首页 > 最新文献

Radiological Physics and Technology最新文献

英文 中文
Evaluation of patient-specific quality assurance for fractionated stereotactic treatment plans with 6 and 10MV photon beams in beam-matched linacs. 评估在光束匹配直列加速器中使用6MV和10MV光子束的分层立体定向治疗计划的患者特定质量保证。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-12-01 Epub Date: 2024-10-04 DOI: 10.1007/s12194-024-00848-0
Mageshraja Kannan, Sathiyan Saminathan, Varatharaj Chandraraj, B Shwetha, D Gowtham Raj, K M Ganesh

Beam-matched linear accelerators (LA's) require accurate and precise dosimetry for fractionated stereotactic treatment. In this study, the beam data were validated by comparing the three-beam-matched LA's measured data and the vendor reference data. Upon its validation, the accuracy of the volumetric dose delivery for eighty patient-specific fractionated stereotactic treatment plans was evaluated. Measurements of the percentage depth dose (PDD), beam profiles, output factors (OFs), absolute output, and dynamic multi-leaf collimator (MLC) transmission factors for 6 MV and 10 MV flattening filter (FF) and flattening filter-free (FFF) photon beams were obtained from three-beam-matched LA's. The patient-specific quality assurance evaluation for all eighty plans was performed using PTW Octavius 1000 SRS™ array detectors for two-dimensional (2D) fluence measurement. The following 2D gamma passing criteria were used: 1%/1 mm, 2%/1 mm, 1%/2 mm, 2%/2 mm and 3%/2 mm. In all three LA's, gamma analysis for PDD and profile were above 97% with gamma criteria of 1%/1 mm. The differences OFs, absolute output, and dynamic MLC transmission factors were less than ± 1% of base value. For all eighty cases, the median passing rates on the three LA's were above 76%, 88%, 92%, 96%, and 98% for the above-mentioned gamma criteria of the three LA's. The beam-matched LA's showed good agreement between the measured and treatment planning system (TPS) calculated values for fractionated stereotactic VMAT plans with 6 MV and 10 MV (FF and FFF) photon beams. Patients can be shifted and treated on any beam-matched linac without the need of re-planning.

光束匹配直线加速器(LA)需要准确和精确的剂量测定来进行分层立体定向治疗。在这项研究中,通过比较三光束匹配 LA 的测量数据和供应商的参考数据,对光束数据进行了验证。经过验证后,对 80 个特定患者的分次立体定向治疗计划的容积剂量输送准确性进行了评估。从三个光束匹配的 LA 获得了 6 MV 和 10 MV 扁平化滤波器(FF)和无扁平化滤波器(FFF)光子束的百分比深度剂量(PDD)、光束轮廓、输出因子(OFs)、绝对输出和动态多叶准直器(MLC)传输因子的测量数据。使用PTW Octavius 1000 SRS™阵列探测器进行二维(2D)通量测量,对所有80个计划进行患者特定质量保证评估。二维伽马通过标准如下:1%/1毫米、2%/1毫米、1%/2毫米、2%/2毫米和3%/2毫米。在所有三个 LA 中,采用 1%/1毫米的伽玛标准,PDD 和剖面的伽玛分析结果都超过了 97%。OFs、绝对输出和动态 MLC 传输因子的差异均小于基准值的 ± 1%。在所有 80 个案例中,三种 LA 在上述伽马标准下的合格率中位数分别高于 76%、88%、92%、96% 和 98%。在使用 6 MV 和 10 MV(FF 和 FFF)光子束的分层立体定向 VMAT 计划中,光束匹配 LA 的测量值与治疗计划系统(TPS)的计算值之间显示出良好的一致性。病人可以在任何光束匹配的直列加速器上进行转移和治疗,而无需重新规划。
{"title":"Evaluation of patient-specific quality assurance for fractionated stereotactic treatment plans with 6 and 10MV photon beams in beam-matched linacs.","authors":"Mageshraja Kannan, Sathiyan Saminathan, Varatharaj Chandraraj, B Shwetha, D Gowtham Raj, K M Ganesh","doi":"10.1007/s12194-024-00848-0","DOIUrl":"10.1007/s12194-024-00848-0","url":null,"abstract":"<p><p>Beam-matched linear accelerators (LA's) require accurate and precise dosimetry for fractionated stereotactic treatment. In this study, the beam data were validated by comparing the three-beam-matched LA's measured data and the vendor reference data. Upon its validation, the accuracy of the volumetric dose delivery for eighty patient-specific fractionated stereotactic treatment plans was evaluated. Measurements of the percentage depth dose (PDD), beam profiles, output factors (OFs), absolute output, and dynamic multi-leaf collimator (MLC) transmission factors for 6 MV and 10 MV flattening filter (FF) and flattening filter-free (FFF) photon beams were obtained from three-beam-matched LA's. The patient-specific quality assurance evaluation for all eighty plans was performed using PTW Octavius 1000 SRS™ array detectors for two-dimensional (2D) fluence measurement. The following 2D gamma passing criteria were used: 1%/1 mm, 2%/1 mm, 1%/2 mm, 2%/2 mm and 3%/2 mm. In all three LA's, gamma analysis for PDD and profile were above 97% with gamma criteria of 1%/1 mm. The differences OFs, absolute output, and dynamic MLC transmission factors were less than ± 1% of base value. For all eighty cases, the median passing rates on the three LA's were above 76%, 88%, 92%, 96%, and 98% for the above-mentioned gamma criteria of the three LA's. The beam-matched LA's showed good agreement between the measured and treatment planning system (TPS) calculated values for fractionated stereotactic VMAT plans with 6 MV and 10 MV (FF and FFF) photon beams. Patients can be shifted and treated on any beam-matched linac without the need of re-planning.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"896-906"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameter optimisation for image acquisition and stacking in carbon dioxide digital subtraction angiography. 二氧化碳数字减影血管造影中图像采集和叠加的参数优化。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-12-01 Epub Date: 2024-09-09 DOI: 10.1007/s12194-024-00841-7
Kazuya Kakuta, Koichi Chida

The aim of this study was to optimise the vessel angle as well as the stack number from the profiles of carbon dioxide digital subtraction angiography (CO2-DSA) images of a water phantom containing an artificial vessel tilted at different angles which imitate arteries in the body. The artificial vessel was tilted at 0°, 15°, and 30° relative to the horizontal axis with its centre as the pivot point, and CO2-DSA images were acquired at each vessel tilt angle. The maximum opacity method was used to stack up to four images of the next frame one by one. The signal-to-noise ratio (SNR) was determined from the profile curves. The Wilcoxon rank sum test was used to evaluate whether the profile curve and SNR differed depending on the vessel tilt angle or stack number, and a p-value of less than 0.05 was considered statistically significant. Images acquired at 0° had a significantly lower SNR than images acquired at 15° (p = 0.10). When the vessel angle was 30°, the profile curves were significantly improved (p < 0.05) when two or more images were stacked over the original image. Images with a good SNR were acquired at the vessel tilt angle of 15°, and the shape of the profile curve was improved when two or more images were stacked on the original image. This study demonstrates that the quality of images acquired using CO2-DSA can be significantly improved through parameter optimisation for image acquisition and post-processing.

本研究旨在从二氧化碳数字减影血管造影(CO2-DSA)图像的剖面图优化血管角度和堆叠数,该图像包含一个模仿人体动脉以不同角度倾斜的人造血管的水模型。人工血管以其中心为支点,相对于水平轴分别倾斜 0°、15° 和 30°,并在每个血管倾斜角度下采集二氧化碳数字减影血管造影(CO2-DSA)图像。使用最大不透明度法逐一叠加下一帧的四幅图像。根据轮廓曲线确定信噪比(SNR)。使用 Wilcoxon 秩和检验来评估血管倾斜角度或叠加数是否会导致轮廓曲线和信噪比不同,P 值小于 0.05 即为具有统计学意义。0° 获取的图像的信噪比明显低于 15° 获取的图像(p = 0.10)。当血管倾角为 30°时,剖面曲线明显改善(p 2-DSA 可通过优化图像采集和后处理的参数得到明显改善。
{"title":"Parameter optimisation for image acquisition and stacking in carbon dioxide digital subtraction angiography.","authors":"Kazuya Kakuta, Koichi Chida","doi":"10.1007/s12194-024-00841-7","DOIUrl":"10.1007/s12194-024-00841-7","url":null,"abstract":"<p><p>The aim of this study was to optimise the vessel angle as well as the stack number from the profiles of carbon dioxide digital subtraction angiography (CO<sub>2</sub>-DSA) images of a water phantom containing an artificial vessel tilted at different angles which imitate arteries in the body. The artificial vessel was tilted at 0°, 15°, and 30° relative to the horizontal axis with its centre as the pivot point, and CO<sub>2</sub>-DSA images were acquired at each vessel tilt angle. The maximum opacity method was used to stack up to four images of the next frame one by one. The signal-to-noise ratio (SNR) was determined from the profile curves. The Wilcoxon rank sum test was used to evaluate whether the profile curve and SNR differed depending on the vessel tilt angle or stack number, and a p-value of less than 0.05 was considered statistically significant. Images acquired at 0° had a significantly lower SNR than images acquired at 15° (p = 0.10). When the vessel angle was 30°, the profile curves were significantly improved (p < 0.05) when two or more images were stacked over the original image. Images with a good SNR were acquired at the vessel tilt angle of 15°, and the shape of the profile curve was improved when two or more images were stacked on the original image. This study demonstrates that the quality of images acquired using CO<sub>2</sub>-DSA can be significantly improved through parameter optimisation for image acquisition and post-processing.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"862-868"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel internal target volume definition based on velocity and time of respiratory target motion for external beam radiotherapy. 基于呼吸靶运动速度和时间的新型外照射放射治疗内靶体积定义。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-12-01 Epub Date: 2024-09-13 DOI: 10.1007/s12194-024-00837-3
Masashi Yamanaka, Teiji Nishio, Kohei Iwabuchi, Hironori Nagata

This study aimed to develop a novel internal target volume (ITV) definition for respiratory motion targets, considering target motion velocity and time. The proposed ITV was evaluated in respiratory-gated radiotherapy. An ITV modified with target motion velocity and time (ITVvt) was defined as an ITV that includes a target motion based on target motion velocity and time. The target motion velocity was calculated using four-dimensional computed tomography (4DCT) images. The ITVvts were created from phantom and clinical 4DCT images. The phantom 4DCT images were acquired using a solid phantom that moved with a sinusoidal waveform (peak-to-peak amplitudes of 10 and 20 mm and cycles of 2-6 s). The clinical 4DCT images were obtained from eight lung cancer cases. In respiratory-gated radiotherapy, the ITVvt was compared with conventional ITVs for beam times of 0.5-2 s within the gating window. The conventional ITV was created by adding a uniform margin as the maximum motion within the gating window. In the phantom images, the maximum volume difference between the ITVvt and conventional ITV was -81.9%. In the clinical images, the maximum volume difference was -53.6%. Shorter respiratory cycles and longer BTs resulted in smaller ITVvt compared with the conventional ITV. Therefore, the proposed ITVvt plan could be used to reduce treatment volumes and doses to normal tissues.

本研究旨在为呼吸运动靶制定一种新的内部靶体积(ITV)定义,同时考虑到靶的运动速度和时间。在呼吸门控放射治疗中对所提出的 ITV 进行了评估。根据靶运动速度和时间修改的内靶体积(ITVvt)被定义为包括基于靶运动速度和时间的靶运动的内靶体积。靶移动速度通过四维计算机断层扫描(4DCT)图像计算得出。ITVvts 由模型和临床 4DCT 图像创建。模型 4DCT 图像是使用实体模型获取的,该模型以正弦波(峰-峰振幅分别为 10 毫米和 20 毫米,周期为 2-6 秒)运动。临床 4DCT 图像来自 8 个肺癌病例。在呼吸门控放射治疗中,ITVvt 与传统 ITV 进行了比较,在门控窗口内的射束时间为 0.5-2 秒。传统的 ITV 是通过在选通窗口内的最大运动中加入一个均匀的边缘来创建的。在模型图像中,ITVvt 和传统 ITV 之间的最大体积差为 -81.9%。在临床图像中,最大体积差为-53.6%。与传统的 ITV 相比,较短的呼吸周期和较长的 BT 会导致较小的 ITVvt。因此,建议的 ITVvt 方案可用于减少正常组织的治疗量和剂量。
{"title":"A novel internal target volume definition based on velocity and time of respiratory target motion for external beam radiotherapy.","authors":"Masashi Yamanaka, Teiji Nishio, Kohei Iwabuchi, Hironori Nagata","doi":"10.1007/s12194-024-00837-3","DOIUrl":"10.1007/s12194-024-00837-3","url":null,"abstract":"<p><p>This study aimed to develop a novel internal target volume (ITV) definition for respiratory motion targets, considering target motion velocity and time. The proposed ITV was evaluated in respiratory-gated radiotherapy. An ITV modified with target motion velocity and time (ITVvt) was defined as an ITV that includes a target motion based on target motion velocity and time. The target motion velocity was calculated using four-dimensional computed tomography (4DCT) images. The ITVvts were created from phantom and clinical 4DCT images. The phantom 4DCT images were acquired using a solid phantom that moved with a sinusoidal waveform (peak-to-peak amplitudes of 10 and 20 mm and cycles of 2-6 s). The clinical 4DCT images were obtained from eight lung cancer cases. In respiratory-gated radiotherapy, the ITVvt was compared with conventional ITVs for beam times of 0.5-2 s within the gating window. The conventional ITV was created by adding a uniform margin as the maximum motion within the gating window. In the phantom images, the maximum volume difference between the ITVvt and conventional ITV was -81.9%. In the clinical images, the maximum volume difference was -53.6%. Shorter respiratory cycles and longer BTs resulted in smaller ITVvt compared with the conventional ITV. Therefore, the proposed ITVvt plan could be used to reduce treatment volumes and doses to normal tissues.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"843-853"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of deep learning-based novel auto-segmentation for the prostatic urethra on planning CT images for prostate cancer radiotherapy. 在前列腺癌放疗计划 CT 图像上开发基于深度学习的新型前列腺尿道自动分割技术。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-12-01 Epub Date: 2024-08-14 DOI: 10.1007/s12194-024-00832-8
Hisamichi Takagi, Ken Takeda, Noriyuki Kadoya, Koki Inoue, Shiki Endo, Noriyoshi Takahashi, Takaya Yamamoto, Rei Umezawa, Keiichi Jingu

Urinary toxicities are one of the serious complications of radiotherapy for prostate cancer, and dose-volume histogram of prostatic urethra has been associated with such toxicities in previous reports. Previous research has focused on estimating the prostatic urethra, which is difficult to delineate in CT images; however, these studies, which are limited in number, mainly focused on cases undergoing brachytherapy uses low-dose-rate sources and do not involve external beam radiation therapy (EBRT). In this study, we aimed to develop a deep learning-based method of determining the position of the prostatic urethra in patients eligible for EBRT. We used contour data from 430 patients with localized prostate cancer. In all cases, a urethral catheter was placed when planning CT to identify the prostatic urethra. We used 2D and 3D U-Net segmentation models. The input images included the bladder and prostate, while the output images focused on the prostatic urethra. The 2D model determined the prostate's position based on results from both coronal and sagittal directions. Evaluation metrics included the average distance between centerlines. The average centerline distances for the 2D and 3D models were 2.07 ± 0.87 mm and 2.05 ± 0.92 mm, respectively. Increasing the number of cases while maintaining equivalent accuracy as we did in this study suggests the potential for high generalization performance and the feasibility of using deep learning technology for estimating the position of the prostatic urethra.

泌尿系统毒性是前列腺癌放疗的严重并发症之一,在以往的报告中,前列腺尿道的剂量-体积直方图与此类毒性有关。以往的研究主要集中在对前列腺尿道的估算上,因为前列腺尿道在 CT 图像中很难划分;然而,这些研究数量有限,主要集中在使用低剂量率放射源的近距离放射治疗病例中,并不涉及体外射束放射治疗(EBRT)。在本研究中,我们旨在开发一种基于深度学习的方法,用于确定符合 EBRT 患者的前列腺尿道位置。我们使用了 430 名局部前列腺癌患者的轮廓数据。在所有病例中,在规划 CT 时都放置了尿道导管以确定前列腺尿道。我们使用了二维和三维 U-Net 分割模型。输入图像包括膀胱和前列腺,而输出图像则侧重于前列腺尿道。二维模型根据冠状和矢状两个方向的结果确定前列腺的位置。评估指标包括中心线之间的平均距离。二维和三维模型的平均中心线距离分别为 2.07 ± 0.87 毫米和 2.05 ± 0.92 毫米。我们在这项研究中增加了病例数,同时保持了同等的准确性,这表明使用深度学习技术估计前列腺尿道位置具有很高的通用性和可行性。
{"title":"Development of deep learning-based novel auto-segmentation for the prostatic urethra on planning CT images for prostate cancer radiotherapy.","authors":"Hisamichi Takagi, Ken Takeda, Noriyuki Kadoya, Koki Inoue, Shiki Endo, Noriyoshi Takahashi, Takaya Yamamoto, Rei Umezawa, Keiichi Jingu","doi":"10.1007/s12194-024-00832-8","DOIUrl":"10.1007/s12194-024-00832-8","url":null,"abstract":"<p><p>Urinary toxicities are one of the serious complications of radiotherapy for prostate cancer, and dose-volume histogram of prostatic urethra has been associated with such toxicities in previous reports. Previous research has focused on estimating the prostatic urethra, which is difficult to delineate in CT images; however, these studies, which are limited in number, mainly focused on cases undergoing brachytherapy uses low-dose-rate sources and do not involve external beam radiation therapy (EBRT). In this study, we aimed to develop a deep learning-based method of determining the position of the prostatic urethra in patients eligible for EBRT. We used contour data from 430 patients with localized prostate cancer. In all cases, a urethral catheter was placed when planning CT to identify the prostatic urethra. We used 2D and 3D U-Net segmentation models. The input images included the bladder and prostate, while the output images focused on the prostatic urethra. The 2D model determined the prostate's position based on results from both coronal and sagittal directions. Evaluation metrics included the average distance between centerlines. The average centerline distances for the 2D and 3D models were 2.07 ± 0.87 mm and 2.05 ± 0.92 mm, respectively. Increasing the number of cases while maintaining equivalent accuracy as we did in this study suggests the potential for high generalization performance and the feasibility of using deep learning technology for estimating the position of the prostatic urethra.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"819-826"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of accuracy and repeatability of quantitative parameter mapping in MRI. 评估磁共振成像定量参数绘图的准确性和可重复性。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-12-01 Epub Date: 2024-08-28 DOI: 10.1007/s12194-024-00836-4
Yuya Hirano, Kinya Ishizaka, Hiroyuki Sugimori, Yo Taniguchi, Tomoki Amemiya, Yoshitaka Bito, Kohsuke Kudo

We aimed to evaluate the accuracy and repeatability of the T1, T2*, and proton density (PD) values obtained by quantitative parameter mapping (QPM) using the ISMRM/NIST MRI system phantom and compared them with computer simulations. We compared the relaxation times and PD obtained through QPM with the reference values of the ISMRM/NIST MRI system phantom and conventional methods. Furthermore, we evaluated the presence or absence of influences other than noise in T1 and T2* values obtained by QPM by comparing the obtained coefficient of variation (CV) with simulation results. The T1, T2*, and PD values by QPM showed a strong correlation with the measured values and the referenced values. The simulated CVs of QPM calculated for each sphere showed similar trends to those of the actual scans.

我们的目的是评估利用 ISMRM/NIST MRI 系统模型通过定量参数绘图 (QPM) 获得的 T1、T2* 和质子密度 (PD) 值的准确性和可重复性,并将其与计算机模拟进行比较。我们将通过 QPM 获得的弛豫时间和 PD 与 ISMRM/NIST MRI 系统模型和传统方法的参考值进行了比较。此外,我们还通过比较 QPM 获得的变异系数 (CV) 与模拟结果,评估了 QPM 获得的 T1 和 T2* 值中是否存在噪音以外的影响因素。QPM 得出的 T1、T2* 和 PD 值与测量值和参考值有很强的相关性。为每个球体计算的 QPM 模拟变异系数与实际扫描的趋势相似。
{"title":"Assessment of accuracy and repeatability of quantitative parameter mapping in MRI.","authors":"Yuya Hirano, Kinya Ishizaka, Hiroyuki Sugimori, Yo Taniguchi, Tomoki Amemiya, Yoshitaka Bito, Kohsuke Kudo","doi":"10.1007/s12194-024-00836-4","DOIUrl":"10.1007/s12194-024-00836-4","url":null,"abstract":"<p><p>We aimed to evaluate the accuracy and repeatability of the T1, T2*, and proton density (PD) values obtained by quantitative parameter mapping (QPM) using the ISMRM/NIST MRI system phantom and compared them with computer simulations. We compared the relaxation times and PD obtained through QPM with the reference values of the ISMRM/NIST MRI system phantom and conventional methods. Furthermore, we evaluated the presence or absence of influences other than noise in T1 and T2* values obtained by QPM by comparing the obtained coefficient of variation (CV) with simulation results. The T1, T2*, and PD values by QPM showed a strong correlation with the measured values and the referenced values. The simulated CVs of QPM calculated for each sphere showed similar trends to those of the actual scans.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"918-928"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint segmentation of sternocleidomastoid and skeletal muscles in computed tomography images using a multiclass learning approach. 利用多类学习方法联合分割计算机断层扫描图像中的胸锁乳突肌和骨骼肌
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-12-01 Epub Date: 2024-09-06 DOI: 10.1007/s12194-024-00839-1
Kosuke Ashino, Naoki Kamiya, Xiangrong Zhou, Hiroki Kato, Takeshi Hara, Hiroshi Fujita

Deep-learning-based methods can improve robustness against individual variations in computed tomography (CT) images of the sternocleidomastoid muscle, which is a challenge when using conventional methods based on probabilistic atlases are used for automatic segmentation. Thus, this study proposes a novel multiclass learning approach for the joint segmentation of the sternocleidomastoid and skeletal muscles in CT images, and it employs a two-dimensional U-Net architecture. The proposed method concurrently learns and segmented segments the sternocleidomastoid muscle and the entire skeletal musculature. Consequently, three-dimensional segmentation results are generated for both muscle groups. Experiments conducted on a dataset of 30 body CT images demonstrated segmentation accuracies of 82.94% and 92.73% for the sternocleidomastoid muscle and entire skeletal muscle compartment, respectively. These results outperformed those of conventional methods, such as the single-region learning of a target muscle and multiclass learning of specific muscle pairs. Moreover, the multiclass learning paradigm facilitated a robust segmentation performance regardless of the input image range. This highlights the method's potential for cases that present muscle atrophy or reduced muscle strength. The proposed method exhibits promising capabilities for the high-accuracy joint segmentation of the sternocleidomastoid and skeletal muscles and is effective in recognizing skeletal muscles, thus, it holds promise for integration into computer-aided diagnostic systems for comprehensive musculoskeletal analysis. These findings are expected to enhance medical image analysis techniques and their applications in clinical decision support systems.

基于深度学习的方法可以提高胸锁乳突肌计算机断层扫描(CT)图像中个体差异的鲁棒性,而在使用基于概率图集的传统方法进行自动分割时,这是一项挑战。因此,本研究针对 CT 图像中胸锁乳突肌和骨骼肌的联合分割提出了一种新颖的多类学习方法,并采用了二维 U-Net 架构。该方法同时学习并分割胸锁乳突肌和整个骨骼肌。因此,两组肌肉都能得到三维分割结果。在 30 幅人体 CT 图像的数据集上进行的实验表明,胸锁乳突肌和整个骨骼肌区的分割准确率分别为 82.94% 和 92.73%。这些结果优于传统方法,如目标肌肉的单区域学习和特定肌肉对的多类学习。此外,无论输入图像的范围如何,多类学习范式都能促进稳健的分割性能。这凸显了该方法在肌肉萎缩或肌肉力量减弱情况下的潜力。所提出的方法在胸锁乳突肌和骨骼肌的高精度关节分割方面表现出良好的能力,并能有效识别骨骼肌,因此有望集成到计算机辅助诊断系统中,进行全面的肌肉骨骼分析。这些发现有望提高医学图像分析技术及其在临床决策支持系统中的应用。
{"title":"Joint segmentation of sternocleidomastoid and skeletal muscles in computed tomography images using a multiclass learning approach.","authors":"Kosuke Ashino, Naoki Kamiya, Xiangrong Zhou, Hiroki Kato, Takeshi Hara, Hiroshi Fujita","doi":"10.1007/s12194-024-00839-1","DOIUrl":"10.1007/s12194-024-00839-1","url":null,"abstract":"<p><p>Deep-learning-based methods can improve robustness against individual variations in computed tomography (CT) images of the sternocleidomastoid muscle, which is a challenge when using conventional methods based on probabilistic atlases are used for automatic segmentation. Thus, this study proposes a novel multiclass learning approach for the joint segmentation of the sternocleidomastoid and skeletal muscles in CT images, and it employs a two-dimensional U-Net architecture. The proposed method concurrently learns and segmented segments the sternocleidomastoid muscle and the entire skeletal musculature. Consequently, three-dimensional segmentation results are generated for both muscle groups. Experiments conducted on a dataset of 30 body CT images demonstrated segmentation accuracies of 82.94% and 92.73% for the sternocleidomastoid muscle and entire skeletal muscle compartment, respectively. These results outperformed those of conventional methods, such as the single-region learning of a target muscle and multiclass learning of specific muscle pairs. Moreover, the multiclass learning paradigm facilitated a robust segmentation performance regardless of the input image range. This highlights the method's potential for cases that present muscle atrophy or reduced muscle strength. The proposed method exhibits promising capabilities for the high-accuracy joint segmentation of the sternocleidomastoid and skeletal muscles and is effective in recognizing skeletal muscles, thus, it holds promise for integration into computer-aided diagnostic systems for comprehensive musculoskeletal analysis. These findings are expected to enhance medical image analysis techniques and their applications in clinical decision support systems.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"854-861"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standardization of radiation therapy quality control system through mutual quality control based on failure mode and effects analysis. 通过基于失效模式和效应分析的相互质量控制,实现放射治疗质量控制系统的标准化。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-18 DOI: 10.1007/s12194-024-00857-z
Yuki Tanimoto, Masataka Oita, Kazunobu Koshi, Kiyoshi Ishiwaki, Futoshi Hiramatsu, Toshihisa Sasaki, Hiroki Ise, Takashi Miyagawa, Takeshi Maeda, Shinsuke Okahira, Takashi Hamaguchi, Tatsuya Kawaguchi, Norihiro Funada, Shuhei Yamamoto, Akira Hiroshige, Yuki Mukai, Shohei Yoshida, Yoshiki Fujita, Atsuki Nakahira, Hirofumi Honda

The advancement of irradiation technology has increased the demand for quality control of radiation therapy equipment. Consequently, the number of quality control items and required personnel have also increased. However, differences in the proportion of qualified personnel to irradiation techniques have caused bias in quality control systems among institutions. To standardize the quality across institutions, researchers should conduct mutual quality control by analyzing the quality control data of one institution at another institution and comparing the results with those of their own institutions. This study uses failure mode and effects analysis (FMEA) to identify potential risks in 12 radiation therapy institutions, compares the results before and after implementation of mutual quality control, and examines the utility of mutual quality control in risk reduction. Furthermore, a cost-effectiveness factor is introduced into FMEA to evaluate the utility of mutual quality control.

辐照技术的发展增加了对放射治疗设备质量控制的需求。因此,质量控制项目和所需人员的数量也随之增加。然而,辐照技术人员比例的差异造成了各机构质量控制系统的偏差。为了使各机构的质量标准化,研究人员应通过分析一个机构在另一个机构的质量控制数据,并将结果与自己机构的数据进行比较,从而进行相互质量控制。本研究采用失效模式与效应分析法(FMEA)识别了 12 家放射治疗机构的潜在风险,比较了实施相互质量控制前后的结果,并研究了相互质量控制在降低风险方面的效用。此外,还在 FMEA 中引入了成本效益因素,以评估相互质量控制的效用。
{"title":"Standardization of radiation therapy quality control system through mutual quality control based on failure mode and effects analysis.","authors":"Yuki Tanimoto, Masataka Oita, Kazunobu Koshi, Kiyoshi Ishiwaki, Futoshi Hiramatsu, Toshihisa Sasaki, Hiroki Ise, Takashi Miyagawa, Takeshi Maeda, Shinsuke Okahira, Takashi Hamaguchi, Tatsuya Kawaguchi, Norihiro Funada, Shuhei Yamamoto, Akira Hiroshige, Yuki Mukai, Shohei Yoshida, Yoshiki Fujita, Atsuki Nakahira, Hirofumi Honda","doi":"10.1007/s12194-024-00857-z","DOIUrl":"10.1007/s12194-024-00857-z","url":null,"abstract":"<p><p>The advancement of irradiation technology has increased the demand for quality control of radiation therapy equipment. Consequently, the number of quality control items and required personnel have also increased. However, differences in the proportion of qualified personnel to irradiation techniques have caused bias in quality control systems among institutions. To standardize the quality across institutions, researchers should conduct mutual quality control by analyzing the quality control data of one institution at another institution and comparing the results with those of their own institutions. This study uses failure mode and effects analysis (FMEA) to identify potential risks in 12 radiation therapy institutions, compares the results before and after implementation of mutual quality control, and examines the utility of mutual quality control in risk reduction. Furthermore, a cost-effectiveness factor is introduced into FMEA to evaluate the utility of mutual quality control.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of uncertainties in reference and relative dose measurements, dose calculations, and patient setup in modern external beam radiotherapy. 量化现代体外放射治疗中参考和相对剂量测量、剂量计算和患者设置的不确定性。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-14 DOI: 10.1007/s12194-024-00856-0
Naoki Kinoshita, Morihito Shimizu, Kana Motegi, Yusuke Tsuruta, Toru Takakura, Hiroshi Oguchi, Chie Kurokawa

Uncertainties in the steps of external beam radiotherapy (EBRT) affect patient outcomes. However, few studies have investigated major contributors to these uncertainties. This study investigated factors contributing to reducing uncertainty in delivering a dose to a target volume. The EBRT process was classified into four steps: reference dosimetry, relative dosimetry [percentage depth doses (PDDs) and off-center ratios (OCRs)], dose calculations (PDDs and OCRs in a virtual water phantom), and patient setup using an image-guided radiation therapy system. We evaluated the uncertainties for these steps in conventionally fractionated EBRT for intracranial disease using 4-, 6-, and 10-MV flattened photon beams generated from clinical linear accelerators following the Guide to the Expression of Uncertainty in Measurement and an uncertainty evaluation method with uncorrected deflection. The following were the major contributors to these uncertainties: beam quality conversion factors for reference dosimetry; charge measurements, chamber depth, source-to-surface distance, water evaporation, and field size for relative dosimetry; dose calculation accuracy for the dose calculations; image registration, radiation-imaging isocenter coincidence, variation in radiation isocenter due to gantry and couch rotation, and intrafractional motion for the patient setup. Among the four steps, the relative dosimetry and dose calculation (namely, both penumbral OCRs) steps involved an uncertainty of more than 5% with a coverage factor of 1. In the EBRT process evaluated herein, the uncertainties in the relative dosimetry and dose calculations must be reduced.

体外放射治疗(EBRT)步骤中的不确定性会影响患者的治疗效果。然而,很少有研究对造成这些不确定性的主要因素进行调查。本研究调查了减少靶区剂量不确定性的因素。EBRT 过程分为四个步骤:参考剂量测定、相对剂量测定 [百分比深度剂量 (PDD) 和偏离中心比率 (OCR)]、剂量计算(虚拟水模型中的 PDD 和 OCR)以及使用图像引导放射治疗系统进行患者设置。我们使用临床直线加速器产生的 4、6 和 10-MV 扁平光子束,按照《测量不确定度表达指南》和未修正偏转的不确定度评估方法,评估了传统分次 EBRT 治疗颅内疾病时这些步骤的不确定度。造成这些不确定性的主要因素如下:参考剂量测定中的光束质量转换系数;相对剂量测定中的电荷测量、腔室深度、源到表面的距离、水蒸发和磁场大小;剂量计算中的剂量计算精度;患者设置中的图像注册、辐射成像等中心重合、龙门架和沙发旋转导致的辐射等中心变化以及点内运动。在这四个步骤中,相对剂量测定和剂量计算(即两个半影 OCR)步骤的不确定性超过 5%,覆盖因子为 1。
{"title":"Quantification of uncertainties in reference and relative dose measurements, dose calculations, and patient setup in modern external beam radiotherapy.","authors":"Naoki Kinoshita, Morihito Shimizu, Kana Motegi, Yusuke Tsuruta, Toru Takakura, Hiroshi Oguchi, Chie Kurokawa","doi":"10.1007/s12194-024-00856-0","DOIUrl":"https://doi.org/10.1007/s12194-024-00856-0","url":null,"abstract":"<p><p>Uncertainties in the steps of external beam radiotherapy (EBRT) affect patient outcomes. However, few studies have investigated major contributors to these uncertainties. This study investigated factors contributing to reducing uncertainty in delivering a dose to a target volume. The EBRT process was classified into four steps: reference dosimetry, relative dosimetry [percentage depth doses (PDDs) and off-center ratios (OCRs)], dose calculations (PDDs and OCRs in a virtual water phantom), and patient setup using an image-guided radiation therapy system. We evaluated the uncertainties for these steps in conventionally fractionated EBRT for intracranial disease using 4-, 6-, and 10-MV flattened photon beams generated from clinical linear accelerators following the Guide to the Expression of Uncertainty in Measurement and an uncertainty evaluation method with uncorrected deflection. The following were the major contributors to these uncertainties: beam quality conversion factors for reference dosimetry; charge measurements, chamber depth, source-to-surface distance, water evaporation, and field size for relative dosimetry; dose calculation accuracy for the dose calculations; image registration, radiation-imaging isocenter coincidence, variation in radiation isocenter due to gantry and couch rotation, and intrafractional motion for the patient setup. Among the four steps, the relative dosimetry and dose calculation (namely, both penumbral OCRs) steps involved an uncertainty of more than 5% with a coverage factor of 1. In the EBRT process evaluated herein, the uncertainties in the relative dosimetry and dose calculations must be reduced.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of dose distributions and respiratory motion tolerance for layer-stacking conformal carbon-ion radiotherapy. 评估层叠适形碳离子放射治疗的剂量分布和呼吸运动耐受性。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-14 DOI: 10.1007/s12194-024-00847-1
Yuki Hasebe, Mutsumi Tashiro, Hiroshi Sakurai

While layer-stacking irradiation provides a conformal dose distribution, it is vulnerable to respiratory motion. Considering that the motion tolerance has not yet been demonstrated, this study aimed to determine the tolerance level for the amount of target motion. Dose distributions considering motion were simulated for a numerical water phantom using in-house software. Comparisons with measured and simulated physical dose distributions confirmed the validity of the simulation, with gamma analysis showing almost 90% or greater agreement under all conditions with a criterion of 3%/3 mm. The variation in physical dose from static conditions followed a similar trend. Based on the evaluation of the simulated clinical dose uniformity, motion tolerance was derived. The acceptable motion amounts in the lateral direction were 11 mm in respiratory-ungated condition and at least 20 mm with 30% lateral gating at 4 Gy (RBE). In the longitudinal (beam upstream) direction, the acceptable target motion amounts were 3 mm without gating and 6 mm with gating. These results employed worst-case scenarios considering multiple respiratory cycles. In both lateral and longitudinal directions, the motion amounts of 3 mm for non-gating and 5 mm for gating were acceptable. The acceptable target motion amounts improved by 1-9 mm with gating and increased prescribed doses. The dose uniformity and motion tolerance under multiple conditions, although based on a simple system, may be useful for treatment involving target motion in layer-stacking irradiation.

虽然层叠辐照可提供适形剂量分布,但很容易受到呼吸运动的影响。考虑到运动耐受性尚未得到证实,本研究旨在确定目标运动量的耐受水平。使用内部软件模拟了数值水模型的运动剂量分布。与测量和模拟的物理剂量分布比较证实了模拟的有效性,伽马分析表明,在所有条件下,以 3%/3 毫米为标准,几乎 90% 或更高的一致性。静态条件下物理剂量的变化趋势与此类似。根据对模拟临床剂量均匀性的评估,得出了运动容差。在呼吸通畅的条件下,横向可接受的移动量为 11 毫米,而在 4 Gy(RBE)的条件下,30% 的横向门控可接受的移动量至少为 20 毫米。在纵向(光束上游),无门控时可接受的目标移动量为 3 毫米,有门控时为 6 毫米。这些结果采用了考虑多个呼吸周期的最坏情况。在横向和纵向两个方向上,无门控的可接受运动量为 3 毫米,有门控的可接受运动量为 5 毫米。随着门控和规定剂量的增加,可接受的目标移动量提高了 1-9 毫米。多重条件下的剂量均匀性和运动耐受性虽然是基于一个简单的系统,但对于层叠照射中涉及靶移动的治疗可能是有用的。
{"title":"Evaluation of dose distributions and respiratory motion tolerance for layer-stacking conformal carbon-ion radiotherapy.","authors":"Yuki Hasebe, Mutsumi Tashiro, Hiroshi Sakurai","doi":"10.1007/s12194-024-00847-1","DOIUrl":"https://doi.org/10.1007/s12194-024-00847-1","url":null,"abstract":"<p><p>While layer-stacking irradiation provides a conformal dose distribution, it is vulnerable to respiratory motion. Considering that the motion tolerance has not yet been demonstrated, this study aimed to determine the tolerance level for the amount of target motion. Dose distributions considering motion were simulated for a numerical water phantom using in-house software. Comparisons with measured and simulated physical dose distributions confirmed the validity of the simulation, with gamma analysis showing almost 90% or greater agreement under all conditions with a criterion of 3%/3 mm. The variation in physical dose from static conditions followed a similar trend. Based on the evaluation of the simulated clinical dose uniformity, motion tolerance was derived. The acceptable motion amounts in the lateral direction were 11 mm in respiratory-ungated condition and at least 20 mm with 30% lateral gating at 4 Gy (RBE). In the longitudinal (beam upstream) direction, the acceptable target motion amounts were 3 mm without gating and 6 mm with gating. These results employed worst-case scenarios considering multiple respiratory cycles. In both lateral and longitudinal directions, the motion amounts of 3 mm for non-gating and 5 mm for gating were acceptable. The acceptable target motion amounts improved by 1-9 mm with gating and increased prescribed doses. The dose uniformity and motion tolerance under multiple conditions, although based on a simple system, may be useful for treatment involving target motion in layer-stacking irradiation.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive image quality comparison of conventional and new flat panel detectors under bedside chest radiography beam conditions. 在床边胸部放射光束条件下,对传统和新型平板探测器的图像质量进行综合比较。
IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2024-11-13 DOI: 10.1007/s12194-024-00859-x
Sho Maruyama, Hiroki Saitou

Recently, a novel wireless flat-panel detector with auto-exposure control has become available. This study aimed to elucidate the potential advantages of the new detector over conventional detectors through a comprehensive analysis of the physical image quality characteristics. Measurements were conducted on two models: new (720C) and conventional (710C) versions; this assessment was performed by assuming the beam quality for bedside chest radiography, utilizing a portable device for X-ray exposure. The detective quantum efficiency (DQE) was computed based on the presampled modulation transfer function (MTF) and normalized noise power spectrum. The validity of the DQE results was verified through the visualization of the analog blurring components and a detailed analysis of the noise components. The spatial frequency at which the presampled MTF value reached 10% was 5.2 cycles/mm for 720C and 3.9 cycles/mm for 710C. The full width at half-maximum of the spatial spreading of analog components was estimated at 0.09 mm for 720C and 0.14 mm for 710C by the visualization. Regarding the DQE, 720C was superior under low-dose conditions despite no significant differences being observed under high-dose conditions. The new detector demonstrated superior resolution characteristics compared with the conventional detector and an improvement in the DQE under low-dose conditions. However, similar to the conventional detector, a significant dose dependence caused by a structural factor was confirmed for the DQE. These results suggest the existence of an appropriate dose range for maximizing detector performance and provide insights crucial for optimization tasks in the X-ray imaging.

最近,一种具有自动曝光控制功能的新型无线平板探测器问世。本研究旨在通过全面分析物理图像质量特性,阐明新型探测器与传统探测器相比的潜在优势。我们对新型(720C)和传统(710C)两种型号进行了测量;评估是通过假定床旁胸部放射摄影的光束质量,利用便携式设备进行 X 射线曝光来完成的。探测量子效率 (DQE) 是根据预采样调制传递函数 (MTF) 和归一化噪声功率谱计算得出的。通过对模拟模糊成分的可视化和噪声成分的详细分析,验证了 DQE 结果的有效性。预采样 MTF 值达到 10% 的空间频率为:720C 时 5.2 次/毫米,710C 时 3.9 次/毫米。通过可视化估算,720C 和 710C 模拟分量空间扩散的半最大全宽分别为 0.09 毫米和 0.14 毫米。在 DQE 方面,720C 在低剂量条件下更胜一筹,尽管在高剂量条件下没有观察到明显差异。与传统探测器相比,新型探测器具有更高的分辨率,在低剂量条件下的 DQE 也有所提高。然而,与传统探测器类似,DQE 也证实了结构因素导致的显著剂量依赖性。这些结果表明,存在一个适当的剂量范围来最大限度地提高探测器的性能,并为 X 射线成像中的优化任务提供了至关重要的见解。
{"title":"Comprehensive image quality comparison of conventional and new flat panel detectors under bedside chest radiography beam conditions.","authors":"Sho Maruyama, Hiroki Saitou","doi":"10.1007/s12194-024-00859-x","DOIUrl":"https://doi.org/10.1007/s12194-024-00859-x","url":null,"abstract":"<p><p>Recently, a novel wireless flat-panel detector with auto-exposure control has become available. This study aimed to elucidate the potential advantages of the new detector over conventional detectors through a comprehensive analysis of the physical image quality characteristics. Measurements were conducted on two models: new (720C) and conventional (710C) versions; this assessment was performed by assuming the beam quality for bedside chest radiography, utilizing a portable device for X-ray exposure. The detective quantum efficiency (DQE) was computed based on the presampled modulation transfer function (MTF) and normalized noise power spectrum. The validity of the DQE results was verified through the visualization of the analog blurring components and a detailed analysis of the noise components. The spatial frequency at which the presampled MTF value reached 10% was 5.2 cycles/mm for 720C and 3.9 cycles/mm for 710C. The full width at half-maximum of the spatial spreading of analog components was estimated at 0.09 mm for 720C and 0.14 mm for 710C by the visualization. Regarding the DQE, 720C was superior under low-dose conditions despite no significant differences being observed under high-dose conditions. The new detector demonstrated superior resolution characteristics compared with the conventional detector and an improvement in the DQE under low-dose conditions. However, similar to the conventional detector, a significant dose dependence caused by a structural factor was confirmed for the DQE. These results suggest the existence of an appropriate dose range for maximizing detector performance and provide insights crucial for optimization tasks in the X-ray imaging.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Radiological Physics and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1