, we examined three different possibilities of changing the test section configurations: an increase of the test section height, displacement of the airfoil below the tunnel centreline and, finally, introduction of divergent test section walls. It was shown that neither the use of higher test section, nor the change of the airfoil location, gives any significant improvement in reference to the existing tunnel configuration. Only after divergent test section walls were introduced, the distributions of pressure coefficient became well consistent with their expected values.
{"title":"Prediction of transonic wind tunnel test section geometry – a numerical study","authors":"W. C. Selerowicz","doi":"10.24425/ame.2009.132091","DOIUrl":"https://doi.org/10.24425/ame.2009.132091","url":null,"abstract":"The paper presents numerical simulations related to the problem of how to obtain correct results in transonic wind tunnel during tests at high airfoil angles of attack. At this flow conditions, significant pressure losses appear in the test section, what leads to significant errors in measured data. Regarding the possible ways of tunnel reconstruction, we examined three different possibilities of changing the test section configurations: an increase of the test section height, displacement of the airfoil below the tunnel centreline and, finally, introduction of divergent test section walls. It was shown that neither the use of higher test section, nor the change of the airfoil location, gives any significant improvement in reference to the existing tunnel configuration. Only after divergent test section walls were introduced, the distributions of pressure coefficient became well consistent with their expected values.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"30 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ame.2007.131563
M. Góra, J. Knapczyk, M. Maniowski
This paper presents an estimation method for the spatial pose and displacement parameters of multi-rod suspension mechanism, based on measurement results by using wire sensors. Some changes of position and orientation of the platform fixed to wheel knuckle cause corresponding changes of sensors’ cable lengths. The fixation points of the cable sensors are selected with the collision-free conditions taken into account. Numerical example deals with platform poses and positioning of the sensors that satisfy the measurement conditions.
{"title":"Estimation of platform spatial pose and displacement of parallel mechanism using wire-based sensors","authors":"M. Góra, J. Knapczyk, M. Maniowski","doi":"10.24425/ame.2007.131563","DOIUrl":"https://doi.org/10.24425/ame.2007.131563","url":null,"abstract":"This paper presents an estimation method for the spatial pose and displacement parameters of multi-rod suspension mechanism, based on measurement results by using wire sensors. Some changes of position and orientation of the platform fixed to wheel knuckle cause corresponding changes of sensors’ cable lengths. The fixation points of the cable sensors are selected with the collision-free conditions taken into account. Numerical example deals with platform poses and positioning of the sensors that satisfy the measurement conditions.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"11 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.24425/ame.2008.131618
P. Pyrzanowski
A simple resistance-based method was used to study the epoxy-carbon composite material. Measurement of changes of the resistance between contacts, located on the composite specimens, allows detecting the damage process in quasi-static and fatigue tests. The method can be useful to determine the margin of safety of composite elements.
{"title":"Application of resistance change measurement method to evaluation of the degree of destruction in carbon composite","authors":"P. Pyrzanowski","doi":"10.24425/ame.2008.131618","DOIUrl":"https://doi.org/10.24425/ame.2008.131618","url":null,"abstract":"A simple resistance-based method was used to study the epoxy-carbon composite material. Measurement of changes of the resistance between contacts, located on the composite specimens, allows detecting the damage process in quasi-static and fatigue tests. The method can be useful to determine the margin of safety of composite elements.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"10 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135544903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inthispaper,anumericalandexperimentalinvestigationofgeometricalparameters of the blade for plastic bottle shredder was performed based on the Taguchi method in combination with a response surface method (RSM). Nowadays, plastic waste has become a major threat to the environment. Shredding, in which plastic waste is shredded into small bits, ready for transportation and further processing, is a crucial step in plastic recycling. Although many studies on plastic shredders were performed, there was still a need for more researches on the optimization of shredder blades. Hence, a numerical analysis was carried out to study the influences of the relevant geometrical parameters. Next, a two-step optimization process combining the Taguchi method and the RSM was utilized to define optimal parameters. The simulation results clearly confirmed that the current technique can triumph over the limitation of the Taguchi method, originated from a discrete optimization nature. The optimal blade was then fabricated and experimented, showing lower wear via measurement by an ICamScope® microscope. Hence, it can be clearly inferred from this investigation that the current optimization method is a simple, sufficient tool to be applied in such a traditional process without using any complicated algorithms or expensive software.
{"title":"Characterization of geometrical parameters of plastic bottle shredder blade utilizing a two-step optimization method","authors":"Trieu Khoa Nguyen, Minh Quang Chau, The-Can Do, Anh-Duc Pham","doi":"10.24425/ame.2021.138392","DOIUrl":"https://doi.org/10.24425/ame.2021.138392","url":null,"abstract":"Inthispaper,anumericalandexperimentalinvestigationofgeometricalparameters of the blade for plastic bottle shredder was performed based on the Taguchi method in combination with a response surface method (RSM). Nowadays, plastic waste has become a major threat to the environment. Shredding, in which plastic waste is shredded into small bits, ready for transportation and further processing, is a crucial step in plastic recycling. Although many studies on plastic shredders were performed, there was still a need for more researches on the optimization of shredder blades. Hence, a numerical analysis was carried out to study the influences of the relevant geometrical parameters. Next, a two-step optimization process combining the Taguchi method and the RSM was utilized to define optimal parameters. The simulation results clearly confirmed that the current technique can triumph over the limitation of the Taguchi method, originated from a discrete optimization nature. The optimal blade was then fabricated and experimented, showing lower wear via measurement by an ICamScope® microscope. Hence, it can be clearly inferred from this investigation that the current optimization method is a simple, sufficient tool to be applied in such a traditional process without using any complicated algorithms or expensive software.","PeriodicalId":45083,"journal":{"name":"Archive of Mechanical Engineering","volume":"13 28","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135545600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}