Pub Date : 2023-01-01DOI: 10.3934/microbiol.2023017
Mohammad Abu-Sini, Mohammad A Al-Kafaween, Rania M Al-Groom, Abu Bakar Mohd Hilmi
P. aeruginosa is an opportunistic pathogen that is commonly found in nosocomial infections. The purpose of this study was to investigate the effects of seven antibiotics on P. aeruginosa planktonic growth, biofilm formation, and the expression of virulence factors. These antibiotics included Ciprofloxacin (CP), Amikacin (AMK), Vancomycin (VAN), Tetracycline (TET), Gentamicin (GEN), Erythromycin (Ery), and Clindamycin (CLI). Antibiotic susceptibility testing, Minimum Bactericidal Concentration (MBC), Minimum Inhibitory Concentration (MIC), growth curve, time-kill curve, biofilm inhibition and reduction assay, and RT-qPCR were used to assess the effects of these antibiotics on P. aeruginosa planktonic and biofilm. The clear zones of inhibition against P. aeruginosa for the CP, AMK, VAN, TET, GEN, Ery, and CLI were 26 mm, 20 mm, 21 mm, 22 mm, 20 mm, 25 mm and 23 mm, respectively. The MIC values for CP, AMK, VAN, TET, GEN, Ery and CLI against P. aeruginosa ranged from 0.25 to 1 µg/mL while the MBC values ranged from 1 and 0.5 to 2 µg/mL respectively. The growth, total viable counts (TVCs), bacterial adhesion and biofilm formation of P. aeruginosa were reduced after exposure to all the tested antibiotics in a dose-dependent manner. The RT-qPCR analysis showed that all the tested antibiotics share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest (lasR, lasI, fleN, fleQ and fleR, oprB and oprC) in P. aeruginosa. The results indicate that all of the tested antibiotics possess antimicrobial and anti-biofilm activities, and that they may be multiple inhibitors and moderators of P. aeruginosa virulence via a variety of molecular targets. This deduction requires to be investigated in vivo.
{"title":"Comparative <i>in vitro</i> activity of various antibiotic against planktonic and biofilm and the gene expression profile in <i>Pseudomonas aeruginosa</i>.","authors":"Mohammad Abu-Sini, Mohammad A Al-Kafaween, Rania M Al-Groom, Abu Bakar Mohd Hilmi","doi":"10.3934/microbiol.2023017","DOIUrl":"https://doi.org/10.3934/microbiol.2023017","url":null,"abstract":"<p><p><i>P. aeruginosa</i> is an opportunistic pathogen that is commonly found in nosocomial infections. The purpose of this study was to investigate the effects of seven antibiotics on <i>P. aeruginosa</i> planktonic growth, biofilm formation, and the expression of virulence factors. These antibiotics included Ciprofloxacin (CP), Amikacin (AMK), Vancomycin (VAN), Tetracycline (TET), Gentamicin (GEN), Erythromycin (Ery), and Clindamycin (CLI). Antibiotic susceptibility testing, Minimum Bactericidal Concentration (MBC), Minimum Inhibitory Concentration (MIC), growth curve, time-kill curve, biofilm inhibition and reduction assay, and RT-qPCR were used to assess the effects of these antibiotics on <i>P. aeruginosa</i> planktonic and biofilm. The clear zones of inhibition against <i>P. aeruginosa</i> for the CP, AMK, VAN, TET, GEN, Ery, and CLI were 26 mm, 20 mm, 21 mm, 22 mm, 20 mm, 25 mm and 23 mm, respectively. The MIC values for CP, AMK, VAN, TET, GEN, Ery and CLI against <i>P. aeruginosa</i> ranged from 0.25 to 1 µg/mL while the MBC values ranged from 1 and 0.5 to 2 µg/mL respectively. The growth, total viable counts (TVCs), bacterial adhesion and biofilm formation of <i>P. aeruginosa</i> were reduced after exposure to all the tested antibiotics in a dose-dependent manner. The RT-qPCR analysis showed that all the tested antibiotics share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest (<i>lasR, lasI, fleN, fleQ and fleR, oprB</i> and <i>oprC</i>) in <i>P. aeruginosa</i>. The results indicate that all of the tested antibiotics possess antimicrobial and anti-biofilm activities, and that they may be multiple inhibitors and moderators of <i>P. aeruginosa</i> virulence via a variety of molecular targets. This deduction requires to be investigated <i>in vivo</i>.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"9 2","pages":"313-331"},"PeriodicalIF":4.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9820221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3934/microbiol.2023018
Akamu J Ewunkem, A'lyiha F Beard, Brittany L Justice, Sabrina L Peoples, Jeffery A Meixner, Watson Kemper, Uchenna B Iloghalu
Natural surfaces with remarkable properties and functionality have become the focus of intense research. Heretofore, the natural antimicrobial properties of insect wings have inspired research into their applications. The wings of cicadas, butterflies, dragonflies, and damselflies have evolved phenomenal anti-biofouling and antimicrobial properties. These wings are covered by periodic topography ranging from highly ordered hexagonal arrays of nanopillars to intricate "Christmas-tree" like structures with the ability to kill microbes by physically rupturing the cell membrane. In contrast, the topography of honeybee wings has received less attention. The role topography plays in antibiofouling, and antimicrobial activity of honeybee wings has never been investigated. Here, through antimicrobial and electron microscopy studies, we showed that pristine honeybee wings displayed no microbes on the wing surface. Also, the wings displayed antimicrobial properties that disrupt microbial cells and inhibit their growth. The antimicrobial activities of the wings were extremely effective at inhibiting the growth of Gram-negative bacterial cells when compared to Gram-positive bacterial cells. The fore wing was effective at inhibiting the growth of Gram-negative bacteria compared to Gram-positive samples. Electron microscopy revealed that the wings were studded with an array of rough, sharp, and pointed pillars that were distributed on both the dorsal and ventral sides, which enhanced anti-biofouling and antimicrobial effects. Our findings demonstrate the potential benefits of incorporating honeybee wings nanopatterns into the design of antibacterial nanomaterials which can be translated into countless applications in healthcare and industry.
{"title":"Honeybee wings hold antibiofouling and antimicrobial clues for improved applications in health care and industries.","authors":"Akamu J Ewunkem, A'lyiha F Beard, Brittany L Justice, Sabrina L Peoples, Jeffery A Meixner, Watson Kemper, Uchenna B Iloghalu","doi":"10.3934/microbiol.2023018","DOIUrl":"https://doi.org/10.3934/microbiol.2023018","url":null,"abstract":"<p><p>Natural surfaces with remarkable properties and functionality have become the focus of intense research. Heretofore, the natural antimicrobial properties of insect wings have inspired research into their applications. The wings of cicadas, butterflies, dragonflies, and damselflies have evolved phenomenal anti-biofouling and antimicrobial properties. These wings are covered by periodic topography ranging from highly ordered hexagonal arrays of nanopillars to intricate \"Christmas-tree\" like structures with the ability to kill microbes by physically rupturing the cell membrane. In contrast, the topography of honeybee wings has received less attention. The role topography plays in antibiofouling, and antimicrobial activity of honeybee wings has never been investigated. Here, through antimicrobial and electron microscopy studies, we showed that pristine honeybee wings displayed no microbes on the wing surface. Also, the wings displayed antimicrobial properties that disrupt microbial cells and inhibit their growth. The antimicrobial activities of the wings were extremely effective at inhibiting the growth of Gram-negative bacterial cells when compared to Gram-positive bacterial cells. The fore wing was effective at inhibiting the growth of Gram-negative bacteria compared to Gram-positive samples. Electron microscopy revealed that the wings were studded with an array of rough, sharp, and pointed pillars that were distributed on both the dorsal and ventral sides, which enhanced anti-biofouling and antimicrobial effects. Our findings demonstrate the potential benefits of incorporating honeybee wings nanopatterns into the design of antibacterial nanomaterials which can be translated into countless applications in healthcare and industry.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"9 2","pages":"332-345"},"PeriodicalIF":4.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9820222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3934/microbiol.2023006
Reham M Al-Mosawi, Hanadi Abdulqadar Jasim, Athir Haddad
This study aimed to assess the efficacy of starch-based zinc oxide nanoparticles (ZnO-NPs) against methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical specimens in Basrah, Iraq. In this cross-sectional study, 61 MRSA were collected from different clinical specimens of patients in Basrah city, Iraq. MRSA isolates were identified using standard microbiology tests, cefoxitin disc diffusion and oxacillin salt agar. ZnO-NPs were synthesized in three different concentrations (0.1 M, 0.05 M, 0.02 M) by the chemical method using starch as the stabilizer. Starch-based ZnO-NPs were characterized using ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The antibacterial effects of particles were investigated by the disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the most effective starch-based ZnO-NPs were determined using a broth microdilution assay. The UV-Vis of all concentrations of starch-based ZnO-NPs exhibited a strong absorption band at 360 nm which was characteristic of the ZnO-NPs. XRD assay confirmed the representative hexagonal wurtzite phase of the starch-based ZnO-NPs, and their purity and high crystallinity. The spherical shape with a diameter of 21.56 ± 3.42 and 22.87 ± 3.91 was revealed for the particles by FE-SEM and TEM, respectively. EDS analysis confirmed the presence of zinc (Zn) (61.4 ± 0.54%) and oxygen (O) (36 ± 0.14%). The 0.1 M concentration had the highest antibacterial effects (mean ± SD of inhibition zone = 17.62 ± 2.65 mm) followed by the 0.05 M concentration (16.03 ± 2.24 mm) and the 0.02 M concentration (12.7 ± 2.57 mm). The MIC and the MBC of the 0.1 M concentration were in the range of 25-50 µg/mL and 50-100 µg/mL, respectively. Infections caused by MRSA can be treated with biopolymer-based ZnO-NPs as effective antimicrobials.
{"title":"Study of the antibacterial effects of the starch-based zinc oxide nanoparticles on methicillin resistance <i>Staphylococcus aureus</i> isolates from different clinical specimens of patients from Basrah, Iraq.","authors":"Reham M Al-Mosawi, Hanadi Abdulqadar Jasim, Athir Haddad","doi":"10.3934/microbiol.2023006","DOIUrl":"https://doi.org/10.3934/microbiol.2023006","url":null,"abstract":"<p><p>This study aimed to assess the efficacy of starch-based zinc oxide nanoparticles (ZnO-NPs) against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) isolates from clinical specimens in Basrah, Iraq. In this cross-sectional study, 61 MRSA were collected from different clinical specimens of patients in Basrah city, Iraq. MRSA isolates were identified using standard microbiology tests, cefoxitin disc diffusion and oxacillin salt agar. ZnO-NPs were synthesized in three different concentrations (0.1 M, 0.05 M, 0.02 M) by the chemical method using starch as the stabilizer. Starch-based ZnO-NPs were characterized using ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The antibacterial effects of particles were investigated by the disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the most effective starch-based ZnO-NPs were determined using a broth microdilution assay. The UV-Vis of all concentrations of starch-based ZnO-NPs exhibited a strong absorption band at 360 nm which was characteristic of the ZnO-NPs. XRD assay confirmed the representative hexagonal wurtzite phase of the starch-based ZnO-NPs, and their purity and high crystallinity. The spherical shape with a diameter of 21.56 ± 3.42 and 22.87 ± 3.91 was revealed for the particles by FE-SEM and TEM, respectively. EDS analysis confirmed the presence of zinc (Zn) (61.4 ± 0.54%) and oxygen (O) (36 ± 0.14%). The 0.1 M concentration had the highest antibacterial effects (mean ± SD of inhibition zone = 17.62 ± 2.65 mm) followed by the 0.05 M concentration (16.03 ± 2.24 mm) and the 0.02 M concentration (12.7 ± 2.57 mm). The MIC and the MBC of the 0.1 M concentration were in the range of 25-50 µg/mL and 50-100 µg/mL, respectively. Infections caused by MRSA can be treated with biopolymer-based ZnO-NPs as effective antimicrobials.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"9 1","pages":"90-107"},"PeriodicalIF":4.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9076086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plastics have quickly become an integral part of modern life. Due to excessive production and improper waste disposal, they are recognized as contaminants present in practically all habitat types. Although there are several polymers, polyethylene terephthalate (PET) is of particular concern due to its abundance in the environment. There is a need for a solution that is both cost-effective and ecologically friendly to address this pollutant. The use of microbial depolymerizing enzymes could offer a biological avenue for plastic degradation, though the full potential of these enzymes is yet to be uncovered. The purpose of this study was to use (1) plate-based screening methods to investigate the plastic degradation potential of marine bacteria from the order Enterobacterales collected from various organismal and environmental sources, and (2) perform genome-based analysis to identify polyesterases potentially related to PET degradation. 126 bacterial isolates were obtained from the strain collection of RD3, Research Unit Marine Symbioses-GEOMAR-and sequentially tested for esterase and polyesterase activity, in combination here referred to as PETase-like activity. The results show that members of the microbial families Alteromonadaceae, Shewanellaceae, and Vibrionaceae, derived from marine sponges and bryozoans, are the most promising candidates within the order Enterobacterales. Furthermore, 389 putative hydrolases from the α/β superfamily were identified in 23 analyzed genomes, of which 22 were sequenced for this study. Several candidates showed similarities with known PETases, indicating underlying enzymatic potential within the order Enterobacterales for PET degradation.
塑料已迅速成为现代生活中不可或缺的一部分。由于过度生产和不当的废物处理,它们被认为是几乎所有生境类型中存在的污染物。虽然有几种聚合物,但聚对苯二甲酸乙二醇酯(PET)由于其在环境中的丰度而受到特别关注。需要一种既具有成本效益又对生态友好的解决方案来处理这种污染物。微生物解聚酶的使用可以为塑料降解提供生物途径,尽管这些酶的全部潜力尚未被发现。本研究的目的是使用(1)基于平板的筛选方法来研究从各种有机和环境来源中收集的肠杆菌目海洋细菌的塑料降解潜力;(2)进行基因组分析以鉴定可能与PET降解相关的聚酯酶。从海洋共生研究单元(Research Unit Marine symbioses - geomar)的RD3菌株收集中获得126株细菌,并依次检测酯酶和聚酯酶活性,这里将两者结合称为pase样活性。结果表明,从海绵和苔藓虫中分离出来的Alteromonadaceae、Shewanellaceae和Vibrionaceae是肠杆菌目中最有希望的候选微生物。此外,在分析的23个基因组中鉴定出389个来自α/β超家族的推定水解酶,其中22个测序用于本研究。一些候选物显示出与已知的PET酶的相似性,表明肠杆菌目中潜在的PET降解酶潜力。
{"title":"Bioprospecting for polyesterase activity relevant for PET degradation in marine Enterobacterales isolates.","authors":"Denisse Galarza-Verkovitch, Onur Turak, Jutta Wiese, Tanja Rahn, Ute Hentschel, Erik Borchert","doi":"10.3934/microbiol.2023027","DOIUrl":"https://doi.org/10.3934/microbiol.2023027","url":null,"abstract":"<p><p>Plastics have quickly become an integral part of modern life. Due to excessive production and improper waste disposal, they are recognized as contaminants present in practically all habitat types. Although there are several polymers, polyethylene terephthalate (PET) is of particular concern due to its abundance in the environment. There is a need for a solution that is both cost-effective and ecologically friendly to address this pollutant. The use of microbial depolymerizing enzymes could offer a biological avenue for plastic degradation, though the full potential of these enzymes is yet to be uncovered. The purpose of this study was to use (1) plate-based screening methods to investigate the plastic degradation potential of marine bacteria from the order Enterobacterales collected from various organismal and environmental sources, and (2) perform genome-based analysis to identify polyesterases potentially related to PET degradation. 126 bacterial isolates were obtained from the strain collection of RD3, Research Unit Marine Symbioses-GEOMAR-and sequentially tested for esterase and polyesterase activity, in combination here referred to as PETase-like activity. The results show that members of the microbial families <i>Alteromonadaceae</i>, <i>Shewanellaceae</i>, and <i>Vibrionaceae</i>, derived from marine sponges and bryozoans, are the most promising candidates within the order Enterobacterales. Furthermore, 389 putative hydrolases from the α/β superfamily were identified in 23 analyzed genomes, of which 22 were sequenced for this study. Several candidates showed similarities with known PETases, indicating underlying enzymatic potential within the order Enterobacterales for PET degradation.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"9 3","pages":"518-539"},"PeriodicalIF":4.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10184024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3934/microbiol.2023024
Ashok Chakraborty, Anil Diwan, Jayant Tatake
In recent years studies of nanomaterials have been explored in the field of microbiology due to the increasing evidence of antibiotic resistance. Nanomaterials could be inorganic or organic, and they may be synthesized from natural products from plant or animal origin. The therapeutic applications of nano-materials are wide, from diagnosis of disease to targeted delivery of drugs. Broad-spectrum antiviral and antimicrobial activities of nanoparticles are also well evident. The ratio of nanoparticles surface area to their volume is high and that allows them to be an advantageous vehicle of drugs in many respects. Effective uses of various materials for the synthesis of nanoparticles impart much specificity in them to meet the requirements of specific therapeutic strategies. The potential therapeutic use of nanoparticles and their mechanisms of action against infections from bacteria, fungi and viruses were the focus of this review. Further, their potential advantages, drawbacks, limitations and side effects are also included here. Researchers are characterizing the exposure pathways of nano-medicines that may cause serious toxicity to the subjects or the environment. Indeed, societal ethical issues in using nano-medicines pose a serious question to scientists beyond anything.
{"title":"Prospect of nanomaterials as antimicrobial and antiviral regimen.","authors":"Ashok Chakraborty, Anil Diwan, Jayant Tatake","doi":"10.3934/microbiol.2023024","DOIUrl":"https://doi.org/10.3934/microbiol.2023024","url":null,"abstract":"<p><p>In recent years studies of nanomaterials have been explored in the field of microbiology due to the increasing evidence of antibiotic resistance. Nanomaterials could be inorganic or organic, and they may be synthesized from natural products from plant or animal origin. The therapeutic applications of nano-materials are wide, from diagnosis of disease to targeted delivery of drugs. Broad-spectrum antiviral and antimicrobial activities of nanoparticles are also well evident. The ratio of nanoparticles surface area to their volume is high and that allows them to be an advantageous vehicle of drugs in many respects. Effective uses of various materials for the synthesis of nanoparticles impart much specificity in them to meet the requirements of specific therapeutic strategies. The potential therapeutic use of nanoparticles and their mechanisms of action against infections from bacteria, fungi and viruses were the focus of this review. Further, their potential advantages, drawbacks, limitations and side effects are also included here. Researchers are characterizing the exposure pathways of nano-medicines that may cause serious toxicity to the subjects or the environment. Indeed, societal ethical issues in using nano-medicines pose a serious question to scientists beyond anything.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"9 3","pages":"444-466"},"PeriodicalIF":4.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10184027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.3934/microbiol.2023012
Cheng Zhen, Xian-Feng Ge, Yi-Ting Lu, Wen-Zheng Liu
Surfactin, a cyclic lipopeptide produced by microbes belonging to the genus Bacillus, is one of the most effective biosurfactants available in many industrial fields. However, its low production and high cost have intensively constrained its commercial applications. In this review, we first summarize the molecular structure, biological properties, beneficial roles and potential applications of surfactin in the fields of medical care and food safety, highlighting the great medical and commercial values of making its industrial production into reality. Further, genetic regulation for surfactin biosynthesis and advanced strategies for enhancing its microbial production, including optimizing fermentation conditions, rational genetic engineering and synthetic biology combined with metabolic engineering approaches, are elucidated. Finally, prospects for improving surfactin biosynthesis are discussed, and the establishment of suitable chassis hosts for exogenous production of surfactin might serve as an important strategy in future research.
{"title":"Chemical structure, properties and potential applications of surfactin, as well as advanced strategies for improving its microbial production.","authors":"Cheng Zhen, Xian-Feng Ge, Yi-Ting Lu, Wen-Zheng Liu","doi":"10.3934/microbiol.2023012","DOIUrl":"https://doi.org/10.3934/microbiol.2023012","url":null,"abstract":"<p><p>Surfactin, a cyclic lipopeptide produced by microbes belonging to the genus <i>Bacillus</i>, is one of the most effective biosurfactants available in many industrial fields. However, its low production and high cost have intensively constrained its commercial applications. In this review, we first summarize the molecular structure, biological properties, beneficial roles and potential applications of surfactin in the fields of medical care and food safety, highlighting the great medical and commercial values of making its industrial production into reality. Further, genetic regulation for surfactin biosynthesis and advanced strategies for enhancing its microbial production, including optimizing fermentation conditions, rational genetic engineering and synthetic biology combined with metabolic engineering approaches, are elucidated. Finally, prospects for improving surfactin biosynthesis are discussed, and the establishment of suitable chassis hosts for exogenous production of surfactin might serve as an important strategy in future research.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"9 2","pages":"195-217"},"PeriodicalIF":4.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113169/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9521128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-22eCollection Date: 2022-01-01DOI: 10.3934/microbiol.2022035
Esther Mezhibovsky, Yue Wu, Fiona G Bawagan, Kevin M Tveter, Samantha Szeto, Diana Roopchand
A healthy gastrointestinal tract functions as a highly selective barrier, allowing the absorption of nutrients and metabolites while preventing gut bacteria and other xenobiotic compounds from entering host circulation and tissues. The intestinal epithelium and intestinal mucus provide a physical first line of defense against resident microbes, pathogens and xenotoxic compounds. Prior studies have indicated that the gut microbe Akkermansia muciniphila, a mucin-metabolizer, can stimulate intestinal mucin thickness to improve gut barrier integrity. Grape polyphenol (GP) extracts rich in B-type proanthocyanidin (PAC) compounds have been found to increase the relative abundance of A. muciniphila, suggesting that PACs alter the gut microbiota to support a healthy gut barrier. To further investigate the effect of GPs on the gut barrier and A. muciniphila, male C57BL/6 mice were fed a high-fat diet (HFD) or low-fat diet (LFD) with or without 1% GPs (HFD-GP, LFD-GP) for 12 weeks. Compared to the mice fed unsupplemented diets, GP-supplemented mice showed increased relative abundance of fecal and cecal A. muciniphila, a reduction in total bacteria, a diminished colon mucus layer and increased fecal mucus content. GP supplementation also reduced the presence of goblet cells regardless of dietary fat. Compared to the HFD group, ileal gene expression of lipopolysaccharide (LPS)-binding protein (Lbp), an acute-phase protein that promotes pro-inflammatory cytokine expression, was reduced in the HFD-GP group, suggesting reduced LPS in circulation. Despite depletion of the colonic mucus layer, markers of inflammation (Ifng, Il1b, Tnfa, and Nos2) were similar among the four groups, with the exception that ileal Il6 mRNA levels were lower in the LFD-GP group compared to the LFD group. Our findings suggest that the GP-induced increase in A. muciniphila promotes redistribution of the intestinal mucus layer to the intestinal lumen, and that the GP-induced decrease in total bacteria results in a less inflammatory intestinal milieu.
{"title":"Impact of grape polyphenols on <i>Akkermansia muciniphila</i> and the gut barrier.","authors":"Esther Mezhibovsky, Yue Wu, Fiona G Bawagan, Kevin M Tveter, Samantha Szeto, Diana Roopchand","doi":"10.3934/microbiol.2022035","DOIUrl":"10.3934/microbiol.2022035","url":null,"abstract":"<p><p>A healthy gastrointestinal tract functions as a highly selective barrier, allowing the absorption of nutrients and metabolites while preventing gut bacteria and other xenobiotic compounds from entering host circulation and tissues. The intestinal epithelium and intestinal mucus provide a physical first line of defense against resident microbes, pathogens and xenotoxic compounds. Prior studies have indicated that the gut microbe <i>Akkermansia muciniphila</i>, a mucin-metabolizer, can stimulate intestinal mucin thickness to improve gut barrier integrity. Grape polyphenol (GP) extracts rich in B-type proanthocyanidin (PAC) compounds have been found to increase the relative abundance of <i>A. muciniphila</i>, suggesting that PACs alter the gut microbiota to support a healthy gut barrier. To further investigate the effect of GPs on the gut barrier and <i>A. muciniphila</i>, male C57BL/6 mice were fed a high-fat diet (HFD) or low-fat diet (LFD) with or without 1% GPs (HFD-GP, LFD-GP) for 12 weeks. Compared to the mice fed unsupplemented diets, GP-supplemented mice showed increased relative abundance of fecal and cecal <i>A. muciniphila</i>, a reduction in total bacteria, a diminished colon mucus layer and increased fecal mucus content. GP supplementation also reduced the presence of goblet cells regardless of dietary fat. Compared to the HFD group, ileal gene expression of lipopolysaccharide (LPS)-binding protein (<i>Lbp</i>), an acute-phase protein that promotes pro-inflammatory cytokine expression, was reduced in the HFD-GP group, suggesting reduced LPS in circulation. Despite depletion of the colonic mucus layer, markers of inflammation (<i>Ifng, Il1b, Tnfa, and Nos2</i>) were similar among the four groups, with the exception that ileal <i>Il6</i> mRNA levels were lower in the LFD-GP group compared to the LFD group. Our findings suggest that the GP-induced increase in <i>A. muciniphila</i> promotes redistribution of the intestinal mucus layer to the intestinal lumen, and that the GP-induced decrease in total bacteria results in a less inflammatory intestinal milieu.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"8 4","pages":"544-565"},"PeriodicalIF":4.8,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834079/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10619453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-16eCollection Date: 2022-01-01DOI: 10.3934/microbiol.2022029
Sirio Fiorino, Andrea Carusi, Wandong Hong, Paolo Cernuschi, Claudio Giuseppe Gallo, Emanuele Ferrara, Thais Maloberti, Michela Visani, Federico Lari, Dario de Biase, Maddalena Zippi
In recent weeks, the rate of SARS-CoV-2 infections has been progressively increasing all over the globe, even in countries where vaccination programs have been strongly implemented. In these regions in 2021, a reduction in the number of hospitalizations and deaths compared to 2020 was observed. This decrease is certainly associated with the introduction of vaccination measures. The process of the development of effective vaccines represents an important challenge. Overall, the breakthrough infections occurring in vaccinated subjects are in most cases less severe than those observed in unvaccinated individuals. This review examines the factors affecting the immunogenicity of vaccines against SARS-CoV-2 and the possible role of nutrients in modulating the response of distinct immune cells to the vaccination.
{"title":"SARS-CoV-2 vaccines: What we know, what we can do to improve them and what we could learn from other well-known viruses.","authors":"Sirio Fiorino, Andrea Carusi, Wandong Hong, Paolo Cernuschi, Claudio Giuseppe Gallo, Emanuele Ferrara, Thais Maloberti, Michela Visani, Federico Lari, Dario de Biase, Maddalena Zippi","doi":"10.3934/microbiol.2022029","DOIUrl":"10.3934/microbiol.2022029","url":null,"abstract":"<p><p>In recent weeks, the rate of SARS-CoV-2 infections has been progressively increasing all over the globe, even in countries where vaccination programs have been strongly implemented. In these regions in 2021, a reduction in the number of hospitalizations and deaths compared to 2020 was observed. This decrease is certainly associated with the introduction of vaccination measures. The process of the development of effective vaccines represents an important challenge. Overall, the breakthrough infections occurring in vaccinated subjects are in most cases less severe than those observed in unvaccinated individuals. This review examines the factors affecting the immunogenicity of vaccines against SARS-CoV-2 and the possible role of nutrients in modulating the response of distinct immune cells to the vaccination.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"8 4","pages":"422-453"},"PeriodicalIF":2.7,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9187685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Concern about microbial tolerance and resistance to established antimicrobials drives research into alternatives for local antiseptic wound treatment. Precise efficacy profiles are thereby important in the evaluation of potential alternative antimicrobials, and protein interference ("protein error") is a key factor. Here, the antimicrobial efficacy of cetylpyridinium chloride (CPC) and miramistin (MST) was compared to the established antimicrobials octenidine (OCT), povidon-iodine (PVP-I), polyhexamethylene-biguanide (PHMB) and chlorhexidine (CHX). Efficacy was evaluated after 0.5, 1, 3, 5 and 10 min against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecium and Candida albicans using an in vitro quantitative suspension method (based on DIN EN 13727). To investigate protein interference, 0.3% or 3% bovine albumin was used as the challenge. OCT and PVP-I demonstrated a significant efficacy within 0.5 min, regardless of the microbial organism and protein challenge (p < 0.01). CPC and MST showed no inferiority in efficacy, with only MST needing up to 3 min to achieve the same microbial reduction. PHMB and CHX also achieved significant reduction rates over the tested time-course, yet demonstrated a necessity for prolonged exposure (up to 10 min) for comparable reduction. A protein interference was predominantly observed for PHMB against S. aureus, but without statistically significant differences in antimicrobial efficacy between the 0.3% and 3% protein challenges. All other tested agents showed no relevant interference with the presence of protein. CPC and MST proved to be non-inferior to established wound antiseptics agents in vitro. In fact, CPC showed a more efficient reduction than PHMB and CHX despite there being an introduced protein challenge. Both agents demonstrated no significant "protein error" under challenging conditions (3% albumin), posing them as valid potential candidates for alternative antimicrobials in wound management.
{"title":"Antimicrobials cetylpyridinium-chloride and miramistin demonstrate non-inferiority and no \"protein-error\" compared to established wound care antiseptics <i>in vitro</i>.","authors":"Julian-Dario Rembe, Vivian-Denise Thompson, Ewa Klara Stuermer","doi":"10.3934/microbiol.2022026","DOIUrl":"10.3934/microbiol.2022026","url":null,"abstract":"<p><p>Concern about microbial tolerance and resistance to established antimicrobials drives research into alternatives for local antiseptic wound treatment. Precise efficacy profiles are thereby important in the evaluation of potential alternative antimicrobials, and protein interference (\"protein error\") is a key factor. Here, the antimicrobial efficacy of cetylpyridinium chloride (CPC) and miramistin (MST) was compared to the established antimicrobials octenidine (OCT), povidon-iodine (PVP-I), polyhexamethylene-biguanide (PHMB) and chlorhexidine (CHX). Efficacy was evaluated after 0.5, 1, 3, 5 and 10 min against <i>Staphylococcus aureus</i>, <i>Pseudomonas aeruginosa, Escherichia coli</i>, <i>Enterococcus faecium</i> and <i>Candida albicans</i> using an in vitro quantitative suspension method (based on DIN EN 13727). To investigate protein interference, 0.3% or 3% bovine albumin was used as the challenge. OCT and PVP-I demonstrated a significant efficacy within 0.5 min, regardless of the microbial organism and protein challenge (<i>p</i> < 0.01). CPC and MST showed no inferiority in efficacy, with only MST needing up to 3 min to achieve the same microbial reduction. PHMB and CHX also achieved significant reduction rates over the tested time-course, yet demonstrated a necessity for prolonged exposure (up to 10 min) for comparable reduction. A protein interference was predominantly observed for PHMB against <i>S. aureus</i>, but without statistically significant differences in antimicrobial efficacy between the 0.3% and 3% protein challenges. All other tested agents showed no relevant interference with the presence of protein. CPC and MST proved to be non-inferior to established wound antiseptics agents in vitro. In fact, CPC showed a more efficient reduction than PHMB and CHX despite there being an introduced protein challenge. Both agents demonstrated no significant \"protein error\" under challenging conditions (3% albumin), posing them as valid potential candidates for alternative antimicrobials in wound management.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"8 4","pages":"372-387"},"PeriodicalIF":2.7,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834083/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10619452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-16eCollection Date: 2022-01-01DOI: 10.3934/microbiol.2022025
Nurul Alia Syufina Abu Bakar, Nur Aliyyah Khuzaini, Siti Baidurah
Biomass fuel is one of the renewable energy sources that can be produced by valorization of palm oil mill effluent (POME) and empty fruit bunch (EFB). POME and EFB are available abundantly in Malaysia and only small portion is utilized to produce other value-added products. The objective of this study is to: (1) utilize the wastes from agro-industrial sector especially palm oil wastes and bio-valorize into value-added product of biomass fuel with high CEV, and simultaneously (2) reduce the waste accumulated in the palm oil factory. In this study, co-fermentation of bacteria (Lysinibacillus sp.) and fungus (Aspergillus flavus) at 37 °C, 180 rpm for 5 days, followed by overnight oven-dry at 85 °C was conducted utilizing a mixture of POME and EFB with the ratio of 7:3 at laboratory scale. Three fermentation medium conditions were performed, namely: (1) Group 1: autoclaved POME and EFB without addition of any microorganisms, (2) Group 2: autoclaved POME and EFB with the addition of Lysinibacillus sp. LC 556247 and Aspergillus flavus, and (3) Group 3: POME and EFB as it is (non-sterile). Among all condition, Group 2 with co-fermentation evinced the highest calorific energy value (CEV) of 26.71 MJ/kg, highest biochemical oxygen demand (BOD) removal efficiency of 61.11%, chemical oxygen demand (COD) removal efficiency at 48.47%, and total suspended solid (TSS) reduction of 37.12%. Overall, this study successfully utilized abundant POME and EFB waste and turn into value added product of renewable biomass fuel with high CEV percentage and simultaneously able to reduce abundant liquid waste.
{"title":"Co-fermentation involving <i>Lysinibacillus</i> sp. and <i>Aspergillus flavus</i> for simultaneous palm oil waste treatment and renewable biomass fuel production.","authors":"Nurul Alia Syufina Abu Bakar, Nur Aliyyah Khuzaini, Siti Baidurah","doi":"10.3934/microbiol.2022025","DOIUrl":"https://doi.org/10.3934/microbiol.2022025","url":null,"abstract":"<p><p>Biomass fuel is one of the renewable energy sources that can be produced by valorization of palm oil mill effluent (POME) and empty fruit bunch (EFB). POME and EFB are available abundantly in Malaysia and only small portion is utilized to produce other value-added products. The objective of this study is to: (1) utilize the wastes from agro-industrial sector especially palm oil wastes and bio-valorize into value-added product of biomass fuel with high CEV, and simultaneously (2) reduce the waste accumulated in the palm oil factory. In this study, co-fermentation of bacteria (<i>Lysinibacillus</i> sp.) and fungus (<i>Aspergillus flavus</i>) at 37 °C, 180 rpm for 5 days, followed by overnight oven-dry at 85 °C was conducted utilizing a mixture of POME and EFB with the ratio of 7:3 at laboratory scale. Three fermentation medium conditions were performed, namely: (1) Group 1: autoclaved POME and EFB without addition of any microorganisms, (2) Group 2: autoclaved POME and EFB with the addition of <i>Lysinibacillus</i> sp. LC 556247 and <i>Aspergillus flavus</i>, and (3) Group 3: POME and EFB as it is (non-sterile). Among all condition, Group 2 with co-fermentation evinced the highest calorific energy value (CEV) of 26.71 MJ/kg, highest biochemical oxygen demand (BOD) removal efficiency of 61.11%, chemical oxygen demand (COD) removal efficiency at 48.47%, and total suspended solid (TSS) reduction of 37.12%. Overall, this study successfully utilized abundant POME and EFB waste and turn into value added product of renewable biomass fuel with high CEV percentage and simultaneously able to reduce abundant liquid waste.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"8 3","pages":"357-371"},"PeriodicalIF":4.8,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40657935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}