Pub Date : 2020-06-08DOI: 10.22044/JME.2020.9240.1822
Ramin Satari, A. A. Dehkharghani, K. Ahangari
Within the last few decades, copper has been identified as one of the most applicable metals by many researchers. These researchers have also been enthusiastic to predict the price of this valuable metal. These days, the available technical analysis methods have been highly applied in the financial markets. Moreover, the researchers have used these methods to predict the suitable price trends. In the present work, some technical analysis tools including the Fibonacci series, Elliott waves, and Ichimuko clouds were practiced to scrutinize the price changes and predict the copper price. All copper prices from 2008 to 2016 were considered. Regarding the fractal property of these methods, the relations among prices were obtained within an eight-year time sequence. Since 2016, the copper price has been gradually deviated from its previous trend. Using the wave count and Elliott waves has specified that the wave number 1 and wave number 2 have been completed. Now, the time has come to develop the wave number 3. According to the relations introduced by the Elliott waves and the clouds made by Ichimiku, it was determined that the copper price would be almost $16000 per ton in 2022.
{"title":"Copper Price Prediction using Wave Count with the Contribution of Elliott Waves","authors":"Ramin Satari, A. A. Dehkharghani, K. Ahangari","doi":"10.22044/JME.2020.9240.1822","DOIUrl":"https://doi.org/10.22044/JME.2020.9240.1822","url":null,"abstract":"Within the last few decades, copper has been identified as one of the most applicable metals by many researchers. These researchers have also been enthusiastic to predict the price of this valuable metal. These days, the available technical analysis methods have been highly applied in the financial markets. Moreover, the researchers have used these methods to predict the suitable price trends. In the present work, some technical analysis tools including the Fibonacci series, Elliott waves, and Ichimuko clouds were practiced to scrutinize the price changes and predict the copper price. All copper prices from 2008 to 2016 were considered. Regarding the fractal property of these methods, the relations among prices were obtained within an eight-year time sequence. Since 2016, the copper price has been gradually deviated from its previous trend. Using the wave count and Elliott waves has specified that the wave number 1 and wave number 2 have been completed. Now, the time has come to develop the wave number 3. According to the relations introduced by the Elliott waves and the clouds made by Ichimiku, it was determined that the copper price would be almost $16000 per ton in 2022.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":"11 1","pages":"825-835"},"PeriodicalIF":0.8,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45891076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-27DOI: 10.22044/JME.2020.9506.1861
Sunday Mulenga, Rennie B. Kaunda
In this study, a new drilling and blasting design methodology is introduced and applied at a case study mine to improve productivity. For the case study copper mine, a blast diameter of 203mm has been proposed to be used in the ore zone to meet the new required production rate of 90mtpa from 75mtpa. Currently, Konya and Walter’s model is used to generating drilling and blasting design at the blasthole diameter of 172mm. The new drilling and blast design approach is advantageous in the sense that it generates a lower specific drilling value and predicted average fragment size than the current method being used. In this regard, a Modified Available Energy blast design method that incorporates the blastability index of ore zone in the calculation of the input powder factor has been introduced. The results of the blast design simulations at 203mm blasthole diameter showed that the Modified available energy model generates drilling and blasting design with a specific drilling value that is 15.3% less than that generated by Ash’s and Konya and Walter’s model. Further, the Modified Available Energy model generated a blast design with a predicted average fragment size that is 3.4 % smaller than that generated by Ash’s model, and 6.7% smaller than that generated by Konya and Walter’s Model.
{"title":"Blast Design for Improved Productivity using a Modified Available Energy method","authors":"Sunday Mulenga, Rennie B. Kaunda","doi":"10.22044/JME.2020.9506.1861","DOIUrl":"https://doi.org/10.22044/JME.2020.9506.1861","url":null,"abstract":"In this study, a new drilling and blasting design methodology is introduced and applied at a case study mine to improve productivity. For the case study copper mine, a blast diameter of 203mm has been proposed to be used in the ore zone to meet the new required production rate of 90mtpa from 75mtpa. Currently, Konya and Walter’s model is used to generating drilling and blasting design at the blasthole diameter of 172mm. The new drilling and blast design approach is advantageous in the sense that it generates a lower specific drilling value and predicted average fragment size than the current method being used. In this regard, a Modified Available Energy blast design method that incorporates the blastability index of ore zone in the calculation of the input powder factor has been introduced. The results of the blast design simulations at 203mm blasthole diameter showed that the Modified available energy model generates drilling and blasting design with a specific drilling value that is 15.3% less than that generated by Ash’s and Konya and Walter’s model. Further, the Modified Available Energy model generated a blast design with a predicted average fragment size that is 3.4 % smaller than that generated by Ash’s model, and 6.7% smaller than that generated by Konya and Walter’s Model.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47661689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-24DOI: 10.22044/JME.2020.9459.1856
Niaz Muhammad Shahani, A. Qureshi
In this work, we employ the fuzzy logic technique to achieve and present, for the first time, a proper analysis of the actual intensity of the increase in the coal miners’ fatality rates in Pakistan from 2010 to 2018, compared with China and India, with an objective to minimize the impact of incidents on the miners’ fatalities. The average and yearwise fatality rates in Pakistan, compared with China and India, are used for the fuzzy logic technique in order to calculate the actual degree of flexibility for the surging fatalities. The findings show that both the average (2010-2018) and yearwise fatality rates in 2011, 2015, and 2018 are 2.44, 1.74, and 1.6, respectively. In the fuzzy logic technique, the variables whose membership function (µ) values are ≥ 1 represent the absolute truth. The membership function values for the years 2011, 2015, and 2018 are alarmingly high for the fatalities of coal miners. Similarly, except for 2014 and 2010, where 0 represents the absolute falseness, the results for the remaining years indicate high fatality rates with a flexibility (or small extent) of its corresponding membership function (µ) values such as 0.623, 0.739, 0.219, 0.173 and 0.115, and 0.714, 0.24, 0.01, 0.324 and 0.317 using the average and yearwise analysis, respectively, compared with China. Likewise, the fuzzy logic membership function (µ) values compared with India in the remaining years are 0.704, 0.795, 0.386, 0.159, 0.352 and 0.306, and 0.675, 0.795, 0.386, 0.186, 0.321 and 0.322, respectively. The proposed fuzzy logic analysis has been founded based on the theory of fuzzy sets to properly identify the miners’ fatalities, and also to suggest the implementation of appropriate recommendations to reduce the fatalities in the coal mines in Pakistan.
{"title":"Comparative Analysis of Coal Miner’s Fatalities by Fuzzy Logic","authors":"Niaz Muhammad Shahani, A. Qureshi","doi":"10.22044/JME.2020.9459.1856","DOIUrl":"https://doi.org/10.22044/JME.2020.9459.1856","url":null,"abstract":"In this work, we employ the fuzzy logic technique to achieve and present, for the first time, a proper analysis of the actual intensity of the increase in the coal miners’ fatality rates in Pakistan from 2010 to 2018, compared with China and India, with an objective to minimize the impact of incidents on the miners’ fatalities. The average and yearwise fatality rates in Pakistan, compared with China and India, are used for the fuzzy logic technique in order to calculate the actual degree of flexibility for the surging fatalities. The findings show that both the average (2010-2018) and yearwise fatality rates in 2011, 2015, and 2018 are 2.44, 1.74, and 1.6, respectively. In the fuzzy logic technique, the variables whose membership function (µ) values are ≥ 1 represent the absolute truth. The membership function values for the years 2011, 2015, and 2018 are alarmingly high for the fatalities of coal miners. Similarly, except for 2014 and 2010, where 0 represents the absolute falseness, the results for the remaining years indicate high fatality rates with a flexibility (or small extent) of its corresponding membership function (µ) values such as 0.623, 0.739, 0.219, 0.173 and 0.115, and 0.714, 0.24, 0.01, 0.324 and 0.317 using the average and yearwise analysis, respectively, compared with China. Likewise, the fuzzy logic membership function (µ) values compared with India in the remaining years are 0.704, 0.795, 0.386, 0.159, 0.352 and 0.306, and 0.675, 0.795, 0.386, 0.186, 0.321 and 0.322, respectively. The proposed fuzzy logic analysis has been founded based on the theory of fuzzy sets to properly identify the miners’ fatalities, and also to suggest the implementation of appropriate recommendations to reduce the fatalities in the coal mines in Pakistan.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45577591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-20DOI: 10.22044/JME.2020.9447.1853
M. Yazdi, M. Abdollahi, S. Mousavi, A. Darban
Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate by the thermophilic Acidianus brierleyi was studied, and the microbial growth, copper dissolution, iron oxidation, and jarosite precipitation were monitored in different initial pH (pHi) values. Bacterial growth was greatly affected by pHi. While the bacterial growth was delayed for 11 days with a pHi value of 0.8, this delay was reduced to nearly one day for a pHi value of 1.2. Two stages of copper recovery were observed during all the tests. A high pHi value caused a fast bacterial growth in the first stage and severe jarosite precipitation in the later days causing a sharp decline in the bacterial population and copper leaching rate. The copper recoveries after 11 days were 25%, 78%, 84%, 70%, 56%, and 39% for the pHi values of 0.8, 1.0, 1.2, 1.3, 1.5, and 1.7, respectively. Sulfur and jarosite were the main residues of the bioleaching tests. It was revealed that the drastic effect of jarosite precipitation on the microbial growth and copper recovery was mainly caused by the ferric iron depletion from solution rather than passivation of the chalcopyrite surface. A slow precipitation of crystalline jarosite did not cause a passive chalcopyrite surface. The mechanisms of chalcopyrite bioleaching were discussed.
{"title":"Comparison of Copper Dissolution in Chalcopyrite Concentrate Bioleaching with Acidianus Brierleyi in Different Initial pH Values","authors":"M. Yazdi, M. Abdollahi, S. Mousavi, A. Darban","doi":"10.22044/JME.2020.9447.1853","DOIUrl":"https://doi.org/10.22044/JME.2020.9447.1853","url":null,"abstract":"Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate by the thermophilic Acidianus brierleyi was studied, and the microbial growth, copper dissolution, iron oxidation, and jarosite precipitation were monitored in different initial pH (pHi) values. Bacterial growth was greatly affected by pHi. While the bacterial growth was delayed for 11 days with a pHi value of 0.8, this delay was reduced to nearly one day for a pHi value of 1.2. Two stages of copper recovery were observed during all the tests. A high pHi value caused a fast bacterial growth in the first stage and severe jarosite precipitation in the later days causing a sharp decline in the bacterial population and copper leaching rate. The copper recoveries after 11 days were 25%, 78%, 84%, 70%, 56%, and 39% for the pHi values of 0.8, 1.0, 1.2, 1.3, 1.5, and 1.7, respectively. Sulfur and jarosite were the main residues of the bioleaching tests. It was revealed that the drastic effect of jarosite precipitation on the microbial growth and copper recovery was mainly caused by the ferric iron depletion from solution rather than passivation of the chalcopyrite surface. A slow precipitation of crystalline jarosite did not cause a passive chalcopyrite surface. The mechanisms of chalcopyrite bioleaching were discussed.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":"11 1","pages":"753-764"},"PeriodicalIF":0.8,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48718549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-11DOI: 10.22044/JME.2020.9261.1823
Javad Ziaei, Saleh Ghadernejad, A. Jafarpour, R. Mikaeil
One of the most crucial factors involved in the optimum design and cost estimation of rock sawing process is the rock abrasivity that could result in a significant cost increase. Various methods including direct and indirect tests have been introduced in order to measure rock abrasivity. The Schimazek’s F-abrasiveness factor ( ) is one of the most common indices to assess rock abrasivity. is the function of three rock parameters including the Brazilian tensile strength ( ), median grain size ( ), and equivalent quartz content ( ). By considering its formulation, it has been revealed that the coefficient of each parameter is equal, which is not correct because each parameter plays a different role in the rock abrasion process. This work aims to modify the original form of by introducing three correction factors. To calculate these correction factors, an integrated method based on a combination of the statistical analysis and probabilistic simulation is applied to a dataset of 15 different andesite rocks. Based on the results obtained, the values of -0.36, 0.3, and -0.89 are suggested as the correction factors of , and , respectively. The performance of the modified Schimazek’s F-abrasiveness factor ( ) is checked not only by the wear rate of diamond wire but also by the cutting rate of the wire sawing process of Andesite rocks. The results obtained indicate that the wear rate and cutting rate of andesite rocks can be reliably predicted using . However, it should be noted that this work is a preliminary one on the limited rock types and further studies are required by incorporating different rock types.
{"title":"A Modified Schimazek’s F-abrasiveness Factor for Evaluating the Abrasiveness of Andesite Rocks in Rock Sawing Process","authors":"Javad Ziaei, Saleh Ghadernejad, A. Jafarpour, R. Mikaeil","doi":"10.22044/JME.2020.9261.1823","DOIUrl":"https://doi.org/10.22044/JME.2020.9261.1823","url":null,"abstract":"One of the most crucial factors involved in the optimum design and cost estimation of rock sawing process is the rock abrasivity that could result in a significant cost increase. Various methods including direct and indirect tests have been introduced in order to measure rock abrasivity. The Schimazek’s F-abrasiveness factor ( ) is one of the most common indices to assess rock abrasivity. is the function of three rock parameters including the Brazilian tensile strength ( ), median grain size ( ), and equivalent quartz content ( ). By considering its formulation, it has been revealed that the coefficient of each parameter is equal, which is not correct because each parameter plays a different role in the rock abrasion process. This work aims to modify the original form of by introducing three correction factors. To calculate these correction factors, an integrated method based on a combination of the statistical analysis and probabilistic simulation is applied to a dataset of 15 different andesite rocks. Based on the results obtained, the values of -0.36, 0.3, and -0.89 are suggested as the correction factors of , and , respectively. The performance of the modified Schimazek’s F-abrasiveness factor ( ) is checked not only by the wear rate of diamond wire but also by the cutting rate of the wire sawing process of Andesite rocks. The results obtained indicate that the wear rate and cutting rate of andesite rocks can be reliably predicted using . However, it should be noted that this work is a preliminary one on the limited rock types and further studies are required by incorporating different rock types.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45407552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JME.2020.9156.1807
R. Kharzi, R. Chaib, I. Verzea, A. Akni
This article describes the process of improving risk management practices in a foundry of the ALFET Company (Algeria). The proposed methodology is based on the decision matrix risk assessment technique. This technique allows making a risk assessment for each source of risk (machine, man, environment, and management), which leads to the determination of the overall risk rate during the activity by a new concept. The latter giving a comprehensive vision of occupational health and safety, and compares it with the ALARP principle to determine the acceptability of risk. The main goal of this work is to inculcate a culture on the effects of changing behaviors and attitudes, to disseminate the culture of continuous and sustainable progress within the enterprise, and to ensure that a good atmosphere is maintained in the workplace. It aims to protect and promote the health and safety of workers and the working environment in order to promote a safe and sustainable development company. Our work shows that the working environment is tolerable in terms of health and safety at work. However, to promote a safe and sustainable development in company, an action plan based on the evaluation of the field and feedback through priority actions is recommended for continuous improvement in OSH. Toward the workplace should be continuously monitored to detect risk factors as early as possible before they have negative effects.
{"title":"A Safe and Sustainable Development in a Hygiene and Healthy Company Using Decision Matrix Risk Assessment Technique: a case study","authors":"R. Kharzi, R. Chaib, I. Verzea, A. Akni","doi":"10.22044/JME.2020.9156.1807","DOIUrl":"https://doi.org/10.22044/JME.2020.9156.1807","url":null,"abstract":"This article describes the process of improving risk management practices in a foundry of the ALFET Company (Algeria). The proposed methodology is based on the decision matrix risk assessment technique. This technique allows making a risk assessment for each source of risk (machine, man, environment, and management), which leads to the determination of the overall risk rate during the activity by a new concept. The latter giving a comprehensive vision of occupational health and safety, and compares it with the ALARP principle to determine the acceptability of risk. The main goal of this work is to inculcate a culture on the effects of changing behaviors and attitudes, to disseminate the culture of continuous and sustainable progress within the enterprise, and to ensure that a good atmosphere is maintained in the workplace. It aims to protect and promote the health and safety of workers and the working environment in order to promote a safe and sustainable development company. Our work shows that the working environment is tolerable in terms of health and safety at work. However, to promote a safe and sustainable development in company, an action plan based on the evaluation of the field and feedback through priority actions is recommended for continuous improvement in OSH. Toward the workplace should be continuously monitored to detect risk factors as early as possible before they have negative effects.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":"11 1","pages":"363-373"},"PeriodicalIF":0.8,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49413966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JME.2020.9267.1827
S. Sepehri, R. Shirinabadi, N. H. Alaee, E. Moosavi, A. H. B. Tabrizi
In this research work, a 3D numerical modeling technique is proposed based on the 3D particle flow code in order to investigate the failure mechanism of rock foundations. Two series of footings with different geometries and areas are considered in this work. The failure mechanism obtained is similar to that of the Terzaghi’s but there is a negligible difference in between. Lastly, one equation is presented to calculate the bearing capacity based on the results achieved from the numerical model and the Mohr-Coulomb theory. The sensitivity analyses are performed on the friction angle, cohesion, and footing width. The results obtained are compared with the corresponding results given by the equations given by Terzaghi and Meyerhof. This comparison demonstrates a good agreement between them. In the friction angle sensitive analysis, the amounts of the bearing capacity diagram are very close to Meyerhof’s, which overlap with each other.
{"title":"A 3D Discrete Element Analysis of Failure Mechanism of Shallow Foundations in Rocks","authors":"S. Sepehri, R. Shirinabadi, N. H. Alaee, E. Moosavi, A. H. B. Tabrizi","doi":"10.22044/JME.2020.9267.1827","DOIUrl":"https://doi.org/10.22044/JME.2020.9267.1827","url":null,"abstract":"In this research work, a 3D numerical modeling technique is proposed based on the 3D particle flow code in order to investigate the failure mechanism of rock foundations. Two series of footings with different geometries and areas are considered in this work. The failure mechanism obtained is similar to that of the Terzaghi’s but there is a negligible difference in between. Lastly, one equation is presented to calculate the bearing capacity based on the results achieved from the numerical model and the Mohr-Coulomb theory. The sensitivity analyses are performed on the friction angle, cohesion, and footing width. The results obtained are compared with the corresponding results given by the equations given by Terzaghi and Meyerhof. This comparison demonstrates a good agreement between them. In the friction angle sensitive analysis, the amounts of the bearing capacity diagram are very close to Meyerhof’s, which overlap with each other.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":"11 1","pages":"467-480"},"PeriodicalIF":0.8,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41861129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JME.2020.8244.1699
M. Lotfi, H. Arefi, A. Bahroudi
Hyperspectral remote sensing records reflectance or emittance data in a large sum of contiguous and narrow spectral bands, and thus has many information in detecting and mapping the mineral zones. On the other hand, the geological and geophysical data gives us some other fruitful information about the physical characteristics of soil and minerals that have been recorded from the surface. The Sarcheshmeh mining area located in the NW-trending Uromieh-Dokhtar magmatic belt within Central Iran is mainly of porphyry type, and is associated with extensive hydrothermal alterations. Due to the semi-arid type of climate with abundant rock exposure, this area is suitable for application of remote sensing techniques. In this work, we focus on generating the alteration maps around Cu porphyry copper deposits using the spectral angle mapper algorithm on Hyperion data by applying two filters named reduction to pole and analytical signal on a total magnetic intensity map and generating the Kd map from radiometry data. What is clear is the high importance of applying the adequate pre-processing on Hyperion data because of low signal-to-noise ratio. By comparing the known deposits in the region with the results obtained by applying the mentioned methods, it is revealed that not all the higher K radiometric values are entirely associated with the hydrothermal alteration zones, and in contrast, the potassic alteration map extracted from Hyperion imagery successfully corresponds to the alteration zones around the Sarcheshmeh mining area. Finally, the results particularly obtained from processing the Hyperion data are confirmed by indices of Cu porphyry deposits in the region.
{"title":"Investigating Alteration Zone Mapping Using EO-1 Hyperion Imagery and Airborne Geophysics Data","authors":"M. Lotfi, H. Arefi, A. Bahroudi","doi":"10.22044/JME.2020.8244.1699","DOIUrl":"https://doi.org/10.22044/JME.2020.8244.1699","url":null,"abstract":"Hyperspectral remote sensing records reflectance or emittance data in a large sum of contiguous and narrow spectral bands, and thus has many information in detecting and mapping the mineral zones. On the other hand, the geological and geophysical data gives us some other fruitful information about the physical characteristics of soil and minerals that have been recorded from the surface. The Sarcheshmeh mining area located in the NW-trending Uromieh-Dokhtar magmatic belt within Central Iran is mainly of porphyry type, and is associated with extensive hydrothermal alterations. Due to the semi-arid type of climate with abundant rock exposure, this area is suitable for application of remote sensing techniques. In this work, we focus on generating the alteration maps around Cu porphyry copper deposits using the spectral angle mapper algorithm on Hyperion data by applying two filters named reduction to pole and analytical signal on a total magnetic intensity map and generating the Kd map from radiometry data. What is clear is the high importance of applying the adequate pre-processing on Hyperion data because of low signal-to-noise ratio. By comparing the known deposits in the region with the results obtained by applying the mentioned methods, it is revealed that not all the higher K radiometric values are entirely associated with the hydrothermal alteration zones, and in contrast, the potassic alteration map extracted from Hyperion imagery successfully corresponds to the alteration zones around the Sarcheshmeh mining area. Finally, the results particularly obtained from processing the Hyperion data are confirmed by indices of Cu porphyry deposits in the region.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":"11 1","pages":"405-417"},"PeriodicalIF":0.8,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42249044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JME.2020.9096.1811
J. Jurković, E. Babajić, T. M. –. Šarac, M. Kolar, A. Kazlagić
Oxidation of sulfide-containing ores is the main cause of Acid Mine Drainage (AMD), which is an environmental problem associated with both the abandoned and active mines. Iron-bearing sulfide minerals can be oxidized and form mine waters with high sulfate content, low pH, high electrical conductivity, high redox potential, and high concentrations of iron, aluminum, and other heavy metals. In the process of AMD, precipitation of poorly crystalized oxy-hydroxides of iron with a large active surface can occur. On the surface of iron oxy-hydroxide, the precipitated particulate matter, anions, and cations (metals) could be adsorbed. Mine waters can contain a certain amount of precious metals that can also be adsorbed onto an iron particulate matter surface, which is investigated in this research work. In this work, the samples of iron oxy-hydroxide particulate matter at abandoned gold mine waste in Bakovici (Central Bosnia and Herzegovina) are used. Several parameters including pH, water content, particle size distribution, sulfate content, electrical conductivity, redox potential, and amounts of gold, silver, and iron are measured on the selected mine waste samples. The results obtained indicate that significant amounts of gold (average: 6.8 mg/kg) and silver (average: 7.13 mg/kg) are present in the iron precipitate. Adsorption of precious metals onto the iron oxy-hydroxide surface is strongly pH-dependent. At a very low pH value, desorption of precious metals is favorite. Thus, precious metals are only partially adsorbed onto the iron oxy-hydroxide surface.
{"title":"Gold, Silver and Iron in Iron Oxy-hydroxide Precipitate Formed in Process of Acid Mine Drainage","authors":"J. Jurković, E. Babajić, T. M. –. Šarac, M. Kolar, A. Kazlagić","doi":"10.22044/JME.2020.9096.1811","DOIUrl":"https://doi.org/10.22044/JME.2020.9096.1811","url":null,"abstract":"Oxidation of sulfide-containing ores is the main cause of Acid Mine Drainage (AMD), which is an environmental problem associated with both the abandoned and active mines. Iron-bearing sulfide minerals can be oxidized and form mine waters with high sulfate content, low pH, high electrical conductivity, high redox potential, and high concentrations of iron, aluminum, and other heavy metals. In the process of AMD, precipitation of poorly crystalized oxy-hydroxides of iron with a large active surface can occur. On the surface of iron oxy-hydroxide, the precipitated particulate matter, anions, and cations (metals) could be adsorbed. Mine waters can contain a certain amount of precious metals that can also be adsorbed onto an iron particulate matter surface, which is investigated in this research work. In this work, the samples of iron oxy-hydroxide particulate matter at abandoned gold mine waste in Bakovici (Central Bosnia and Herzegovina) are used. Several parameters including pH, water content, particle size distribution, sulfate content, electrical conductivity, redox potential, and amounts of gold, silver, and iron are measured on the selected mine waste samples. The results obtained indicate that significant amounts of gold (average: 6.8 mg/kg) and silver (average: 7.13 mg/kg) are present in the iron precipitate. Adsorption of precious metals onto the iron oxy-hydroxide surface is strongly pH-dependent. At a very low pH value, desorption of precious metals is favorite. Thus, precious metals are only partially adsorbed onto the iron oxy-hydroxide surface.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":"11 1","pages":"335-346"},"PeriodicalIF":0.8,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42198324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-01DOI: 10.22044/JME.2020.9039.1791
V. Maazallahi, A. Majdi
The uniaxial compressive strength (UCS) of intact rocks is one of the key parameters in the course of site characterizations. The isotropy/anisotropy condition of the UCS of intact rocks is dependent on the internal structure of the rocks. The rocks with a random grain structure exhibit an isotropic behavior. However, the rocks with a linear/planar grain structure generally behave transversely-isotropic. In the latter case, the UCS of intact rocks must be determined by a set of laboratory tests on the oriented rock samples. There are some empirical relations available to describe the strength of these rocks. Though characterization of transversely-isotropic rocks is practically a 3D problem, but these relations provide only a 2D description. In this paper, a method is proposed to provide a 3D description of UCS of transversely-isotropic rocks. By means of this formulation, one can determine UCS along with any arbitrary spatial direction. Also, a representative illustration of UCS is proposed in the form of contour-plots on a lower hemisphere Stereonet. The method is applied to an actual case study from the Kanigoizhan dam site located in the Kurdistan Province (Iran). Application of the proposed method to the phyllite rocks of this site show that the direction perpendicular to the dam axis exhibits the most anisotropic behavior. Hence, it is essential to take the strength anisotropy into account during the relevant analysis. The results obtained, together with the statistical variation of UCS, provide a practical approach to select the proper values of UCS according to the scope of the analysis.
{"title":"3D Characterization of Uniaxial Compressive Strength of Transversely-Isotropic Intact Rocks","authors":"V. Maazallahi, A. Majdi","doi":"10.22044/JME.2020.9039.1791","DOIUrl":"https://doi.org/10.22044/JME.2020.9039.1791","url":null,"abstract":"The uniaxial compressive strength (UCS) of intact rocks is one of the key parameters in the course of site characterizations. The isotropy/anisotropy condition of the UCS of intact rocks is dependent on the internal structure of the rocks. The rocks with a random grain structure exhibit an isotropic behavior. However, the rocks with a linear/planar grain structure generally behave transversely-isotropic. In the latter case, the UCS of intact rocks must be determined by a set of laboratory tests on the oriented rock samples. There are some empirical relations available to describe the strength of these rocks. Though characterization of transversely-isotropic rocks is practically a 3D problem, but these relations provide only a 2D description. In this paper, a method is proposed to provide a 3D description of UCS of transversely-isotropic rocks. By means of this formulation, one can determine UCS along with any arbitrary spatial direction. Also, a representative illustration of UCS is proposed in the form of contour-plots on a lower hemisphere Stereonet. The method is applied to an actual case study from the Kanigoizhan dam site located in the Kurdistan Province (Iran). Application of the proposed method to the phyllite rocks of this site show that the direction perpendicular to the dam axis exhibits the most anisotropic behavior. Hence, it is essential to take the strength anisotropy into account during the relevant analysis. The results obtained, together with the statistical variation of UCS, provide a practical approach to select the proper values of UCS according to the scope of the analysis.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":"11 1","pages":"629-641"},"PeriodicalIF":0.8,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44920101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}