Abstract In this work, a technique is proposed to identify the diseases that occur in plants. The system is based on a combination of residual network and attention learning. The work focuses on disease identification from the images of four different plant types by analyzing leaf images of the plants. A total of four datasets are used for the work. The system incorporates attention-aware features computed by the Residual Attention Network (Res-ATTEN). The base of the network is ResNet-18 architecture. Integrating attention learning in the residual network helps improve the system's overall accuracy. Various residual attention units are combined to create a single architecture. Unlike the traditional attention network architectures, which focus only on a single type of attention, the system uses a mixed type of attention learning, i.e., a combination of spatial and channel attention. Our technique achieves state-of-the-art performance with the highest accuracy of 99%. The results show that the proposed system has performed well for both purposes and notably outperformed the traditional systems.
{"title":"A multi-crop disease identification approach based on residual attention learning","authors":"Kirti, N. Rajpal","doi":"10.1515/jisys-2022-0248","DOIUrl":"https://doi.org/10.1515/jisys-2022-0248","url":null,"abstract":"Abstract In this work, a technique is proposed to identify the diseases that occur in plants. The system is based on a combination of residual network and attention learning. The work focuses on disease identification from the images of four different plant types by analyzing leaf images of the plants. A total of four datasets are used for the work. The system incorporates attention-aware features computed by the Residual Attention Network (Res-ATTEN). The base of the network is ResNet-18 architecture. Integrating attention learning in the residual network helps improve the system's overall accuracy. Various residual attention units are combined to create a single architecture. Unlike the traditional attention network architectures, which focus only on a single type of attention, the system uses a mixed type of attention learning, i.e., a combination of spatial and channel attention. Our technique achieves state-of-the-art performance with the highest accuracy of 99%. The results show that the proposed system has performed well for both purposes and notably outperformed the traditional systems.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84122450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract An intrusion detection system plays an essential role in system security by discovering and preventing malicious activities. Over the past few years, several research projects on host-based intrusion detection systems (HIDSs) have been carried out utilizing the Australian Defense Force Academy Linux Dataset (ADFA-LD). These HIDS have also been subjected to various algorithm analyses to enhance their detection capability for high accuracy and low false alarms. However, less attention is paid to the actual implementation of real-time HIDS. Our principal objective in this study is to create a performant real-time HIDS. We propose a new model, “Better Similarity Algorithm for Host-based Intrusion Detection System” (BSA-HIDS), using the same dataset ADFA-LD. The proposed model uses three classifications to represent the attack folder according to certain criteria, the entire system call sequence is used. Furthermore, this work uses textual distance and compares five algorithms like Levenshtein, Jaro–Winkler, Jaccard, Hamming, and Dice coefficient, to classify the system call trace as attack or non-attack based on the notions of interclass decoupling and intra-class coupling. The model can detect zero-day attacks because of the threshold definition. The experimental results show a good detection performance in real-time for Levenshtein/Jaro–Winkler algorithms, 99–94% in detection rate, 2–5% in false alarm rate, and 3,300–720 s in running time, respectively.
{"title":"Towards a better similarity algorithm for host-based intrusion detection system","authors":"Lounis Ouarda, Malika Bourenane, Bouderah Brahim","doi":"10.1515/jisys-2022-0259","DOIUrl":"https://doi.org/10.1515/jisys-2022-0259","url":null,"abstract":"Abstract An intrusion detection system plays an essential role in system security by discovering and preventing malicious activities. Over the past few years, several research projects on host-based intrusion detection systems (HIDSs) have been carried out utilizing the Australian Defense Force Academy Linux Dataset (ADFA-LD). These HIDS have also been subjected to various algorithm analyses to enhance their detection capability for high accuracy and low false alarms. However, less attention is paid to the actual implementation of real-time HIDS. Our principal objective in this study is to create a performant real-time HIDS. We propose a new model, “Better Similarity Algorithm for Host-based Intrusion Detection System” (BSA-HIDS), using the same dataset ADFA-LD. The proposed model uses three classifications to represent the attack folder according to certain criteria, the entire system call sequence is used. Furthermore, this work uses textual distance and compares five algorithms like Levenshtein, Jaro–Winkler, Jaccard, Hamming, and Dice coefficient, to classify the system call trace as attack or non-attack based on the notions of interclass decoupling and intra-class coupling. The model can detect zero-day attacks because of the threshold definition. The experimental results show a good detection performance in real-time for Levenshtein/Jaro–Winkler algorithms, 99–94% in detection rate, 2–5% in false alarm rate, and 3,300–720 s in running time, respectively.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85007870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Anomaly detection is a fundamental problem in data science and is one of the highly studied topics in machine learning. This problem has been addressed in different contexts and domains. This article investigates anomalous data within time series data in the maritime sector. Since there is no annotated dataset for this purpose, in this study, we apply an unsupervised approach. Our method benefits from the unsupervised learning feature of autoencoders. We utilize the reconstruction error as a signal for anomaly detection. For this purpose, we estimate the probability density function of the reconstruction error and find different levels of abnormality based on statistical attributes of the density of error. Our results demonstrate the effectiveness of this approach for localizing irregular patterns in the trajectory of vessel movements.
{"title":"Anomaly detection for maritime navigation based on probability density function of error of reconstruction","authors":"Zahra Sadeghi, Stan Matwin","doi":"10.1515/jisys-2022-0270","DOIUrl":"https://doi.org/10.1515/jisys-2022-0270","url":null,"abstract":"Abstract Anomaly detection is a fundamental problem in data science and is one of the highly studied topics in machine learning. This problem has been addressed in different contexts and domains. This article investigates anomalous data within time series data in the maritime sector. Since there is no annotated dataset for this purpose, in this study, we apply an unsupervised approach. Our method benefits from the unsupervised learning feature of autoencoders. We utilize the reconstruction error as a signal for anomaly detection. For this purpose, we estimate the probability density function of the reconstruction error and find different levels of abnormality based on statistical attributes of the density of error. Our results demonstrate the effectiveness of this approach for localizing irregular patterns in the trajectory of vessel movements.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135710303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. A. A. S. Aldeen, S. Kadhim, N. N. Kadhim, Syed Hamid Hussain Madni
Abstract Wireless sensor networks (WSNs) require accurate localization of sensor nodes for various applications. In this article, we propose the distance vector hop localization method (DVHLM) to address the node dislocation issue in real-time networks. The proposed method combines trilateration and Particle Swarm Optimization techniques to estimate the location of unknown or dislocated nodes. Our methodology includes four steps: coordinate calculation, distance calculation, unknown node position estimation, and estimation correction. To evaluate the proposed method, we conducted simulation experiments and compared its performance with state-of-the-art methods in terms of localization accuracy with known nodes, dislocated nodes, and shadowing effects. Our results demonstrate that DVHLM outperforms the existing methods and achieves better localization accuracy with reduced error. This article provides a valuable contribution to the field of WSNs by proposing a new method with a detailed methodology and superior performance.
{"title":"A novel distance vector hop localization method for wireless sensor networks","authors":"Y. A. A. S. Aldeen, S. Kadhim, N. N. Kadhim, Syed Hamid Hussain Madni","doi":"10.1515/jisys-2023-0031","DOIUrl":"https://doi.org/10.1515/jisys-2023-0031","url":null,"abstract":"Abstract Wireless sensor networks (WSNs) require accurate localization of sensor nodes for various applications. In this article, we propose the distance vector hop localization method (DVHLM) to address the node dislocation issue in real-time networks. The proposed method combines trilateration and Particle Swarm Optimization techniques to estimate the location of unknown or dislocated nodes. Our methodology includes four steps: coordinate calculation, distance calculation, unknown node position estimation, and estimation correction. To evaluate the proposed method, we conducted simulation experiments and compared its performance with state-of-the-art methods in terms of localization accuracy with known nodes, dislocated nodes, and shadowing effects. Our results demonstrate that DVHLM outperforms the existing methods and achieves better localization accuracy with reduced error. This article provides a valuable contribution to the field of WSNs by proposing a new method with a detailed methodology and superior performance.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75572195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Content-based image retrieval (CBIR) is a technique used to retrieve image from an image database. However, the CBIR process suffers from less accuracy to retrieve many images from an extensive image database and prove the privacy of images. The aim of this article is to address the issues of accuracy utilizing deep learning techniques such as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon–Kim–Kim–Song (CKKS). The system has been proposed, namely RCNN_CKKS, which includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a new dataset. In the second part (online processing), the client sends the encrypted image to the server, which depends on the CNN model trained to extract features of the sent image. Next, the extracted features are compared with the stored features using a Hamming distance method to retrieve all similar images. Finally, the server encrypts all retrieved images and sends them to the client. Deep-learning results on plain images were 97.87% for classification and 98.94% for retriever images. At the same time, the NIST test was used to check the security of CKKS when applied to Canadian Institute for Advanced Research (CIFAR-10) dataset. Through these results, researchers conclude that deep learning is an effective method for image retrieval and that a CKKS method is appropriate for image privacy protection.
{"title":"Deep learning for content-based image retrieval in FHE algorithms","authors":"Sura Mahmood Abdullah, Mustafa Musa Jaber","doi":"10.1515/jisys-2022-0222","DOIUrl":"https://doi.org/10.1515/jisys-2022-0222","url":null,"abstract":"Abstract Content-based image retrieval (CBIR) is a technique used to retrieve image from an image database. However, the CBIR process suffers from less accuracy to retrieve many images from an extensive image database and prove the privacy of images. The aim of this article is to address the issues of accuracy utilizing deep learning techniques such as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon–Kim–Kim–Song (CKKS). The system has been proposed, namely RCNN_CKKS, which includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a new dataset. In the second part (online processing), the client sends the encrypted image to the server, which depends on the CNN model trained to extract features of the sent image. Next, the extracted features are compared with the stored features using a Hamming distance method to retrieve all similar images. Finally, the server encrypts all retrieved images and sends them to the client. Deep-learning results on plain images were 97.87% for classification and 98.94% for retriever images. At the same time, the NIST test was used to check the security of CKKS when applied to Canadian Institute for Advanced Research (CIFAR-10) dataset. Through these results, researchers conclude that deep learning is an effective method for image retrieval and that a CKKS method is appropriate for image privacy protection.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81845440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Industrialization has advanced quickly, bringing intelligent production and manufacturing into people’s daily lives, but it has also created a number of issues with the ability of intelligent control systems for industrial robots. As a result, a study has been conducted on the use of multi-source data fusion methods in the mechanical industry. First, the research analyzes and discusses the existing research at home and abroad. Then, a robot intelligent control system based on multi-source fusion method is proposed, which combines multi-source data fusion with principal component analysis to better fuse data of multiple control periods; In the process, the experimental results are dynamically evaluated, and the performance of the proposed method is compared with other fusion methods. The results of the study showed that the confidence values and recognition correctness of the intelligent control system under the proposed method were superior compared to the Yu, Murphy, and Deng methods. Applying the method to the comparison of real-time and historical data values, it is found that the predicted data under the proposed method fits better with the actual data values, and the fit can be as high as 0.9945. The dynamic evaluation analysis of single and multi-factor in the simulation stage demonstrates that the control ability in the training samples of 0–100 is often better than the actual results, and the best evaluation results may be obtained at the sample size of 50 per batch. The aforementioned findings demonstrated that the multi-data fusion method that was suggested had a high degree of viability and accuracy for the intelligent control system of industrial robots and could offer a fresh line of enquiry for the advancement and development of the mechanical industrialization field.
{"title":"Intelligent control system for industrial robots based on multi-source data fusion","authors":"Yang Zhang","doi":"10.1515/jisys-2022-0286","DOIUrl":"https://doi.org/10.1515/jisys-2022-0286","url":null,"abstract":"Abstract Industrialization has advanced quickly, bringing intelligent production and manufacturing into people’s daily lives, but it has also created a number of issues with the ability of intelligent control systems for industrial robots. As a result, a study has been conducted on the use of multi-source data fusion methods in the mechanical industry. First, the research analyzes and discusses the existing research at home and abroad. Then, a robot intelligent control system based on multi-source fusion method is proposed, which combines multi-source data fusion with principal component analysis to better fuse data of multiple control periods; In the process, the experimental results are dynamically evaluated, and the performance of the proposed method is compared with other fusion methods. The results of the study showed that the confidence values and recognition correctness of the intelligent control system under the proposed method were superior compared to the Yu, Murphy, and Deng methods. Applying the method to the comparison of real-time and historical data values, it is found that the predicted data under the proposed method fits better with the actual data values, and the fit can be as high as 0.9945. The dynamic evaluation analysis of single and multi-factor in the simulation stage demonstrates that the control ability in the training samples of 0–100 is often better than the actual results, and the best evaluation results may be obtained at the sample size of 50 per batch. The aforementioned findings demonstrated that the multi-data fusion method that was suggested had a high degree of viability and accuracy for the intelligent control system of industrial robots and could offer a fresh line of enquiry for the advancement and development of the mechanical industrialization field.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74451422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract As an important identity authentication method, speaker verification (SV) has been widely used in many domains, e.g., mobile financials. At the same time, the existing SV systems are insecure under replay spoofing attacks. Toward a more secure and stable SV system, this article proposes a replay attack detection system based on deformable convolutional neural networks (DCNNs) and a time–frequency double-channel attention model. In DCNN, the positions of elements in the convolutional kernel are not fixed. Instead, they are modified by some trainable variable to help the model extract more useful local information from input spectrograms. Meanwhile, a time–frequency domino double-channel attention model is adopted to extract more effective distinctive features to collect valuable information for distinguishing genuine and replay speeches. Experimental results on ASVspoof 2019 dataset show that the proposed model can detect replay attacks accurately.
{"title":"Replay attack detection based on deformable convolutional neural network and temporal-frequency attention model","authors":"Dang-en Xie, Hai Hu, Qiang Xu","doi":"10.1515/jisys-2022-0265","DOIUrl":"https://doi.org/10.1515/jisys-2022-0265","url":null,"abstract":"Abstract As an important identity authentication method, speaker verification (SV) has been widely used in many domains, e.g., mobile financials. At the same time, the existing SV systems are insecure under replay spoofing attacks. Toward a more secure and stable SV system, this article proposes a replay attack detection system based on deformable convolutional neural networks (DCNNs) and a time–frequency double-channel attention model. In DCNN, the positions of elements in the convolutional kernel are not fixed. Instead, they are modified by some trainable variable to help the model extract more useful local information from input spectrograms. Meanwhile, a time–frequency domino double-channel attention model is adopted to extract more effective distinctive features to collect valuable information for distinguishing genuine and replay speeches. Experimental results on ASVspoof 2019 dataset show that the proposed model can detect replay attacks accurately.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82168853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Firas Mohammed Aswad, Ali Ahmed, N. A. M. Alhammadi, Bashar Ahmad Khalaf, S. Mostafa
Abstract With the rapid growth of informatics systems’ technology in this modern age, the Internet of Things (IoT) has become more valuable and vital to everyday life in many ways. IoT applications are now more popular than they used to be due to the availability of many gadgets that work as IoT enablers, including smartwatches, smartphones, security cameras, and smart sensors. However, the insecure nature of IoT devices has led to several difficulties, one of which is distributed denial-of-service (DDoS) attacks. IoT systems have several security limitations due to their disreputability characteristics, like dynamic communication between IoT devices. The dynamic communications resulted from the limited resources of these devices, such as their data storage and processing units. Recently, many attempts have been made to develop intelligent models to protect IoT networks against DDoS attacks. The main ongoing research issue is developing a model capable of protecting the network from DDoS attacks that is sensitive to various classes of DDoS and can recognize legitimate traffic to avoid false alarms. Subsequently, this study proposes combining three deep learning algorithms, namely recurrent neural network (RNN), long short-term memory (LSTM)-RNN, and convolutional neural network (CNN), to build a bidirectional CNN-BiLSTM DDoS detection model. The RNN, CNN, LSTM, and CNN-BiLSTM are implemented and tested to determine the most effective model against DDoS attacks that can accurately detect and distinguish DDoS from legitimate traffic. The intrusion detection evaluation dataset (CICIDS2017) is used to provide more realistic detection. The CICIDS2017 dataset includes benign and up-to-date examples of typical attacks, closely matching real-world data of Packet Capture. The four models are tested and assessed using Confusion Metrix against four commonly used criteria: accuracy, precision, recall, and F-measure. The performance of the models is quite effective as they obtain an accuracy rate of around 99.00%, except for the CNN model, which achieves an accuracy of 98.82%. The CNN-BiLSTM achieves the best accuracy of 99.76% and precision of 98.90%.
{"title":"Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks","authors":"Firas Mohammed Aswad, Ali Ahmed, N. A. M. Alhammadi, Bashar Ahmad Khalaf, S. Mostafa","doi":"10.1515/jisys-2022-0155","DOIUrl":"https://doi.org/10.1515/jisys-2022-0155","url":null,"abstract":"Abstract With the rapid growth of informatics systems’ technology in this modern age, the Internet of Things (IoT) has become more valuable and vital to everyday life in many ways. IoT applications are now more popular than they used to be due to the availability of many gadgets that work as IoT enablers, including smartwatches, smartphones, security cameras, and smart sensors. However, the insecure nature of IoT devices has led to several difficulties, one of which is distributed denial-of-service (DDoS) attacks. IoT systems have several security limitations due to their disreputability characteristics, like dynamic communication between IoT devices. The dynamic communications resulted from the limited resources of these devices, such as their data storage and processing units. Recently, many attempts have been made to develop intelligent models to protect IoT networks against DDoS attacks. The main ongoing research issue is developing a model capable of protecting the network from DDoS attacks that is sensitive to various classes of DDoS and can recognize legitimate traffic to avoid false alarms. Subsequently, this study proposes combining three deep learning algorithms, namely recurrent neural network (RNN), long short-term memory (LSTM)-RNN, and convolutional neural network (CNN), to build a bidirectional CNN-BiLSTM DDoS detection model. The RNN, CNN, LSTM, and CNN-BiLSTM are implemented and tested to determine the most effective model against DDoS attacks that can accurately detect and distinguish DDoS from legitimate traffic. The intrusion detection evaluation dataset (CICIDS2017) is used to provide more realistic detection. The CICIDS2017 dataset includes benign and up-to-date examples of typical attacks, closely matching real-world data of Packet Capture. The four models are tested and assessed using Confusion Metrix against four commonly used criteria: accuracy, precision, recall, and F-measure. The performance of the models is quite effective as they obtain an accuracy rate of around 99.00%, except for the CNN model, which achieves an accuracy of 98.82%. The CNN-BiLSTM achieves the best accuracy of 99.76% and precision of 98.90%.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82967479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this research, a novel real time approach has been proposed for detection and analysis of Covid19 using chest X-ray images based on a non-iterative deterministic classifier, kernel extreme learning machine (KELM), and a pretrained network ResNet50. The information extraction capability of deep learning and non-iterative deterministic training nature of KELM has been incorporated in the proposed novel fusion model. The binary classification is carried out with a non-iterative deterministic learning based classifier, KELM. Our proposed approach is able to minimize the average testing error up to 2.76 on first dataset, and up to 0.79 on the second one, demonstrating its effectiveness after experimental confirmation. A comparative analysis of the approach with other existing state-of-the-art methods is also presented in this research and the classification performance confirm the advantages and superiority of our novel approach called RES-KELM algorithm.
{"title":"RES-KELM fusion model based on non-iterative deterministic learning classifier for classification of Covid19 chest X-ray images","authors":"Arshi Husain, Virendra P. Vishvakarma","doi":"10.1515/jisys-2022-0235","DOIUrl":"https://doi.org/10.1515/jisys-2022-0235","url":null,"abstract":"Abstract In this research, a novel real time approach has been proposed for detection and analysis of Covid19 using chest X-ray images based on a non-iterative deterministic classifier, kernel extreme learning machine (KELM), and a pretrained network ResNet50. The information extraction capability of deep learning and non-iterative deterministic training nature of KELM has been incorporated in the proposed novel fusion model. The binary classification is carried out with a non-iterative deterministic learning based classifier, KELM. Our proposed approach is able to minimize the average testing error up to 2.76 on first dataset, and up to 0.79 on the second one, demonstrating its effectiveness after experimental confirmation. A comparative analysis of the approach with other existing state-of-the-art methods is also presented in this research and the classification performance confirm the advantages and superiority of our novel approach called RES-KELM algorithm.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83168299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md. Mehedi Hasan, Noor Afiza Mohd Ariffin, N. F. M. Sani
Abstract The continuous development of information communication technology facilitates the conventional grid in transforming into an automated modern system. Internet-of-Things solutions are used along with the evolving services of end-users to the electricity service provider for smart grid applications. In terms of various devices and machine integration, adequate authentication is the key to an accurate source and destination in advanced metering infrastructure (AMI). Various protocols are deployed to lead the identification between two parties, which require high computation time and communicational bit operations for system development. Therefore, Kerberos-based authentication protocols were designed in this study with the assistance of elliptic curve cryptography to manage the mutual authentication between two parties and reduce the time and bit operations. The protocols were evaluated in a widely adopted tool, AVISPA, which builds an understanding of the proposed protocol and ensures mutual authentication without unauthorized knowledge. In addition, upon comparing security and performance assessments to the current schemes, it was found that the protocol in this study required less time and bits to transmit information. Consequently, it effectively provides multiple security features making it suitable for resource constraint smart meters in AMI.
{"title":"Efficient mutual authentication using Kerberos for resource constraint smart meter in advanced metering infrastructure","authors":"Md. Mehedi Hasan, Noor Afiza Mohd Ariffin, N. F. M. Sani","doi":"10.1515/jisys-2021-0095","DOIUrl":"https://doi.org/10.1515/jisys-2021-0095","url":null,"abstract":"Abstract The continuous development of information communication technology facilitates the conventional grid in transforming into an automated modern system. Internet-of-Things solutions are used along with the evolving services of end-users to the electricity service provider for smart grid applications. In terms of various devices and machine integration, adequate authentication is the key to an accurate source and destination in advanced metering infrastructure (AMI). Various protocols are deployed to lead the identification between two parties, which require high computation time and communicational bit operations for system development. Therefore, Kerberos-based authentication protocols were designed in this study with the assistance of elliptic curve cryptography to manage the mutual authentication between two parties and reduce the time and bit operations. The protocols were evaluated in a widely adopted tool, AVISPA, which builds an understanding of the proposed protocol and ensures mutual authentication without unauthorized knowledge. In addition, upon comparing security and performance assessments to the current schemes, it was found that the protocol in this study required less time and bits to transmit information. Consequently, it effectively provides multiple security features making it suitable for resource constraint smart meters in AMI.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89426552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}