Pub Date : 2023-04-03DOI: 10.24425/aee.2022.140717
{"title":"Dynamic rating method of traction network based on wind speed prediction","authors":"","doi":"10.24425/aee.2022.140717","DOIUrl":"https://doi.org/10.24425/aee.2022.140717","url":null,"abstract":"","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"109 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83445524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.24425/aee.2020.133027
H. Qiu, Y. Zhango, Cunxiang Yang, Yi Ran, H. Qiu, Y. Zhang, C. Yang, R. Yi
The concentrated winding (CW) is obviously different from the traditional distributed winding (DW) in the arrangement of windings and the calculation of winding factors, which will inevitably lead to different performances of the permanent magnet synchronous motor (PMSM). In order to analyze the differences between the CW and the DW in the performance, a 3 kW, 1500 r/min PMSM is taken as an example to establish a 2-D finite element model. The correctness of the model is verified by comparing experimental data and calculated data. Firstly, the finite element method (FEM) is used to calculate the electromagnetic field of the PMSM, and the performance parameters of the PMSM are obtained. On this basis, the influences of the two winding structures on the performance are quantitatively analyzed, and the differences between the two winding structures on the performance of the PMSM will be determined. Finally, the differences of efficiency between the two winding structures are obtained. In addition, the influences of the winding structures on eddy current loss are further studied, and the mechanism of eddy current loss is revealed by studying the eddy current density. The analysis of this paper provides reference and practical value for the optimization design of the PMSM.
{"title":"Performance analysis and comparison of PMSM with concentrated winding and distributed winding","authors":"H. Qiu, Y. Zhango, Cunxiang Yang, Yi Ran, H. Qiu, Y. Zhang, C. Yang, R. Yi","doi":"10.24425/aee.2020.133027","DOIUrl":"https://doi.org/10.24425/aee.2020.133027","url":null,"abstract":"The concentrated winding (CW) is obviously different from the traditional distributed winding (DW) in the arrangement of windings and the calculation of winding factors, which will inevitably lead to different performances of the permanent magnet synchronous motor (PMSM). In order to analyze the differences between the CW and the DW in the performance, a 3 kW, 1500 r/min PMSM is taken as an example to establish a 2-D finite element model. The correctness of the model is verified by comparing experimental data and calculated data. Firstly, the finite element method (FEM) is used to calculate the electromagnetic field of the PMSM, and the performance parameters of the PMSM are obtained. On this basis, the influences of the two winding structures on the performance are quantitatively analyzed, and the differences between the two winding structures on the performance of the PMSM will be determined. Finally, the differences of efficiency between the two winding structures are obtained. In addition, the influences of the winding structures on eddy current loss are further studied, and the mechanism of eddy current loss is revealed by studying the eddy current density. The analysis of this paper provides reference and practical value for the optimization design of the PMSM.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"36 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76967913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.24425/aee.2021.137571
T. O. Y. U. o, H. O. Y. Ang
: This paper focuses on the invariance of the reachability and observability for fractional order positive linear electrical circuits with delays and their checking methods. By derivation and comparison, it shows that conditions and checking methods of reachability and observability for integer and fractional order positive linear electrical circuits with delays are invariant. An illustrative example is presented at the end of the paper.
{"title":"Invariance of reachability and observability for fractional positive linear electrical circuit with delays","authors":"T. O. Y. U. o, H. O. Y. Ang","doi":"10.24425/aee.2021.137571","DOIUrl":"https://doi.org/10.24425/aee.2021.137571","url":null,"abstract":": This paper focuses on the invariance of the reachability and observability for fractional order positive linear electrical circuits with delays and their checking methods. By derivation and comparison, it shows that conditions and checking methods of reachability and observability for integer and fractional order positive linear electrical circuits with delays are invariant. An illustrative example is presented at the end of the paper.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"11 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81973119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.24425/aee.2022.140201
M. A. P. R. o
: The performance of drives with switched reluctance motors (SRMs) depends on magnetic materials used in their construction which influence static parameters such as inductance and electromagnetic torque profiles. The paper deals with simulations of switched reluctance motors in the finite element method and their comparison with measurements. Two kinds of switched reluctance motors were analysed, the modified Emerson Electric motor with a laminated steel core and a prototype, the one with a magnetic core made of iron-based powder composite materials. In the first part of the research, magnetization curves of magnetic materials were measured for static and dynamic conditions with 50 Hz. Next, simulations and measurements of inductance and developed torque were compared and analysed. In the last part of the research, simulations of magnetic flux density in motors were conducted. As the result of the research, it occurred that the simulations and measurements are quite close and two kinds of motors exhibit similar performance.
{"title":"Calculations and measurements of torque and inductance of switched reluctance motors with laminated and composite magnetic cores","authors":"M. A. P. R. o","doi":"10.24425/aee.2022.140201","DOIUrl":"https://doi.org/10.24425/aee.2022.140201","url":null,"abstract":": The performance of drives with switched reluctance motors (SRMs) depends on magnetic materials used in their construction which influence static parameters such as inductance and electromagnetic torque profiles. The paper deals with simulations of switched reluctance motors in the finite element method and their comparison with measurements. Two kinds of switched reluctance motors were analysed, the modified Emerson Electric motor with a laminated steel core and a prototype, the one with a magnetic core made of iron-based powder composite materials. In the first part of the research, magnetization curves of magnetic materials were measured for static and dynamic conditions with 50 Hz. Next, simulations and measurements of inductance and developed torque were compared and analysed. In the last part of the research, simulations of magnetic flux density in motors were conducted. As the result of the research, it occurred that the simulations and measurements are quite close and two kinds of motors exhibit similar performance.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"19 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81210229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.24425/aee.2022.142113
F. L. P. Auli, N. I. D. Riendl, S. E. M. Önninghoff, K. A. H. Ameyer
: To reduce the losses of the power electronic inverter, the voltage slew rate (d 𝑢 /d 𝑡 ) of the electric motors supplying voltage is increasing. As steep voltage slopes excite high frequencies in the megahertz range, transient phenomena in the winding of the electrical machine occur. To design the insulation system, the maximum electric potential difference between the conducting elements must be predicted. General design rules can lead to a significant overengineering of the interturn insulation, particularly when considering smaller stators with a known wire distribution. Therefore, two different winding topologies are studied comparing the voltage distribution in a round-wire winding and a winding with preformed coils.
{"title":"Comparison of concentrated winding topologies considering transient voltages in the winding system of inverter-driven low-voltage machines","authors":"F. L. P. Auli, N. I. D. Riendl, S. E. M. Önninghoff, K. A. H. Ameyer","doi":"10.24425/aee.2022.142113","DOIUrl":"https://doi.org/10.24425/aee.2022.142113","url":null,"abstract":": To reduce the losses of the power electronic inverter, the voltage slew rate (d 𝑢 /d 𝑡 ) of the electric motors supplying voltage is increasing. As steep voltage slopes excite high frequencies in the megahertz range, transient phenomena in the winding of the electrical machine occur. To design the insulation system, the maximum electric potential difference between the conducting elements must be predicted. General design rules can lead to a significant overengineering of the interturn insulation, particularly when considering smaller stators with a known wire distribution. Therefore, two different winding topologies are studied comparing the voltage distribution in a round-wire winding and a winding with preformed coils.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"38 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74303653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.24425/aee.2019.125987
Yuancheng Li, Longqiang Ma
{"title":"Fault diagnosis of power transformer based on improved particle swarm optimization OS-ELM","authors":"Yuancheng Li, Longqiang Ma","doi":"10.24425/aee.2019.125987","DOIUrl":"https://doi.org/10.24425/aee.2019.125987","url":null,"abstract":"","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"50 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73077728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hardware software co-simulation of a digital EMI filter using Xilinx system generator","authors":"","doi":"10.24425/123660","DOIUrl":"https://doi.org/10.24425/123660","url":null,"abstract":"","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"131 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75821229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.24425/AEE.2019.128280
Gregor Bavendiek, N. Leuning, F. Müller, B. Schauerte, A. Thul, Kay Hameyer
Magnetic properties of silicon iron electrical steel are determined by using standardized measurement setups and distinct excitation parameters. Characteristic values for magnetic loss and magnetization are used to select the most appropriate material for its application. This approach is not sufficient, because of the complex material behavior inside electrical machines, which can result in possible discrepancies between estimated and actual machine behavior. The materials’ anisotropy can be one of the problems why simulation and measurement are not in good accordance. With the help of a rotational single sheet tester, the magnetic material can be tested under application relevant field distribution. Thereby, additional effects of hysteresis and anisotropy can be characterized for detailed modelling and simulation.
{"title":"Magnetic anisotropy under arbitrary excitation in finite element models","authors":"Gregor Bavendiek, N. Leuning, F. Müller, B. Schauerte, A. Thul, Kay Hameyer","doi":"10.24425/AEE.2019.128280","DOIUrl":"https://doi.org/10.24425/AEE.2019.128280","url":null,"abstract":"Magnetic properties of silicon iron electrical steel are determined by using standardized measurement setups and distinct excitation parameters. Characteristic values for magnetic loss and magnetization are used to select the most appropriate material for its application. This approach is not sufficient, because of the complex material behavior inside electrical machines, which can result in possible discrepancies between estimated and actual machine behavior. The materials’ anisotropy can be one of the problems why simulation and measurement are not in good accordance. With the help of a rotational single sheet tester, the magnetic material can be tested under application relevant field distribution. Thereby, additional effects of hysteresis and anisotropy can be characterized for detailed modelling and simulation.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"26 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76090034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.24425/AEE.2021.136057
Yunrui Liu, Chunfang Wang, Dongwei Xia, Rui Yue
With the development of wireless power transfer technology, more and more attention has been paid to its electromagnetic safety. In this paper, a novel hybrid shielding structure composed of the innermost fan-shaped ferrite, the interlayer nanocrystalline strip and the outermost aluminum foil is proposed to shield the electromagnetic field of the inductive power transfer system. Eight structure parameters of the proposed shielding are optimized by finite element simulation, in order to reduce the magnetic leakage of the system and improve the utilization rate of shielding materials. In addition, the proposed structure is compared with two types of typical double-layer hybrid shielding from the perspectives of the weight, the coupling coefficient and the magnetic flux leakage. Both simulation and experiment results show that the cost and weight of the proposed shield are about 60% lower than the traditional disk shield. Moreover, the shielding layer proposed in this paper can not only effectively reduce the magnetic flux leakage of the system, but also maintain a high coupling coefficient.
{"title":"Research on a novel hybrid shielding structure of magnetic coupler for inductive power transfer system","authors":"Yunrui Liu, Chunfang Wang, Dongwei Xia, Rui Yue","doi":"10.24425/AEE.2021.136057","DOIUrl":"https://doi.org/10.24425/AEE.2021.136057","url":null,"abstract":"With the development of wireless power transfer technology, more and more attention has been paid to its electromagnetic safety. In this paper, a novel hybrid shielding structure composed of the innermost fan-shaped ferrite, the interlayer nanocrystalline strip and the outermost aluminum foil is proposed to shield the electromagnetic field of the inductive power transfer system. Eight structure parameters of the proposed shielding are optimized by finite element simulation, in order to reduce the magnetic leakage of the system and improve the utilization rate of shielding materials. In addition, the proposed structure is compared with two types of typical double-layer hybrid shielding from the perspectives of the weight, the coupling coefficient and the magnetic flux leakage. Both simulation and experiment results show that the cost and weight of the proposed shield are about 60% lower than the traditional disk shield. Moreover, the shielding layer proposed in this paper can not only effectively reduce the magnetic flux leakage of the system, but also maintain a high coupling coefficient.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"13 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73915385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.24425/aee.2019.129341
Ianqian, Ia
: In recent years, with the rapid development of digital components, digital electronic computers, especially microprocessors, digital controllers have replaced ana-log controllers on many occasions. The application of digital controller makes the per-formance analysis of impulsive system more and more important. This paper considers global exponential stability (GES) of impulsive delayed nonlinear hybrid differential systems (IDNHDS).Through the application of the Lyapunov method and the Razumikhin technique, a series of uncomplicated and useful guiding principles have been obtained. The results of a numerical simulation are presented to demonstrate that the method is correct and effective.
{"title":"Exponential stability of impulsive delayed nonlinear hybrid differential systems","authors":"Ianqian, Ia","doi":"10.24425/aee.2019.129341","DOIUrl":"https://doi.org/10.24425/aee.2019.129341","url":null,"abstract":": In recent years, with the rapid development of digital components, digital electronic computers, especially microprocessors, digital controllers have replaced ana-log controllers on many occasions. The application of digital controller makes the per-formance analysis of impulsive system more and more important. This paper considers global exponential stability (GES) of impulsive delayed nonlinear hybrid differential systems (IDNHDS).Through the application of the Lyapunov method and the Razumikhin technique, a series of uncomplicated and useful guiding principles have been obtained. The results of a numerical simulation are presented to demonstrate that the method is correct and effective.","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"144 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74902401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}