首页 > 最新文献

IEEE Transactions on Sustainable Energy最新文献

英文 中文
A Photovoltaic-Grid Integrated System for the Residential Power Management 用于住宅电力管理的光伏电网集成系统
IF 8.8 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-09-03 DOI: 10.1109/tste.2024.3454060
Ande Bala Naga Lingaiah, Narsa Reddy Tummuru
{"title":"A Photovoltaic-Grid Integrated System for the Residential Power Management","authors":"Ande Bala Naga Lingaiah, Narsa Reddy Tummuru","doi":"10.1109/tste.2024.3454060","DOIUrl":"https://doi.org/10.1109/tste.2024.3454060","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"7 1","pages":""},"PeriodicalIF":8.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-Informed Reinforcement Learning for Real-Time Optimal Power Flow with Renewable Energy Resources 利用可再生能源实时优化电力流的物理信息强化学习
IF 8.8 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-30 DOI: 10.1109/tste.2024.3452489
Zhuorui Wu, Meng Zhang, Song Gao, Zheng-Guang Wu, Xiaohong Guan
{"title":"Physics-Informed Reinforcement Learning for Real-Time Optimal Power Flow with Renewable Energy Resources","authors":"Zhuorui Wu, Meng Zhang, Song Gao, Zheng-Guang Wu, Xiaohong Guan","doi":"10.1109/tste.2024.3452489","DOIUrl":"https://doi.org/10.1109/tste.2024.3452489","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"48 1","pages":""},"PeriodicalIF":8.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting the Flexibility of District Heating System for Distribution System Operation: Set-Based Characterization and Temporal Decomposition 利用区域供热系统的灵活性促进配电系统的运行:基于集合的特征描述和时间分解
IF 8.8 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-30 DOI: 10.1109/tste.2024.3452560
Weitao Chen, Xiaojun Wang, Wei Wei, Yin Xu, Jianzhong Wu
{"title":"Exploiting the Flexibility of District Heating System for Distribution System Operation: Set-Based Characterization and Temporal Decomposition","authors":"Weitao Chen, Xiaojun Wang, Wei Wei, Yin Xu, Jianzhong Wu","doi":"10.1109/tste.2024.3452560","DOIUrl":"https://doi.org/10.1109/tste.2024.3452560","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"306 1","pages":""},"PeriodicalIF":8.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scheduling Multiple Industrial Electrolyzers in Renewable P2H Systems: A Coordinated Active-Reactive Power Management Method 可再生 P2H 系统中多个工业电解槽的调度:有功-无功功率协调管理方法
IF 8.8 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-28 DOI: 10.1109/tste.2024.3450503
Yangjun Zeng, Yiwei Qiu, Jie Zhu, Shi Chen, Buxiang Zhou, Jiarong Li, Bosen Yang, Jin Lin
{"title":"Scheduling Multiple Industrial Electrolyzers in Renewable P2H Systems: A Coordinated Active-Reactive Power Management Method","authors":"Yangjun Zeng, Yiwei Qiu, Jie Zhu, Shi Chen, Buxiang Zhou, Jiarong Li, Bosen Yang, Jin Lin","doi":"10.1109/tste.2024.3450503","DOIUrl":"https://doi.org/10.1109/tste.2024.3450503","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"72 1","pages":""},"PeriodicalIF":8.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and Optimization Operation of Improved Power-to-Hydrogen-and-Heat method at Low Temperature for Reducing Carbon Emissions 用于减少碳排放的改进型低温动力制氢和供热方法的建模与优化运行
IF 8.8 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-28 DOI: 10.1109/tste.2024.3448366
Haohui Ding, Qinran Hu, Tao Qian, Zaijun Wu
{"title":"Modeling and Optimization Operation of Improved Power-to-Hydrogen-and-Heat method at Low Temperature for Reducing Carbon Emissions","authors":"Haohui Ding, Qinran Hu, Tao Qian, Zaijun Wu","doi":"10.1109/tste.2024.3448366","DOIUrl":"https://doi.org/10.1109/tste.2024.3448366","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"70 1","pages":""},"PeriodicalIF":8.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Dispatch Strategy for a Multi-microgrid Cooperative Alliance Using a Two-Stage Pricing Mechanism 使用两阶段定价机制的多微网合作联盟优化调度策略
IF 8.8 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-26 DOI: 10.1109/tste.2024.3449909
Yonghui Nie, Zhi Li, Jie Zhang, Lei Gao, Yang Li, Hengyu Zhou
{"title":"Optimal Dispatch Strategy for a Multi-microgrid Cooperative Alliance Using a Two-Stage Pricing Mechanism","authors":"Yonghui Nie, Zhi Li, Jie Zhang, Lei Gao, Yang Li, Hengyu Zhou","doi":"10.1109/tste.2024.3449909","DOIUrl":"https://doi.org/10.1109/tste.2024.3449909","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"5 1","pages":""},"PeriodicalIF":8.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph-based Large Scale Probabilistic PV Power Forecasting Insensitive to Space-Time Missing Data 对时空缺失数据不敏感的基于图的大规模概率光伏功率预测
IF 8.8 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-21 DOI: 10.1109/tste.2024.3447023
Keunju Song, Minsoo Kim, Hongseok Kim
{"title":"Graph-based Large Scale Probabilistic PV Power Forecasting Insensitive to Space-Time Missing Data","authors":"Keunju Song, Minsoo Kim, Hongseok Kim","doi":"10.1109/tste.2024.3447023","DOIUrl":"https://doi.org/10.1109/tste.2024.3447023","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"13 1","pages":""},"PeriodicalIF":8.8,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape Optimization of a Point Absorber Wave Energy Converter for Reduced Current Drag and Improved Wave Energy Capture Using Neural Networks and Genetic Algorithms 利用神经网络和遗传算法优化自反应点吸收器波能转换器的形状,以减少电流阻力并提高波能捕获率
IF 8.6 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-16 DOI: 10.1109/TSTE.2024.3443117
Weihan Lin;Xiaofan Li;Lei Zuo
The shape of the floating buoy of a point absorber wave energy converter (WEC) plays a crucial role in both wave energy harvesting and current drag reduction. In this study, an approach to optimizing the buoy hull geometry with a neural network that replaces the hydrodynamic analysis software is presented, aimed at reducing the ocean current drag force while improving wave energy captured. A new parametric model is introduced to describe the complex shape of the buoy by utilizing the control points of non-uniform rational b-splines. A neural network is developed to significantly reduce the computational time compared to traditional hydrodynamic simulation methods. The optimal hull shape of the buoy is determined by solving an optimization problem using a genetic algorithm, a global optimization technique. The results of the case studies show that the optimal buoy hull shape reduces 68.7% and 71.1% of the current drag, and 50% of mooring line forces compared to the cylinder-shaped buoy and the optimal-power-shaped hull from literature. The optimal buoy hull shape increases the wave energy extraction by 46.1% compared to the thin-ship-shaped buoy but performs 21.1% worse than the optimal-power-shaped hull from the literature.
点吸收式波浪能转换器(WEC)浮标的形状在收集波浪能和减少洋流阻力方面起着至关重要的作用。本研究提出了一种利用神经网络优化浮标船体几何形状的方法,该方法取代了流体力学分析软件,旨在减少洋流阻力,同时提高波浪能捕获效率。通过利用非均匀有理 b-样条曲线的控制点,引入了一个新的参数模型来描述浮标的复杂形状。与传统的流体力学模拟方法相比,神经网络的开发大大缩短了计算时间。通过使用遗传算法(一种全局优化技术)解决优化问题,确定了浮标的最佳船体形状。案例研究结果表明,与文献中的圆柱形浮标和最优动力型船体相比,最优浮标船体形状分别减少了 68.7% 和 71.1% 的水流阻力,以及 50% 的系泊线力。与薄船形浮标相比,最佳浮标船体形状提高了 46.1%的波浪能提取率,但与文献中的最佳动力型船体相比,性能降低了 21.1%。
{"title":"Shape Optimization of a Point Absorber Wave Energy Converter for Reduced Current Drag and Improved Wave Energy Capture Using Neural Networks and Genetic Algorithms","authors":"Weihan Lin;Xiaofan Li;Lei Zuo","doi":"10.1109/TSTE.2024.3443117","DOIUrl":"10.1109/TSTE.2024.3443117","url":null,"abstract":"The shape of the floating buoy of a point absorber wave energy converter (WEC) plays a crucial role in both wave energy harvesting and current drag reduction. In this study, an approach to optimizing the buoy hull geometry with a neural network that replaces the hydrodynamic analysis software is presented, aimed at reducing the ocean current drag force while improving wave energy captured. A new parametric model is introduced to describe the complex shape of the buoy by utilizing the control points of non-uniform rational b-splines. A neural network is developed to significantly reduce the computational time compared to traditional hydrodynamic simulation methods. The optimal hull shape of the buoy is determined by solving an optimization problem using a genetic algorithm, a global optimization technique. The results of the case studies show that the optimal buoy hull shape reduces 68.7% and 71.1% of the current drag, and 50% of mooring line forces compared to the cylinder-shaped buoy and the optimal-power-shaped hull from literature. The optimal buoy hull shape increases the wave energy extraction by 46.1% compared to the thin-ship-shaped buoy but performs 21.1% worse than the optimal-power-shaped hull from the literature.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2758-2768"},"PeriodicalIF":8.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Adaptive Transfer Learning Framework for Data-Scarce HVAC Power Consumption Forecasting 用于数据保密暖通空调耗电量预测的自适应迁移学习框架
IF 8.6 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-16 DOI: 10.1109/TSTE.2024.3444689
Yanan Zhang;Gan Zhou;Zhan Liu;Li Huang;Yucheng Ren
Heating, ventilation, and air conditioning (HVAC) systems constitute a large proportion of building energy consumption and provide considerable potential for power grid regulation. While the HVAC power consumption forecasting task is generally straightforward with sufficient historical data, it becomes challenging when dealing with scarce data. Such situation is common in cases of intermittent data collection or early system implementations, where precise forecasting is required despite limited data available. Considering accessible datasets from nearby or similar HVAC systems through energy management systems, this paper proposes an adaptive transfer learning framework to tackle this issue. Specifically, the framework leverages diverse source domains, employing model-level regularizers to quantify domain discrepancies and an adaptive parameter regulation mechanism to dynamically align source domains with the target domain. Embedded within the framework, a unique deep learning architecture with attention mechanisms is proposed, capable of identifying complex temporal patterns and hierarchical features in HVAC systems. Experiments on public HVAC datasets demonstrate the generalization, accuracy and robustness of our methodology under diverse data-scarce scenarios.
供暖、通风和空调(HVAC)系统在建筑能耗中占很大比例,并为电网调节提供了相当大的潜力。虽然在历史数据充足的情况下,暖通空调耗电量预测任务一般比较简单,但在数据匮乏的情况下,这项任务就变得具有挑战性。这种情况常见于数据收集时断时续或系统实施初期,尽管可用数据有限,但仍需要进行精确预测。考虑到可通过能源管理系统从附近或类似的暖通空调系统获取数据集,本文提出了一种自适应迁移学习框架来解决这一问题。具体来说,该框架利用不同的源域,采用模型级正则表达式量化域差异,并采用自适应参数调节机制动态调整源域与目标域。在该框架中,提出了一种独特的深度学习架构,该架构具有注意力机制,能够识别暖通空调系统中复杂的时间模式和分层特征。在公共暖通空调数据集上进行的实验证明了我们的方法在各种数据稀缺场景下的通用性、准确性和鲁棒性。
{"title":"An Adaptive Transfer Learning Framework for Data-Scarce HVAC Power Consumption Forecasting","authors":"Yanan Zhang;Gan Zhou;Zhan Liu;Li Huang;Yucheng Ren","doi":"10.1109/TSTE.2024.3444689","DOIUrl":"10.1109/TSTE.2024.3444689","url":null,"abstract":"Heating, ventilation, and air conditioning (HVAC) systems constitute a large proportion of building energy consumption and provide considerable potential for power grid regulation. While the HVAC power consumption forecasting task is generally straightforward with sufficient historical data, it becomes challenging when dealing with scarce data. Such situation is common in cases of intermittent data collection or early system implementations, where precise forecasting is required despite limited data available. Considering accessible datasets from nearby or similar HVAC systems through energy management systems, this paper proposes an adaptive transfer learning framework to tackle this issue. Specifically, the framework leverages diverse source domains, employing model-level regularizers to quantify domain discrepancies and an adaptive parameter regulation mechanism to dynamically align source domains with the target domain. Embedded within the framework, a unique deep learning architecture with attention mechanisms is proposed, capable of identifying complex temporal patterns and hierarchical features in HVAC systems. Experiments on public HVAC datasets demonstrate the generalization, accuracy and robustness of our methodology under diverse data-scarce scenarios.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2815-2825"},"PeriodicalIF":8.6,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Control Strategy for F-SOP Considering Three-phase Imbalance and Economic Operation in ISLDN 考虑 ISLDN 中三相不平衡和经济运行的 F-SOP 综合控制策略
IF 8.8 1区 工程技术 Q1 ENERGY & FUELS Pub Date : 2024-08-16 DOI: 10.1109/tste.2024.3444794
Xin Wang, Qi Guo, Chunming Tu, Liang Che, Zhong Xu, Fan Xiao, Tianlin Li, Leiqi Chen
{"title":"A Comprehensive Control Strategy for F-SOP Considering Three-phase Imbalance and Economic Operation in ISLDN","authors":"Xin Wang, Qi Guo, Chunming Tu, Liang Che, Zhong Xu, Fan Xiao, Tianlin Li, Leiqi Chen","doi":"10.1109/tste.2024.3444794","DOIUrl":"https://doi.org/10.1109/tste.2024.3444794","url":null,"abstract":"","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"43 1","pages":""},"PeriodicalIF":8.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Sustainable Energy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1