Pub Date : 2023-03-20DOI: 10.3103/S0747923922070088
N. V. Petrova, L. V. Bezmenova, A. D. Kurova
The article considers the earthquake of April 5, 2017 with MWGCMT = 6.0 near the Turkmen–Iranian border, northeast of the Iranian village of Sefid Sang. During the entire seismic history of the region, this was the strongest seismic event within a 45 km radius of the epicenter. The earthquake caused widespread destruction in four villages; two people died and 100 were injured. The shaking was felt in population centers in Iran, Turkmenistan, and other countries. According to the compiled isoseist map, the northwestern orientation of isolines of equal intensity, coinciding with the strike of the nearest faults, and strong damping of the shaking intensity across tectonic structures were established. The macroseismic field equation has been established, which is close to the Blake–Shebalin equation with average world coefficients. According to both equations, the shaking intensity at the epicenter is estimated as I0 = 8. The northwestern (southeastern) orientation of the aftershock cluster and their southeast migration were revealed, which made it possible to choose the nodal plane of the focal mechanism with a similar strike as the active one. The fault plane parameters, length L = 30 km and width W = 12 km, have been estimated for the area of the highest aftershock density. The law of the decrease in the number of aftershocks with time has been established, which indicates rapid decay of the aftershock process.
{"title":"Earthquake of April 5, 2017, MW = 6.0, in Northeast Iran: Focal Parameters, Aftershock Series, and Macroseismic Manifestations","authors":"N. V. Petrova, L. V. Bezmenova, A. D. Kurova","doi":"10.3103/S0747923922070088","DOIUrl":"10.3103/S0747923922070088","url":null,"abstract":"<p>The article considers the earthquake of April 5, 2017 with <i>M</i><sub><i>W</i></sub> <sub>GCMT</sub> = 6.0 near the Turkmen–Iranian border, northeast of the Iranian village of Sefid Sang. During the entire seismic history of the region, this was the strongest seismic event within a 45 km radius of the epicenter. The earthquake caused widespread destruction in four villages; two people died and 100 were injured. The shaking was felt in population centers in Iran, Turkmenistan, and other countries. According to the compiled isoseist map, the northwestern orientation of isolines of equal intensity, coinciding with the strike of the nearest faults, and strong damping of the shaking intensity across tectonic structures were established. The macroseismic field equation has been established, which is close to the Blake–Shebalin equation with average world coefficients. According to both equations, the shaking intensity at the epicenter is estimated as <i>I</i><sub>0</sub> = 8. The northwestern (southeastern) orientation of the aftershock cluster and their southeast migration were revealed, which made it possible to choose the nodal plane of the focal mechanism with a similar strike as the active one. The fault plane parameters, length <i>L</i> = 30 km and width <i>W</i> = 12 km, have been estimated for the area of the highest aftershock density. The law of the decrease in the number of aftershocks with time has been established, which indicates rapid decay of the aftershock process.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S1 - S13"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4799620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3103/S0747923922070027
O. I. Aptikaeva
The article studies the characteristics of seismic coda wave attenuation in the vicinity of the source of the 1902 Shamakhi earthquake and in adjacent zones of the Western Caspian region. The relationship between the features of seismic processes and spatial inhomogeneities of the attenuation field is considered. The attenuation field is represented by zones (blocks) with a high Q-factor and close to isometric in plan view, and by the linear zones of strong attenuation (weakened zones, which coincide with faults). Sources of the strongest earthquakes are confined to the zones of maximum attenuation contrast. It was revealed that the structure of the attenuation field agrees with the structure of the S-wave velocity field: low-velocity anomalies correspond to low-Q zones. Unidimensionally extended volumes of intense localized seismicity, located in weakened zones, are considered. In one of these volumes, in the focal zone of the 1902 Shamakhi earthquake, manifestations of active deep degassing processes were observed: mud volcano eruptions and earthquake swarms with upward-moving sources during a series have been recorded. It is noted that the most remarkable seismic events, and, above all, the major 1902 Shamakhi earthquake, correlate with the minima of the Earth’s rotation speed.
{"title":"Source of the 1902 Shamakhi Earthquake on the Background of Attenuation Field Inhomogeneities and Seismicity of the Western Caspian Region","authors":"O. I. Aptikaeva","doi":"10.3103/S0747923922070027","DOIUrl":"10.3103/S0747923922070027","url":null,"abstract":"<p>The article studies the characteristics of seismic coda wave attenuation in the vicinity of the source of the 1902 Shamakhi earthquake and in adjacent zones of the Western Caspian region. The relationship between the features of seismic processes and spatial inhomogeneities of the attenuation field is considered. The attenuation field is represented by zones (blocks) with a high <i>Q</i>-factor and close to isometric in plan view, and by the linear zones of strong attenuation (weakened zones, which coincide with faults). Sources of the strongest earthquakes are confined to the zones of maximum attenuation contrast. It was revealed that the structure of the attenuation field agrees with the structure of the <i>S</i>-wave velocity field: low-velocity anomalies correspond to low-<i>Q</i> zones. Unidimensionally extended volumes of intense localized seismicity, located in weakened zones, are considered. In one of these volumes, in the focal zone of the 1902 Shamakhi earthquake, manifestations of active deep degassing processes were observed: mud volcano eruptions and earthquake swarms with upward-moving sources during a series have been recorded. It is noted that the most remarkable seismic events, and, above all, the major 1902 Shamakhi earthquake, correlate with the minima of the Earth’s rotation speed.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S67 - S78"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4802363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3103/S0747923922070143
A. V. Legavko, D. A. Legavko
The article shows the relevance of integrating the main open hole logging methods for wells constructed during exploration and development of infiltration type uranium deposits. The article describes a new integrated downhole tool developed by the authors for simultaneous gamma, electrical, and directional logging. The downhole tool is based on a modular scheme; includes standard, modernized, and new functional logging units; and effectively combines analog, pulse, and digital output data formats. The modular architecture of the downhole tool allows open hole logging both individually, with separate methods and modules, and simultaneously in one common assembly. The results of field tests of the new tool at one of Russia’s infiltration deposits in the Trans-Ural uranium-ore district are presented, convincingly demonstrating the high accuracy of measurements and full compliance of the obtained logging data with regulatory instructions. Use of a new complex tool during geophysical surveys in the open holes of wells constructed during prospecting for, exploration, and development of uranium and ore deposits will increase the efficiency of logging operations, lower their cost, and reduce the forced downtime of drilling crews.
{"title":"A New Integrated Downhole Tool for Primary Logging in the Open Hole of Wells in Infiltration-Type Uranium Deposits","authors":"A. V. Legavko, D. A. Legavko","doi":"10.3103/S0747923922070143","DOIUrl":"10.3103/S0747923922070143","url":null,"abstract":"<p>The article shows the relevance of integrating the main open hole logging methods for wells constructed during exploration and development of infiltration type uranium deposits. The article describes a new integrated downhole tool developed by the authors for simultaneous gamma, electrical, and directional logging. The downhole tool is based on a modular scheme; includes standard, modernized, and new functional logging units; and effectively combines analog, pulse, and digital output data formats. The modular architecture of the downhole tool allows open hole logging both individually, with separate methods and modules, and simultaneously in one common assembly. The results of field tests of the new tool at one of Russia’s infiltration deposits in the Trans-Ural uranium-ore district are presented, convincingly demonstrating the high accuracy of measurements and full compliance of the obtained logging data with regulatory instructions. Use of a new complex tool during geophysical surveys in the open holes of wells constructed during prospecting for, exploration, and development of uranium and ore deposits will increase the efficiency of logging operations, lower their cost, and reduce the forced downtime of drilling crews.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S187 - S194"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4797875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3103/S0747923922070039
V. Yu. Burmin
The modern seismological network of Karelia consists of four seismic stations. The number of network stations is small, and they are unevenly distributed over the territory of Karelia. Therefore, this seismological network is not efficient enough, and seismic events (earthquakes and quarry blasts) with different minimum magnitudes and different accuracies are recorded at different points in the territory. In order for events occurring at different points of Karelia to be recorded with the same accuracy and the same minimum magnitude, it is necessary to arrange the system’s seismic stations more evenly throughout the territory; i.e., the observing system must have the optimal configuration. Calculation of the minimum magnitudes of recorded seismic events for the optimal seismological network from 65 new and 4 currently functioning seismic stations shows that with an amplification in recording channels of 50 000, the network will reliably record earthquakes with a magnitude of 1.0 or more throughout Karelia. At the same time, the position of the seismic stations of such a network in Karelia is determined up to a parallel shift and arbitrary rotation of the entire observation system. Errors in determining the epicentral coordinates in latitude and longitude within the network will not exceed 0.5 km. The errors in determining the depths of earthquake sources recorded by the system throughout Karelia do not exceed 1.0 km at the center of the network and can reach 2.0 km only on its periphery.
{"title":"Optimal Configuration of the Karelian Seismological Network","authors":"V. Yu. Burmin","doi":"10.3103/S0747923922070039","DOIUrl":"10.3103/S0747923922070039","url":null,"abstract":"<p>The modern seismological network of Karelia consists of four seismic stations. The number of network stations is small, and they are unevenly distributed over the territory of Karelia. Therefore, this seismological network is not efficient enough, and seismic events (earthquakes and quarry blasts) with different minimum magnitudes and different accuracies are recorded at different points in the territory. In order for events occurring at different points of Karelia to be recorded with the same accuracy and the same minimum magnitude, it is necessary to arrange the system’s seismic stations more evenly throughout the territory; i.e., the observing system must have the optimal configuration. Calculation of the minimum magnitudes of recorded seismic events for the optimal seismological network from 65 new and 4 currently functioning seismic stations shows that with an amplification in recording channels of 50 000, the network will reliably record earthquakes with a magnitude of 1.0 or more throughout Karelia. At the same time, the position of the seismic stations of such a network in Karelia is determined up to a parallel shift and arbitrary rotation of the entire observation system. Errors in determining the epicentral coordinates in latitude and longitude within the network will not exceed 0.5 km. The errors in determining the depths of earthquake sources recorded by the system throughout Karelia do not exceed 1.0 km at the center of the network and can reach 2.0 km only on its periphery.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S89 - S98"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4797932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3103/S074792392207012X
V. V. Kapustin, M. L. Vladov, E. A. Voznesensky, V. A. Volkov
The proposed article touches upon a number of issues related to the impact of natural or man-made vibrations on soil masses and geological processes. The impact of seismic waves on the soil mass is determined by both direct mechanical action and absorption and dispersion of seismic energy, which in turn is triggered by phenomena when elastic energy is transforms into thermal, electrical, and chemical energy. The design and construction of modern buildings requires consideration of the possible negative effects of vibration loads. The objective of this article is to draw the attention of prospectors, designers, and those who operate structures to the need to study the influence of man-made vibrations from various sources.
{"title":"Assessment of the Impact of Vibration Loads on Soil Masses and Structures","authors":"V. V. Kapustin, M. L. Vladov, E. A. Voznesensky, V. A. Volkov","doi":"10.3103/S074792392207012X","DOIUrl":"10.3103/S074792392207012X","url":null,"abstract":"<p>The proposed article touches upon a number of issues related to the impact of natural or man-made vibrations on soil masses and geological processes. The impact of seismic waves on the soil mass is determined by both direct mechanical action and absorption and dispersion of seismic energy, which in turn is triggered by phenomena when elastic energy is transforms into thermal, electrical, and chemical energy. The design and construction of modern buildings requires consideration of the possible negative effects of vibration loads. The objective of this article is to draw the attention of prospectors, designers, and those who operate structures to the need to study the influence of man-made vibrations from various sources.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S135 - S147"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4799607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3103/S0747923922070106
O. P. Smekalin, A. Yu. Eskin
Active faults in Southern Transbaikalia, some of which are elements of the Mongolian–Okhotsk lineament, are still poorly studied seismically. The Chikoy fault has been characterized by weak earthquakes over a 100-year period of instrumental observations, which yields no knowledge of the seismic potential of the fault. However, distinct manifestation of a fault scarp in the modern relief suggests high rates of tectonic movements along it. This is also confirmed by the seismotectonic deformations discovered during our field studies. Field works in the Chikoy fault zone revealed signs of a seismogenic feature of the fault in segments with a total length of at least 32 km. Analysis of the morphology of the scarps and sections indicates that the dislocations were formed as a result of at least two to three paleoearthquakes with magnitudes of 7.0–7.2. According to absolute (radiocarbon) and relative (based on the slope of the scarps) dating data, the age of paleoearthquakes range from 5–8 ka, 2373–2832 years ago, and later than 760 years ago. The high seismic potential of the fault revealed by seismogeological data is confirmed by historical evidence of an earthquake with M = 6.0 that occurred here in 1830.
{"title":"Paleoseismological Investigations in the Chikoy Fault Zone (Southern Transbaikalia)","authors":"O. P. Smekalin, A. Yu. Eskin","doi":"10.3103/S0747923922070106","DOIUrl":"10.3103/S0747923922070106","url":null,"abstract":"<p>Active faults in Southern Transbaikalia, some of which are elements of the Mongolian–Okhotsk lineament, are still poorly studied seismically. The Chikoy fault has been characterized by weak earthquakes over a 100-year period of instrumental observations, which yields no knowledge of the seismic potential of the fault. However, distinct manifestation of a fault scarp in the modern relief suggests high rates of tectonic movements along it. This is also confirmed by the seismotectonic deformations discovered during our field studies. Field works in the Chikoy fault zone revealed signs of a seismogenic feature of the fault in segments with a total length of at least 32 km. Analysis of the morphology of the scarps and sections indicates that the dislocations were formed as a result of at least two to three paleoearthquakes with magnitudes of 7.0–7.2. According to absolute (radiocarbon) and relative (based on the slope of the scarps) dating data, the age of paleoearthquakes range from 5–8 ka, 2373–2832 years ago, and later than 760 years ago. The high seismic potential of the fault revealed by seismogeological data is confirmed by historical evidence of an earthquake with <i>M</i> = 6.0 that occurred here in 1830.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S107 - S122"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5096281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3103/S0747923922070167
F. V. Perederin, K. I. Kholodkov, V. N. Tatarinov, R. V. Shevchuk, A. I. Manevich
The article presents the following: the results of deformation monitoring by GNSS tools at the FSUE Radon radioactive waste disposal site (Moscow oblast); a brief history of the development of the geodynamic observation network at the industrial site of Radon. the results and geodynamic interpretation of GNSS observations of Earth surface movements for 2008–2017. the results of studies on upgrading Radon’s geodynamic structure, taking into account the creation of a single digital space for the industrial site to manage its lifecycle. The article summarizes the experience in creating life cycle monitoring systems at radioactive waste disposal sites using modern digital measurement methods.
{"title":"Observations of Earth Surface Deformations at the FSUE Radon Test Site","authors":"F. V. Perederin, K. I. Kholodkov, V. N. Tatarinov, R. V. Shevchuk, A. I. Manevich","doi":"10.3103/S0747923922070167","DOIUrl":"10.3103/S0747923922070167","url":null,"abstract":"<p>The article presents the following: the results of deformation monitoring by GNSS tools at the FSUE Radon radioactive waste disposal site (Moscow oblast); a brief history of the development of the geodynamic observation network at the industrial site of Radon. the results and geodynamic interpretation of GNSS observations of Earth surface movements for 2008–2017. the results of studies on upgrading Radon’s geodynamic structure, taking into account the creation of a single digital space for the industrial site to manage its lifecycle. The article summarizes the experience in creating life cycle monitoring systems at radioactive waste disposal sites using modern digital measurement methods.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S177 - S186"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4797861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3103/S0747923922070064
Yu. F. Kopnichev, I. N. Sokolova
The authors have studied the characteristics of the short-period S-wave attenuation field in the lithosphere of southwest Alaska (in the Alaska subduction zone). Records of seismic station KDAK, obtained for shallow earthquakes within the distance range of ~250–750 km, were processed. We used a method that analyzes the ratio of maximum amplitudes in Sn and Pn waves (parameter Sn/Pn). The correlation dependence of this parameter on distance for wave lines crossing rupture zones of three large and great earthquakes is plotted: the Great Alaskan earthquake of March 28, 1964 (MW = 9.2), the Simeonov earthquake of July 22, 2020 (MW = 7.8), and Chignik earthquake of July 29, 2021 (MW = 8.2). It was established that this dependence goes a little higher than similar dependences obtained earlier for regions of southwest Japan and central Chile, and much higher than for the region of northeast Japan. The reasons for the substantial differences of these dependences in different regions are discussed. The authors consider heterogeneities of the attenuation field in the rupture zones of the Simeonov earthquake and its largest aftershock (MW = 7.6), as well as of the Chignik earthquake.
{"title":"Mapping Heterogeneities of the Short-Period S-Wave Attenuation Field in the Lithosphere of Southwest Alaska","authors":"Yu. F. Kopnichev, I. N. Sokolova","doi":"10.3103/S0747923922070064","DOIUrl":"10.3103/S0747923922070064","url":null,"abstract":"<p>The authors have studied the characteristics of the short-period <i>S</i>-wave attenuation field in the lithosphere of southwest Alaska (in the Alaska subduction zone). Records of seismic station KDAK, obtained for shallow earthquakes within the distance range of ~250–750 km, were processed. We used a method that analyzes the ratio of maximum amplitudes in <i>Sn</i> and <i>Pn</i> waves (parameter <i>Sn</i>/<i>Pn</i>). The correlation dependence of this parameter on distance for wave lines crossing rupture zones of three large and great earthquakes is plotted: the Great Alaskan earthquake of March 28, 1964 (<i>M</i><sub><i>W</i></sub> = 9.2), the Simeonov earthquake of July 22, 2020 (<i>M</i><sub><i>W</i></sub> = 7.8), and Chignik earthquake of July 29, 2021 (<i>M</i><sub><i>W</i></sub> = 8.2). It was established that this dependence goes a little higher than similar dependences obtained earlier for regions of southwest Japan and central Chile, and much higher than for the region of northeast Japan. The reasons for the substantial differences of these dependences in different regions are discussed. The authors consider heterogeneities of the attenuation field in the rupture zones of the Simeonov earthquake and its largest aftershock (<i>M</i><sub><i>W</i></sub> = 7.6), as well as of the Chignik earthquake.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S99 - S106"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4797943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3103/S0747923922070131
E. Y. Khachiyan
In his early works, the author developed a mechanical–mathematical method for modeling synthetic seismograms and accelerograms of strong earthquakes for a given site with certain ground conditions, whereby an earthquake is viewed as an effect of instantaneous rupturing of Earth’s crust. This study examines ground displacements, velocities, accelerations, and relative shear strains, as well as earthquake response spectra based on synthetic accelerograms. All ground categories are reviewed, from the hardest rocks to the most unconsolidated soils. The maximum values for ground displacements, velocities, and accelerations are obtained as a function of the attenuation coefficient of rocks and the number of oscillation modes of the considered foundation bedding, as well as peak ground accelerations as a function of distance from the expected earthquake’s rupture. It is shown that higher oscillation modes increase ground acceleration 1.66 times if calculated using only the first oscillation mode; they also increase ground displacements 1.1 times, while decreasing shear strain 1.1 times. The maximum positive attenuation effect in hard ground compared to its absence reaches 37%. Shear strain values increase proportionally to an increase in soil category number. At a level of 15 m from Earth’s surface in rocky soils, at a magnitude of М = 7.0, the shear strain values exceed the critical thresholds, which implies a high probability of surface rupturing. Response spectra obtained by synthetic accelerograms are compared to similar spectra based on a large number of actual earthquakes, showing that they are quite similar both qualitatively and quantitatively. Based on the results, it is recommended to use them for assessing seismic hazard levels in various areas, monitoring for earthquake prediction, ensuring seismic safety of facilities and underground structures, and enhancing analysis methods of seismic impact on buildings and structures.
{"title":"Analysis of the Values of Ground Displacements, Shear Strains, Velocities, Accelerations, and Response Spectra of a Strong Earthquake Based on Synthetic Accelerograms","authors":"E. Y. Khachiyan","doi":"10.3103/S0747923922070131","DOIUrl":"10.3103/S0747923922070131","url":null,"abstract":"<p>In his early works, the author developed a mechanical–mathematical method for modeling synthetic seismograms and accelerograms of strong earthquakes for a given site with certain ground conditions, whereby an earthquake is viewed as an effect of instantaneous rupturing of Earth’s crust. This study examines ground displacements, velocities, accelerations, and relative shear strains, as well as earthquake response spectra based on synthetic accelerograms. All ground categories are reviewed, from the hardest rocks to the most unconsolidated soils. The maximum values for ground displacements, velocities, and accelerations are obtained as a function of the attenuation coefficient of rocks and the number of oscillation modes of the considered foundation bedding, as well as peak ground accelerations as a function of distance from the expected earthquake’s rupture. It is shown that higher oscillation modes increase ground acceleration 1.66 times if calculated using only the first oscillation mode; they also increase ground displacements 1.1 times, while decreasing shear strain 1.1 times. The maximum positive attenuation effect in hard ground compared to its absence reaches 37%. Shear strain values increase proportionally to an increase in soil category number. At a level of 15 m from Earth’s surface in rocky soils, at a magnitude of <i>М</i> = 7.0, the shear strain values exceed the critical thresholds, which implies a high probability of surface rupturing. Response spectra obtained by synthetic accelerograms are compared to similar spectra based on a large number of actual earthquakes, showing that they are quite similar both qualitatively and quantitatively. Based on the results, it is recommended to use them for assessing seismic hazard levels in various areas, monitoring for earthquake prediction, ensuring seismic safety of facilities and underground structures, and enhancing analysis methods of seismic impact on buildings and structures.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S161 - S176"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4799635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.3103/S0747923922070076
V. I. Kulikov, Z. Z. Sharafiev
The article presents the results of monitoring the seismic impact of bulk blasts during explosive breaking of iron ore in the Gubkin mine on the city of Gubkin. The dependence of the maximum oscillation velocity in a seismic explosion wave on the reduced (based on the mass of the explosive in the delay stage) hypocentral distance to the explosive chamber is obtained. For one bulk blast, an isoseist map was constructed, demonstrating the intensity of seismic impact on residential areas of the city. Taking into account the requirements of regulatory documents and duration of seismic and explosion vibrations, estimates of the permissible and maximum permissible velocities of seismic vibrations for the population have been obtained.
{"title":"Seismic Impact of Bulk Blasts during Underground Mining of the Korobkovsky Iron Ore Deposit on Buildings and Population of the City of Gubkin","authors":"V. I. Kulikov, Z. Z. Sharafiev","doi":"10.3103/S0747923922070076","DOIUrl":"10.3103/S0747923922070076","url":null,"abstract":"<p>The article presents the results of monitoring the seismic impact of bulk blasts during explosive breaking of iron ore in the Gubkin mine on the city of Gubkin. The dependence of the maximum oscillation velocity in a seismic explosion wave on the reduced (based on the mass of the explosive in the delay stage) hypocentral distance to the explosive chamber is obtained. For one bulk blast, an isoseist map was constructed, demonstrating the intensity of seismic impact on residential areas of the city. Taking into account the requirements of regulatory documents and duration of seismic and explosion vibrations, estimates of the permissible and maximum permissible velocities of seismic vibrations for the population have been obtained.</p>","PeriodicalId":45174,"journal":{"name":"Seismic Instruments","volume":"58 1","pages":"S58 - S66"},"PeriodicalIF":0.9,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4802348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}