Pub Date : 2022-01-01DOI: 10.3934/environsci.2023003
P. Desai, F. Desai
Metal corrosion is a significant and growing area of study in industrial problems, which has found productive research ground in the field of green chemistry. In the last 10 years, green chemistry has been highlighting the importance of safeguarding human as well as the environmental well-being, in an economically advantageous way aiming at keeping away from reducing waste hazardous toxins, and pollutants. The era of metal degradation, commonly faced due to the usage of hazardous chemicals became very relevant and useful in the research area of chemistry. Even though several experiments have been conducted and, several research articles were published on this topic of nature-friendly green and clean inhibitors still there are yet a lot of things to be explored in this field for sustainable eco-friendly existence of human and natural interconnected existence. The main aim of the study is to provide a summary and describe the past authentic research that accounted in the research literature to employ eco-friendly corrosion inhibitors, especially extraction from leaves, stems, seeds, and fruits of the plants for aluminum alloy in acid solutions in the past decade. Weight loss and electrochemical approaches are among the most often utilized methods to measure corrosion rate and to evaluate the effectiveness of green corrosion inhibitors. The relevance of the area prompted the further study, leading to a large number of substances being evaluated.
{"title":"An overview of sustainable green inhibitors for aluminum in acid media","authors":"P. Desai, F. Desai","doi":"10.3934/environsci.2023003","DOIUrl":"https://doi.org/10.3934/environsci.2023003","url":null,"abstract":"Metal corrosion is a significant and growing area of study in industrial problems, which has found productive research ground in the field of green chemistry. In the last 10 years, green chemistry has been highlighting the importance of safeguarding human as well as the environmental well-being, in an economically advantageous way aiming at keeping away from reducing waste hazardous toxins, and pollutants. The era of metal degradation, commonly faced due to the usage of hazardous chemicals became very relevant and useful in the research area of chemistry. Even though several experiments have been conducted and, several research articles were published on this topic of nature-friendly green and clean inhibitors still there are yet a lot of things to be explored in this field for sustainable eco-friendly existence of human and natural interconnected existence. The main aim of the study is to provide a summary and describe the past authentic research that accounted in the research literature to employ eco-friendly corrosion inhibitors, especially extraction from leaves, stems, seeds, and fruits of the plants for aluminum alloy in acid solutions in the past decade. Weight loss and electrochemical approaches are among the most often utilized methods to measure corrosion rate and to evaluate the effectiveness of green corrosion inhibitors. The relevance of the area prompted the further study, leading to a large number of substances being evaluated.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022040
Tapas Kumar Jana
Options are financial contracts that are based on an underlying security and are useful for both hedging and speculating on future market trends. New financial tools are constantly being developed for sustainable financial management. In order to define new financial instruments, the BS Hamiltonian, in conjunction with a potential function, is particularly important for modelling path-dependent options. It is demonstrated here how supersymmetry provides a natural framework for generating various options, particularly using higher order supersymmetry to find and examine numerous isospectral partners of the double knock out barrier option.
{"title":"Variety of double knock out barrier option for sustainable financial management","authors":"Tapas Kumar Jana","doi":"10.3934/environsci.2022040","DOIUrl":"https://doi.org/10.3934/environsci.2022040","url":null,"abstract":"Options are financial contracts that are based on an underlying security and are useful for both hedging and speculating on future market trends. New financial tools are constantly being developed for sustainable financial management. In order to define new financial instruments, the BS Hamiltonian, in conjunction with a potential function, is particularly important for modelling path-dependent options. It is demonstrated here how supersymmetry provides a natural framework for generating various options, particularly using higher order supersymmetry to find and examine numerous isospectral partners of the double knock out barrier option.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022041
R. N. Sunarti, S. Budiarti, M. Verawaty, Bayo Alhusaeri Siregar, P. Hariani
One of the indicators of water pollution is the presence of coliform bacteria, such as Escherichia coli (E. coli). The development of resistance properties to several antibiotics by this pathogen is a serious health problem. Therefore, this study aims to isolate and identify antibiotic-resistant E. coli using the 16S rRNA gene. Samples were taken along the Kedukan, PU, and Buah rivers in Palembang City, South Sumatra, Indonesia, using the purposive sampling method. Each river consists of 9 sampling points, namely, the lower, middle and the upstream regions. The water quality result for the three rivers show that several water quality parameters do not meet the water quality standards: namely, BOD levels in the Kedukan and Buah rivers, Fe levels in the Kedukan and PU rivers, and chlorine in the three rivers. The results showed that E. coli isolates from the Kedukan, PU and Buah rivers were sensitive to 9 antibiotics. The highest resistance (100%) of E. coli isolates to tobramycin was in the Kedukan and PU rivers, while those from the Buah river were resistant to ampicillin. The phylogenetic tree analysis showed genetic diversity. Two main groups were formed from E. coli, namely, A and B, which consist of 17 and 4 isolates, respectively. Furthermore, the water quality analysis results of the Kedukan, PU, and Buah rivers in Palembang City, South Sumatra, revealed that they are polluted.
{"title":"Diversity of Antibiotic-Resistant Escherichia coli from Rivers in Palembang City, South Sumatra, Indonesia","authors":"R. N. Sunarti, S. Budiarti, M. Verawaty, Bayo Alhusaeri Siregar, P. Hariani","doi":"10.3934/environsci.2022041","DOIUrl":"https://doi.org/10.3934/environsci.2022041","url":null,"abstract":"One of the indicators of water pollution is the presence of coliform bacteria, such as Escherichia coli (E. coli). The development of resistance properties to several antibiotics by this pathogen is a serious health problem. Therefore, this study aims to isolate and identify antibiotic-resistant E. coli using the 16S rRNA gene. Samples were taken along the Kedukan, PU, and Buah rivers in Palembang City, South Sumatra, Indonesia, using the purposive sampling method. Each river consists of 9 sampling points, namely, the lower, middle and the upstream regions. The water quality result for the three rivers show that several water quality parameters do not meet the water quality standards: namely, BOD levels in the Kedukan and Buah rivers, Fe levels in the Kedukan and PU rivers, and chlorine in the three rivers. The results showed that E. coli isolates from the Kedukan, PU and Buah rivers were sensitive to 9 antibiotics. The highest resistance (100%) of E. coli isolates to tobramycin was in the Kedukan and PU rivers, while those from the Buah river were resistant to ampicillin. The phylogenetic tree analysis showed genetic diversity. Two main groups were formed from E. coli, namely, A and B, which consist of 17 and 4 isolates, respectively. Furthermore, the water quality analysis results of the Kedukan, PU, and Buah rivers in Palembang City, South Sumatra, revealed that they are polluted.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022022
R. Bachar, Shaktipada Bhuniya, S. Ghosh, Biswajit Sarkar
Social activities, economic benefits, and environmental friendly approach are very much essential for a sustainable production system. This is widely observed during the Covid-19 pandemic situation. The demand for essential goods in the business sector is always changing due to different unavoidable situations. The proposed study introduces a variable demand for controlling the fluctuating demand. However, a reworking of produced imperfect products makes the production model more profitable. Partial outsourcing of the good quality products has made the production system more popular and profitable. Separate holding cost for the reworked and produced products are very helpful idea for the proposed model. Moreover, consumption of energy during various purpose are considered. Separate green investment make the model more sustainable and eco-friendly. The main focus of the model is to find the maximum profit through considering optimum value of lot size quantity, average selling price, and green investment. The classical optimization technique is utilized here for optimizing the solution theoretically. The use of concave 3D graphs, different examples, and sensitivity analyses are considered here. Furthermore, managerial insights from this study can be used for industry improvement.
{"title":"Sustainable green production model considering variable demand, partial outsourcing, and rework","authors":"R. Bachar, Shaktipada Bhuniya, S. Ghosh, Biswajit Sarkar","doi":"10.3934/environsci.2022022","DOIUrl":"https://doi.org/10.3934/environsci.2022022","url":null,"abstract":"Social activities, economic benefits, and environmental friendly approach are very much essential for a sustainable production system. This is widely observed during the Covid-19 pandemic situation. The demand for essential goods in the business sector is always changing due to different unavoidable situations. The proposed study introduces a variable demand for controlling the fluctuating demand. However, a reworking of produced imperfect products makes the production model more profitable. Partial outsourcing of the good quality products has made the production system more popular and profitable. Separate holding cost for the reworked and produced products are very helpful idea for the proposed model. Moreover, consumption of energy during various purpose are considered. Separate green investment make the model more sustainable and eco-friendly. The main focus of the model is to find the maximum profit through considering optimum value of lot size quantity, average selling price, and green investment. The classical optimization technique is utilized here for optimizing the solution theoretically. The use of concave 3D graphs, different examples, and sensitivity analyses are considered here. Furthermore, managerial insights from this study can be used for industry improvement.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022033
Tharwat Mokalled, S. Le Calvé, N. Badaro-Saliba, M. Abboud, R. Zaarour, W. Farah, J. Adjizian-Gerard
The projected increase of civil aviation activity, the degradation of air quality and the location of Beirut Airport embedded in a very urbanized area, in addition to the special geography and topography surrounding the airport which plays a significant role in drawing emissions to larger distances, demanded anassessment of the spatial impact of the airport activities on the air quality of Beirut and its suburbs. This is the first study in the Middle East region that model pollutant concentrations resulting from an international airport's activities using an advanced atmospheric dispersion modelling system in a country with no data. This followed validation campaigns showing very strong correlations (r = 0.85) at validation sites as close as possible to emission sources. The modelling results showed extremely high NO2 concentrations within the airport vicinity, i.e., up to 110 μg∙m-3 (which is greater than the World Health Organization annual guidelines) posing a health hazard to the workers in the ramp. The major contribution of Beirut–Rafic Hariri International Airport to the degradation of air quality was in the airport vicinity; however, it extended to Beirut and its suburbs in addition to affecting the seashore area due to emissions along the aircraft trajectory; this isan aspect rarely considered in previous studies. On the other hand, elevated volatile organic compound levels were observed near the fuel tanks and at the aerodrome center. This study provides (ⅰ) a methodology to assess pollutant concentrations resulting from airport emissions through the use of an advanced dispersion model in a country with no data; and (ⅱ) a tool for policy makers to better understand the contribution of the airport's operations to national pollutant emissions, which is vital for mitigation strategies and health impact assessments.
{"title":"Atmospheric dispersion modelling of gaseous emissions from Beirutinternational airport activities","authors":"Tharwat Mokalled, S. Le Calvé, N. Badaro-Saliba, M. Abboud, R. Zaarour, W. Farah, J. Adjizian-Gerard","doi":"10.3934/environsci.2022033","DOIUrl":"https://doi.org/10.3934/environsci.2022033","url":null,"abstract":"The projected increase of civil aviation activity, the degradation of air quality and the location of Beirut Airport embedded in a very urbanized area, in addition to the special geography and topography surrounding the airport which plays a significant role in drawing emissions to larger distances, demanded anassessment of the spatial impact of the airport activities on the air quality of Beirut and its suburbs. This is the first study in the Middle East region that model pollutant concentrations resulting from an international airport's activities using an advanced atmospheric dispersion modelling system in a country with no data. This followed validation campaigns showing very strong correlations (r = 0.85) at validation sites as close as possible to emission sources. The modelling results showed extremely high NO2 concentrations within the airport vicinity, i.e., up to 110 μg∙m-3 (which is greater than the World Health Organization annual guidelines) posing a health hazard to the workers in the ramp. The major contribution of Beirut–Rafic Hariri International Airport to the degradation of air quality was in the airport vicinity; however, it extended to Beirut and its suburbs in addition to affecting the seashore area due to emissions along the aircraft trajectory; this isan aspect rarely considered in previous studies. On the other hand, elevated volatile organic compound levels were observed near the fuel tanks and at the aerodrome center. This study provides (ⅰ) a methodology to assess pollutant concentrations resulting from airport emissions through the use of an advanced dispersion model in a country with no data; and (ⅱ) a tool for policy makers to better understand the contribution of the airport's operations to national pollutant emissions, which is vital for mitigation strategies and health impact assessments.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022038
Bijoy Kumar Shaw, Isha Sangal, B. Sarkar
A long-run manufacturing system can experience machine breakdown at any time for various reasons such as unskilled labor or outdated machinery technology. In an integrated green inventory model, the produced green products cannot all be perfect throughout a cycle, particularly when machines malfunction. Therefore, an inspection policy is introduced to clean the production process from unusable defect products, the correctness of which depends on the discussion of the inspected errors. The perfect products detected via the inspection process are delivered to the retailer as well as the market. To transport green products, it is essential to control the capacity of the containers and the quantities of green products transported per batch. In this study, the greenhouse gas equivalence factor of CO$ _2 $ emissions is calculated for all green products' manufacturing and transportation mediums. These types of energies are used in the manufacturing process: electricity, natural gas, and coal. Whereas within transportation, four transportation modes are considered: railways, roadways, airways, and waterways. The retailer can agree to transport their inventories to the customers' house according to their requirement by requiring a third-party local agency via outsourcing criteria. The model solves the problem of CO$ _2 $ emissions through production and transportation within the machine breakdown.
{"title":"Reduction of greenhouse gas emissions in an imperfect production process under breakdown consideration","authors":"Bijoy Kumar Shaw, Isha Sangal, B. Sarkar","doi":"10.3934/environsci.2022038","DOIUrl":"https://doi.org/10.3934/environsci.2022038","url":null,"abstract":"A long-run manufacturing system can experience machine breakdown at any time for various reasons such as unskilled labor or outdated machinery technology. In an integrated green inventory model, the produced green products cannot all be perfect throughout a cycle, particularly when machines malfunction. Therefore, an inspection policy is introduced to clean the production process from unusable defect products, the correctness of which depends on the discussion of the inspected errors. The perfect products detected via the inspection process are delivered to the retailer as well as the market. To transport green products, it is essential to control the capacity of the containers and the quantities of green products transported per batch. In this study, the greenhouse gas equivalence factor of CO$ _2 $ emissions is calculated for all green products' manufacturing and transportation mediums. These types of energies are used in the manufacturing process: electricity, natural gas, and coal. Whereas within transportation, four transportation modes are considered: railways, roadways, airways, and waterways. The retailer can agree to transport their inventories to the customers' house according to their requirement by requiring a third-party local agency via outsourcing criteria. The model solves the problem of CO$ _2 $ emissions through production and transportation within the machine breakdown.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022001
Junaidi, H. Syandri, Azrita, A. Munzir
Aquaculture in floating cages in Lake Maninjau has recorded significant growth, even as the largest contributor to total annual aquacultural production in West Sumatra Province. In this study, we assessed the output of floating net cages in Lake Maninjau, Indonesia. We analyzed the characteristics of fish farming, fish fry, feed supply, and production, and the challenges and opportunities for increasing aquacultural production in the future. We used purposive sampling in this study with an interview questionnaire to obtain information from 80 fish-cultivating households in Lake Maninjau. We then used descriptive statistical methods of data analysis. The results showed that in 2018, there were 17596 floating net cages. The majority (n = 33, 41.25%) of fish farmers have 20 to 40 floating net cages per household, and 67.5% (n = 54) are used for tilapia cultivation. We recorded that 77.5% (n = 62) of fingerlings were sourced from private hatcheries. Six companies supply commercial feed pellets in an amount of 2000 tons per month for aquaculture activities. Japfa Comfeed Indonesia Ltd. provides 35% of the feed. The fish species cultivated were Nile tilapia, common carp, giant gourami, Clarias catfish, and pangasius catfish, with gross yields (kg/m3/cycle) of 12, 11.5, 10.4, 7.88, and 8.89, respectively. Fish farmers face challenging conditions: poor water quality, mass mortality of tilapia, high fish feed prices and low fish sale prices, and noncash payments. We recommend ensuring the development of floating net cages in Lake Maninjau for a more sustainable future. Therefore, it is necessary to operate as many as 6000 nets to meet guidelines for carrying capacity and cultivation based on the Regional Regulation of Agam Regency Number 5 of 2014 concerning the management of Maninjau Lake, which is accessible proportionally by eight villages. Giant gourami is prioritized for cultivation because it is resistant to poor water quality and high market prices.
{"title":"Floating cage aquaculture production in Indonesia: Assessment of opportunities and challenges in Lake Maninjau","authors":"Junaidi, H. Syandri, Azrita, A. Munzir","doi":"10.3934/environsci.2022001","DOIUrl":"https://doi.org/10.3934/environsci.2022001","url":null,"abstract":"Aquaculture in floating cages in Lake Maninjau has recorded significant growth, even as the largest contributor to total annual aquacultural production in West Sumatra Province. In this study, we assessed the output of floating net cages in Lake Maninjau, Indonesia. We analyzed the characteristics of fish farming, fish fry, feed supply, and production, and the challenges and opportunities for increasing aquacultural production in the future. We used purposive sampling in this study with an interview questionnaire to obtain information from 80 fish-cultivating households in Lake Maninjau. We then used descriptive statistical methods of data analysis. The results showed that in 2018, there were 17596 floating net cages. The majority (n = 33, 41.25%) of fish farmers have 20 to 40 floating net cages per household, and 67.5% (n = 54) are used for tilapia cultivation. We recorded that 77.5% (n = 62) of fingerlings were sourced from private hatcheries. Six companies supply commercial feed pellets in an amount of 2000 tons per month for aquaculture activities. Japfa Comfeed Indonesia Ltd. provides 35% of the feed. The fish species cultivated were Nile tilapia, common carp, giant gourami, Clarias catfish, and pangasius catfish, with gross yields (kg/m3/cycle) of 12, 11.5, 10.4, 7.88, and 8.89, respectively. Fish farmers face challenging conditions: poor water quality, mass mortality of tilapia, high fish feed prices and low fish sale prices, and noncash payments. We recommend ensuring the development of floating net cages in Lake Maninjau for a more sustainable future. Therefore, it is necessary to operate as many as 6000 nets to meet guidelines for carrying capacity and cultivation based on the Regional Regulation of Agam Regency Number 5 of 2014 concerning the management of Maninjau Lake, which is accessible proportionally by eight villages. Giant gourami is prioritized for cultivation because it is resistant to poor water quality and high market prices.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022020
Chetan K Dhokai, R. Palkar, V. Jain
A study was carried to investigate by placing a side stream filter in a cooling tower to observe the water conservation in the system. For any coal based power plant cycles of concentration plays important role for water conservation. The cycles of concentration in cooling tower was increased by installation of membrane system. The drain of the side stream filter was disposed to effluent treatment plant (ETP), while the filtered water will be recycled to the cooling tower inlet. The water parameter was measured by using various flow rates, pressure, and other factors. Significant water savings were demonstrated in the pilot. Maximum make-up water and outflow were both reduced by 14% and 48%, respectively. To save the most water, permeate recovery must be as high as possible. Water savings were minimal due to silica scaling on the membranes. Selected membranes are capable of lower total dissolved system (TDS) rejection than the 88% of total required membranes in the primary study, which might help to save water. The increased energy consumed by membrane treatment was compensated for by lower water outlays. To prevent scaling antiscalent chemical with chemical dosing system was installed along with membrane system.
{"title":"Water saving in thermal power plant by use of membrane filter in cooling tower treatment","authors":"Chetan K Dhokai, R. Palkar, V. Jain","doi":"10.3934/environsci.2022020","DOIUrl":"https://doi.org/10.3934/environsci.2022020","url":null,"abstract":"A study was carried to investigate by placing a side stream filter in a cooling tower to observe the water conservation in the system. For any coal based power plant cycles of concentration plays important role for water conservation. The cycles of concentration in cooling tower was increased by installation of membrane system. The drain of the side stream filter was disposed to effluent treatment plant (ETP), while the filtered water will be recycled to the cooling tower inlet. The water parameter was measured by using various flow rates, pressure, and other factors. Significant water savings were demonstrated in the pilot. Maximum make-up water and outflow were both reduced by 14% and 48%, respectively. To save the most water, permeate recovery must be as high as possible. Water savings were minimal due to silica scaling on the membranes. Selected membranes are capable of lower total dissolved system (TDS) rejection than the 88% of total required membranes in the primary study, which might help to save water. The increased energy consumed by membrane treatment was compensated for by lower water outlays. To prevent scaling antiscalent chemical with chemical dosing system was installed along with membrane system.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022024
Gene T. Señeris
Watersheds are naturally prone to environmental disasters such as flooding. The purpose of the study was to analyze the potential impact of flooding on the Nabaoy River Watershed using Geographic Information System (GIS) remote sensing. Secondary data for flood factors such as slope, elevation, land cover, surface run-off, rainfall, and soil were used and reclassified using the critical scale of factors of flood vulnerability ratings and weighting overlay using the GIS environment to create geospatial data on the potential impact to flooding. Data revealed the following percentages of the susceptibility of the watershed to flooding: very low (8.06%), very highly (19.79%), moderate (22.15%), high (22.84%), and low (27.16%). The main result showed that the upstream area of the Nabaoy river watershed such as Nabaoy, Napaan, Pawa, and Tag-osip was within low to very low flood vulnerability. Meanwhile, the inundation vulnerability intimidation on the downstream side of the Nabaoy river watershed such Cubay Sur, Motag, and low-lying areas of Nabaoy, Napaan, and Tag-osip have moderate to very highly susceptibility to flooding. The results obtained can help the concerned agencies and stakeholders to craft policy and water management plans, adaptive capacity, conservation measures, and resilience programs in response to severe flooding.
{"title":"Nabaoy River Watershed potential impact to flooding using Geographic Information System remote sensing","authors":"Gene T. Señeris","doi":"10.3934/environsci.2022024","DOIUrl":"https://doi.org/10.3934/environsci.2022024","url":null,"abstract":"Watersheds are naturally prone to environmental disasters such as flooding. The purpose of the study was to analyze the potential impact of flooding on the Nabaoy River Watershed using Geographic Information System (GIS) remote sensing. Secondary data for flood factors such as slope, elevation, land cover, surface run-off, rainfall, and soil were used and reclassified using the critical scale of factors of flood vulnerability ratings and weighting overlay using the GIS environment to create geospatial data on the potential impact to flooding. Data revealed the following percentages of the susceptibility of the watershed to flooding: very low (8.06%), very highly (19.79%), moderate (22.15%), high (22.84%), and low (27.16%). The main result showed that the upstream area of the Nabaoy river watershed such as Nabaoy, Napaan, Pawa, and Tag-osip was within low to very low flood vulnerability. Meanwhile, the inundation vulnerability intimidation on the downstream side of the Nabaoy river watershed such Cubay Sur, Motag, and low-lying areas of Nabaoy, Napaan, and Tag-osip have moderate to very highly susceptibility to flooding. The results obtained can help the concerned agencies and stakeholders to craft policy and water management plans, adaptive capacity, conservation measures, and resilience programs in response to severe flooding.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.3934/environsci.2022004
Ebere Enyoh Christian, Qingyue Wang, W. V. Andrew, Chowdhury Tanzin
The definition of environmental indexes is one of the most widely used methods and methodologies for the study of exposure to polluting agents, and it is a highly helpful instrument for describing the quality of the environment in a simple and straightforward manner. In this study, index models were presented and described that can be used in evaluating the contamination, pollution and health risks of environmental micro (MPs) and nanoplastics (NPs) to ecosystems and humans. Index models such as plastic contamination factors (pCf) and pollution load index (pPLI), plastic- bioconcentration or accumulation factors (pBCf or pBAf), plastic-biota-sediment accumulation factor (pBSAf), biota accumulation load index (BALI), polymer risks indices (pRi), polymer ecological risks index (pERI) while plastic estimated daily intake (pEDI) and plastic carcinogenic risks (pCR) were described for oral, dermal and inhalation pathways. All index modeled were further described based on polymer types of MPs/NPs. The final value is represented by a quantity that measures a weighted combination of sub-indices and defined by an appropriate mathematical function. The central concept is to present an indicator that can describe, in a clear and concise manner, the level of MPs/NPs in the environment, thereby indicating where it would be necessary to intervene and where it would not in order to improve overall environmental conditions.
{"title":"Index models for ecological and health risks assessment of environmental micro-and nano-sized plastics","authors":"Ebere Enyoh Christian, Qingyue Wang, W. V. Andrew, Chowdhury Tanzin","doi":"10.3934/environsci.2022004","DOIUrl":"https://doi.org/10.3934/environsci.2022004","url":null,"abstract":"The definition of environmental indexes is one of the most widely used methods and methodologies for the study of exposure to polluting agents, and it is a highly helpful instrument for describing the quality of the environment in a simple and straightforward manner. In this study, index models were presented and described that can be used in evaluating the contamination, pollution and health risks of environmental micro (MPs) and nanoplastics (NPs) to ecosystems and humans. Index models such as plastic contamination factors (pCf) and pollution load index (pPLI), plastic- bioconcentration or accumulation factors (pBCf or pBAf), plastic-biota-sediment accumulation factor (pBSAf), biota accumulation load index (BALI), polymer risks indices (pRi), polymer ecological risks index (pERI) while plastic estimated daily intake (pEDI) and plastic carcinogenic risks (pCR) were described for oral, dermal and inhalation pathways. All index modeled were further described based on polymer types of MPs/NPs. The final value is represented by a quantity that measures a weighted combination of sub-indices and defined by an appropriate mathematical function. The central concept is to present an indicator that can describe, in a clear and concise manner, the level of MPs/NPs in the environment, thereby indicating where it would be necessary to intervene and where it would not in order to improve overall environmental conditions.","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70231405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}