Pub Date : 2024-09-16DOI: 10.1007/s12194-024-00842-6
Reza Elahi, Mahdis Nazari
Current imaging methods for diagnosing breast cancer (BC) are associated with limited sensitivity and specificity and modest positive predictive power. The recent progress in image analysis using artificial intelligence (AI) has created great promise to improve BC diagnosis and subtype differentiation. In this case, novel quantitative computational methods, such as radiomics, have been developed to enhance the sensitivity and specificity of early BC diagnosis and classification. The potential of radiomics in improving the diagnostic efficacy of imaging studies has been shown in several studies. In this review article, we discuss the radiomics workflow and current handcrafted radiomics methods in the diagnosis and classification of BC based on the most recent studies on different imaging modalities, e.g., MRI, mammography, contrast-enhanced spectral mammography (CESM), ultrasound imaging, and digital breast tumosynthesis (DBT). We also discuss current challenges and potential strategies to improve the specificity and sensitivity of radiomics in breast cancer to help achieve a higher level of BC classification and diagnosis in the clinical setting. The growing field of AI incorporation with imaging information has opened a great opportunity to provide a higher level of care for BC patients.
目前诊断乳腺癌(BC)的成像方法灵敏度和特异性有限,阳性预测能力也不高。人工智能(AI)在图像分析领域的最新进展为改善乳腺癌诊断和亚型分化带来了巨大希望。在这种情况下,新型定量计算方法(如放射组学)应运而生,以提高早期 BC 诊断和分类的灵敏度和特异性。多项研究表明,放射组学具有提高影像学诊断效果的潜力。在这篇综述文章中,我们将根据对不同成像模式(如核磁共振成像、乳腺X线摄影、对比增强光谱乳腺X线摄影(CESM)、超声成像和数字乳腺肿瘤综合征(DBT))的最新研究,讨论放射组学工作流程和当前手工制作的放射组学方法在 BC 诊断和分类中的应用。我们还讨论了提高乳腺癌放射组学特异性和灵敏度的当前挑战和潜在策略,以帮助在临床环境中实现更高水平的乳腺癌分类和诊断。人工智能与成像信息相结合的领域不断发展,为乳腺癌患者提供更高水平的治疗提供了巨大的机遇。
{"title":"An updated overview of radiomics-based artificial intelligence (AI) methods in breast cancer screening and diagnosis.","authors":"Reza Elahi, Mahdis Nazari","doi":"10.1007/s12194-024-00842-6","DOIUrl":"https://doi.org/10.1007/s12194-024-00842-6","url":null,"abstract":"<p><p>Current imaging methods for diagnosing breast cancer (BC) are associated with limited sensitivity and specificity and modest positive predictive power. The recent progress in image analysis using artificial intelligence (AI) has created great promise to improve BC diagnosis and subtype differentiation. In this case, novel quantitative computational methods, such as radiomics, have been developed to enhance the sensitivity and specificity of early BC diagnosis and classification. The potential of radiomics in improving the diagnostic efficacy of imaging studies has been shown in several studies. In this review article, we discuss the radiomics workflow and current handcrafted radiomics methods in the diagnosis and classification of BC based on the most recent studies on different imaging modalities, e.g., MRI, mammography, contrast-enhanced spectral mammography (CESM), ultrasound imaging, and digital breast tumosynthesis (DBT). We also discuss current challenges and potential strategies to improve the specificity and sensitivity of radiomics in breast cancer to help achieve a higher level of BC classification and diagnosis in the clinical setting. The growing field of AI incorporation with imaging information has opened a great opportunity to provide a higher level of care for BC patients.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to develop a novel internal target volume (ITV) definition for respiratory motion targets, considering target motion velocity and time. The proposed ITV was evaluated in respiratory-gated radiotherapy. An ITV modified with target motion velocity and time (ITVvt) was defined as an ITV that includes a target motion based on target motion velocity and time. The target motion velocity was calculated using four-dimensional computed tomography (4DCT) images. The ITVvts were created from phantom and clinical 4DCT images. The phantom 4DCT images were acquired using a solid phantom that moved with a sinusoidal waveform (peak-to-peak amplitudes of 10 and 20 mm and cycles of 2-6 s). The clinical 4DCT images were obtained from eight lung cancer cases. In respiratory-gated radiotherapy, the ITVvt was compared with conventional ITVs for beam times of 0.5-2 s within the gating window. The conventional ITV was created by adding a uniform margin as the maximum motion within the gating window. In the phantom images, the maximum volume difference between the ITVvt and conventional ITV was -81.9%. In the clinical images, the maximum volume difference was -53.6%. Shorter respiratory cycles and longer BTs resulted in smaller ITVvt compared with the conventional ITV. Therefore, the proposed ITVvt plan could be used to reduce treatment volumes and doses to normal tissues.
{"title":"A novel internal target volume definition based on velocity and time of respiratory target motion for external beam radiotherapy.","authors":"Masashi Yamanaka, Teiji Nishio, Kohei Iwabuchi, Hironori Nagata","doi":"10.1007/s12194-024-00837-3","DOIUrl":"https://doi.org/10.1007/s12194-024-00837-3","url":null,"abstract":"<p><p>This study aimed to develop a novel internal target volume (ITV) definition for respiratory motion targets, considering target motion velocity and time. The proposed ITV was evaluated in respiratory-gated radiotherapy. An ITV modified with target motion velocity and time (ITVvt) was defined as an ITV that includes a target motion based on target motion velocity and time. The target motion velocity was calculated using four-dimensional computed tomography (4DCT) images. The ITVvts were created from phantom and clinical 4DCT images. The phantom 4DCT images were acquired using a solid phantom that moved with a sinusoidal waveform (peak-to-peak amplitudes of 10 and 20 mm and cycles of 2-6 s). The clinical 4DCT images were obtained from eight lung cancer cases. In respiratory-gated radiotherapy, the ITVvt was compared with conventional ITVs for beam times of 0.5-2 s within the gating window. The conventional ITV was created by adding a uniform margin as the maximum motion within the gating window. In the phantom images, the maximum volume difference between the ITVvt and conventional ITV was -81.9%. In the clinical images, the maximum volume difference was -53.6%. Shorter respiratory cycles and longer BTs resulted in smaller ITVvt compared with the conventional ITV. Therefore, the proposed ITVvt plan could be used to reduce treatment volumes and doses to normal tissues.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to evaluate the performance for answering the Japanese medical physicist examination and providing the benchmark of knowledge about medical physics in language-generative AI with large language model. We used questions from Japan's 2018, 2019, 2020, 2021 and 2022 medical physicist board examinations, which covered various question types, including multiple-choice questions, and mainly focused on general medicine and medical physics. ChatGPT-3.5 and ChatGPT-4.0 (OpenAI) were used. We compared the AI-based answers with the correct ones. The average accuracy rates were 42.2 ± 2.5% (ChatGPT-3.5) and 72.7 ± 2.6% (ChatGPT-4), showing that ChatGPT-4 was more accurate than ChatGPT-3.5 [all categories (except for radiation-related laws and recommendations/medical ethics): p value < 0.05]. Even with the ChatGPT model with higher accuracy, the accuracy rates were less than 60% in two categories; radiation metrology (55.6%), and radiation-related laws and recommendations/medical ethics (40.0%). These data provide the benchmark for knowledge about medical physics in ChatGPT and can be utilized as basic data for the development of various medical physics tools using ChatGPT (e.g., radiation therapy support tools with Japanese input).
{"title":"Assessing knowledge about medical physics in language-generative AI with large language model: using the medical physicist exam.","authors":"Noriyuki Kadoya, Kazuhiro Arai, Shohei Tanaka, Yuto Kimura, Ryota Tozuka, Keisuke Yasui, Naoki Hayashi, Yoshiyuki Katsuta, Haruna Takahashi, Koki Inoue, Keiichi Jingu","doi":"10.1007/s12194-024-00838-2","DOIUrl":"https://doi.org/10.1007/s12194-024-00838-2","url":null,"abstract":"<p><p>This study aimed to evaluate the performance for answering the Japanese medical physicist examination and providing the benchmark of knowledge about medical physics in language-generative AI with large language model. We used questions from Japan's 2018, 2019, 2020, 2021 and 2022 medical physicist board examinations, which covered various question types, including multiple-choice questions, and mainly focused on general medicine and medical physics. ChatGPT-3.5 and ChatGPT-4.0 (OpenAI) were used. We compared the AI-based answers with the correct ones. The average accuracy rates were 42.2 ± 2.5% (ChatGPT-3.5) and 72.7 ± 2.6% (ChatGPT-4), showing that ChatGPT-4 was more accurate than ChatGPT-3.5 [all categories (except for radiation-related laws and recommendations/medical ethics): p value < 0.05]. Even with the ChatGPT model with higher accuracy, the accuracy rates were less than 60% in two categories; radiation metrology (55.6%), and radiation-related laws and recommendations/medical ethics (40.0%). These data provide the benchmark for knowledge about medical physics in ChatGPT and can be utilized as basic data for the development of various medical physics tools using ChatGPT (e.g., radiation therapy support tools with Japanese input).</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigated the effectiveness of placing skin-ring structures to enhance the precision of skin dose calculations in patients who had undergone head and neck volumetric modulated arc therapy using the Acuros XB algorithm. The skin-ring structures in question were positioned 2 mm below the skin surface (skin A) and 1 mm above and below the skin surface (skin B) within the treatment-planning system. These structures were then tested on both acrylic cylindrical and anthropomorphic phantoms and compared with the Gafchromic EBT3 film (EBT3). The results revealed that the maximum dose differences between skins A and B for the cylindrical and anthropomorphic phantoms were approximately 12% and 2%, respectively. In patients 1 and 2, the dose differences between skins A and B were 9.2% and 8.2%, respectively. Ultimately, demonstrated that the skin-dose calculation accuracy of skin B was within 2% and did not impact the deep organs.
这项研究调查了在使用 Acuros XB 算法进行头颈部容积调制弧治疗的患者中,放置皮环结构以提高皮肤剂量计算精度的有效性。在治疗规划系统中,有关的皮环结构分别位于皮肤表面(皮肤 A)下方 2 毫米和皮肤表面(皮肤 B)上方和下方 1 毫米处。然后在丙烯酸圆柱和拟人模型上对这些结构进行了测试,并与 Gafchromic EBT3 薄膜(EBT3)进行了比较。结果显示,在圆柱形和拟人化模型中,皮肤 A 和 B 之间的最大剂量差异分别约为 12% 和 2%。在患者 1 和 2 中,皮肤 A 和 B 之间的剂量差异分别为 9.2% 和 8.2%。最终结果表明,皮肤 B 的皮肤剂量计算精度在 2% 以内,对深部器官没有影响。
{"title":"Optimum delineation of skin structure for dose calculation with the linear Boltzmann transport equation algorithm in radiotherapy treatment planning.","authors":"Keisuke Hamada, Toshioh Fujibuchi, Hiroyuki Arakawa","doi":"10.1007/s12194-024-00840-8","DOIUrl":"https://doi.org/10.1007/s12194-024-00840-8","url":null,"abstract":"<p><p>This study investigated the effectiveness of placing skin-ring structures to enhance the precision of skin dose calculations in patients who had undergone head and neck volumetric modulated arc therapy using the Acuros XB algorithm. The skin-ring structures in question were positioned 2 mm below the skin surface (skin A) and 1 mm above and below the skin surface (skin B) within the treatment-planning system. These structures were then tested on both acrylic cylindrical and anthropomorphic phantoms and compared with the Gafchromic EBT3 film (EBT3). The results revealed that the maximum dose differences between skins A and B for the cylindrical and anthropomorphic phantoms were approximately 12% and 2%, respectively. In patients 1 and 2, the dose differences between skins A and B were 9.2% and 8.2%, respectively. Ultimately, demonstrated that the skin-dose calculation accuracy of skin B was within 2% and did not impact the deep organs.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In a 0.3 T permanent-magnet magnetic resonance imaging (MRI) system, quantifying myelin content is challenging owing to long imaging times and low signal-to-noise ratio. macromolecular proton fraction (MPF) offers a quantitative assessment of myelin in the nervous system. We aimed to demonstrate the practical feasibility of MPF mapping in the brain using a 0.3 T MRI. Both 0.3 T and 3.0 T MRI systems were used. The MPF-mapping protocol used a standard 3D fast spoiled gradient-echo sequence based on the single-point reference method. Proton density, T1, and magnetization transfer-weighted images were obtained from a protein phantom at 0.3 T and 3.0 T to calculate MPF maps. MPF was measured in all phantom sections to assess its relationship to protein concentration. We acquired MPF maps for 16 and 8 healthy individuals at 0.3 T and 3.0 T, respectively, measuring MPF in nine brain tissues. Differences in MPF between 0.3 T and 3.0 T, and between 0.3 T and previously reported MPF at 0.5 T, were investigated. Pearson's correlation coefficient between protein concentration and MPF at 0.3 T and 3.0 T was 0.92 and 0.90, respectively. The 0.3 T MPF of brain tissue strongly correlated with 3.0 T MPF and literature values measured at 0.5 T. The absolute mean differences in MPF between 0.3 T and 0.5 T were 0.42% and 1.70% in white and gray matter, respectively. Single-point MPF mapping using 0.3 T permanent-magnet MRI can effectively assess myelin content in neural tissue.
在 0.3 T 永磁磁共振成像(MRI)系统中,由于成像时间长、信噪比低,对髓鞘含量进行量化具有挑战性。我们的目的是利用 0.3 T MRI 演示脑中 MPF 图谱的实际可行性。我们同时使用了 0.3 T 和 3.0 T MRI 系统。MPF 测绘方案使用了基于单点参考方法的标准三维快速破坏梯度回波序列。在 0.3 T 和 3.0 T 下从蛋白质模型中获取质子密度、T1 和磁化传递加权图像,以计算 MPF 图。测量了所有模型切片的 MPF,以评估其与蛋白质浓度的关系。我们分别在 0.3 T 和 3.0 T 下获取了 16 名和 8 名健康人的 MPF 图,测量了九个脑组织的 MPF。我们研究了 0.3 T 和 3.0 T 之间的 MPF 差异,以及 0.3 T 和之前报道的 0.5 T MPF 之间的差异。蛋白质浓度与 0.3 T 和 3.0 T MPF 之间的皮尔逊相关系数分别为 0.92 和 0.90。脑组织的 0.3 T MPF 与 3.0 T MPF 和 0.5 T 测量的文献值密切相关。在白质和灰质中,0.3 T 和 0.5 T MPF 的绝对平均差异分别为 0.42% 和 1.70%。使用 0.3 T 永磁磁共振成像进行单点 MPF 测绘可有效评估神经组织中的髓鞘含量。
{"title":"Single-point macromolecular proton fraction mapping using a 0.3 T permanent magnet MRI system: phantom and healthy volunteer study.","authors":"Yasuhiro Fujiwara, Shoma Eitoku, Nobutaka Sakae, Takahisa Izumi, Hiroyuki Kumazoe, Mika Kitajima","doi":"10.1007/s12194-024-00843-5","DOIUrl":"https://doi.org/10.1007/s12194-024-00843-5","url":null,"abstract":"<p><p>In a 0.3 T permanent-magnet magnetic resonance imaging (MRI) system, quantifying myelin content is challenging owing to long imaging times and low signal-to-noise ratio. macromolecular proton fraction (MPF) offers a quantitative assessment of myelin in the nervous system. We aimed to demonstrate the practical feasibility of MPF mapping in the brain using a 0.3 T MRI. Both 0.3 T and 3.0 T MRI systems were used. The MPF-mapping protocol used a standard 3D fast spoiled gradient-echo sequence based on the single-point reference method. Proton density, T<sub>1</sub>, and magnetization transfer-weighted images were obtained from a protein phantom at 0.3 T and 3.0 T to calculate MPF maps. MPF was measured in all phantom sections to assess its relationship to protein concentration. We acquired MPF maps for 16 and 8 healthy individuals at 0.3 T and 3.0 T, respectively, measuring MPF in nine brain tissues. Differences in MPF between 0.3 T and 3.0 T, and between 0.3 T and previously reported MPF at 0.5 T, were investigated. Pearson's correlation coefficient between protein concentration and MPF at 0.3 T and 3.0 T was 0.92 and 0.90, respectively. The 0.3 T MPF of brain tissue strongly correlated with 3.0 T MPF and literature values measured at 0.5 T. The absolute mean differences in MPF between 0.3 T and 0.5 T were 0.42% and 1.70% in white and gray matter, respectively. Single-point MPF mapping using 0.3 T permanent-magnet MRI can effectively assess myelin content in neural tissue.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09DOI: 10.1007/s12194-024-00841-7
Kazuya Kakuta, Koichi Chida
The aim of this study was to optimise the vessel angle as well as the stack number from the profiles of carbon dioxide digital subtraction angiography (CO2-DSA) images of a water phantom containing an artificial vessel tilted at different angles which imitate arteries in the body. The artificial vessel was tilted at 0°, 15°, and 30° relative to the horizontal axis with its centre as the pivot point, and CO2-DSA images were acquired at each vessel tilt angle. The maximum opacity method was used to stack up to four images of the next frame one by one. The signal-to-noise ratio (SNR) was determined from the profile curves. The Wilcoxon rank sum test was used to evaluate whether the profile curve and SNR differed depending on the vessel tilt angle or stack number, and a p-value of less than 0.05 was considered statistically significant. Images acquired at 0° had a significantly lower SNR than images acquired at 15° (p = 0.10). When the vessel angle was 30°, the profile curves were significantly improved (p < 0.05) when two or more images were stacked over the original image. Images with a good SNR were acquired at the vessel tilt angle of 15°, and the shape of the profile curve was improved when two or more images were stacked on the original image. This study demonstrates that the quality of images acquired using CO2-DSA can be significantly improved through parameter optimisation for image acquisition and post-processing.
{"title":"Parameter optimisation for image acquisition and stacking in carbon dioxide digital subtraction angiography.","authors":"Kazuya Kakuta, Koichi Chida","doi":"10.1007/s12194-024-00841-7","DOIUrl":"https://doi.org/10.1007/s12194-024-00841-7","url":null,"abstract":"<p><p>The aim of this study was to optimise the vessel angle as well as the stack number from the profiles of carbon dioxide digital subtraction angiography (CO<sub>2</sub>-DSA) images of a water phantom containing an artificial vessel tilted at different angles which imitate arteries in the body. The artificial vessel was tilted at 0°, 15°, and 30° relative to the horizontal axis with its centre as the pivot point, and CO<sub>2</sub>-DSA images were acquired at each vessel tilt angle. The maximum opacity method was used to stack up to four images of the next frame one by one. The signal-to-noise ratio (SNR) was determined from the profile curves. The Wilcoxon rank sum test was used to evaluate whether the profile curve and SNR differed depending on the vessel tilt angle or stack number, and a p-value of less than 0.05 was considered statistically significant. Images acquired at 0° had a significantly lower SNR than images acquired at 15° (p = 0.10). When the vessel angle was 30°, the profile curves were significantly improved (p < 0.05) when two or more images were stacked over the original image. Images with a good SNR were acquired at the vessel tilt angle of 15°, and the shape of the profile curve was improved when two or more images were stacked on the original image. This study demonstrates that the quality of images acquired using CO<sub>2</sub>-DSA can be significantly improved through parameter optimisation for image acquisition and post-processing.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1007/s12194-024-00835-5
Puspen Chakraborty, Hidetoshi Saitoh, Yuta Miyake, Tenyoh Suzuki, Weishan Chang
In photon-collapsed cone convolution (pCCC) algorithm of the Monaco treatment planning system (TPS), the central-axis energy spectrum is assumed constant throughout the entire irradiation area. To consider lateral variations, an off-axis softening factor is applied to attenuation coefficients during the total energy released per unit mass calculation. We evaluated this method through comparison studies of percentage depth doses (PDDs) and off-axis ratios (OARs) calculated by Monaco and measured for a 6 MV photon beam at various off-axis angles and depths. Significant differences were observed, with relative differences exceeding ± 1%. Therefore, this method may not accurately represent lateral variations of energy spectra. We propose directly implementing energy spectra on both central-axis and off-axis to improve dose calculation accuracy for large field. To this end, we introduce reconstruction of PDDs from monoenergetic depth doses (MDDs) along off-axis angles, thereby estimating energy spectra as functions of radial distance. This method derives energy spectra quickly without significantly increasing the beam modeling time. MDDs were computed through Monte Carlo simulations (DOSRZnrc). The variances between reconstructed and measured PDDs were minimized using the generalized-reduced-gradient method to optimize energy spectra. Reconstructed PDDs along off-axis angles of 0°, 1.15°, 2.29°, 3.43°, 4.57°, 5.71°, 6.84°, 7.97°, 9.09°, 10.2° to estimate energy spectra at radial distances of 0-18 cm in 2 cm increments and OARs calculated using estimated energy spectra at 5, 10, and 20 cm depths, well agreed with measurement (relative differences within ± 0.5%). In conclusion, our proposed method accurately estimates lateral energy spectrum variation, thereby improving dose calculation accuracy of pCCC algorithm.
{"title":"Estimation of the lateral variation of photon beam energy spectra using the percentage depth dose reconstruction method.","authors":"Puspen Chakraborty, Hidetoshi Saitoh, Yuta Miyake, Tenyoh Suzuki, Weishan Chang","doi":"10.1007/s12194-024-00835-5","DOIUrl":"https://doi.org/10.1007/s12194-024-00835-5","url":null,"abstract":"<p><p>In photon-collapsed cone convolution (pCCC) algorithm of the Monaco treatment planning system (TPS), the central-axis energy spectrum is assumed constant throughout the entire irradiation area. To consider lateral variations, an off-axis softening factor is applied to attenuation coefficients during the total energy released per unit mass calculation. We evaluated this method through comparison studies of percentage depth doses (PDDs) and off-axis ratios (OARs) calculated by Monaco and measured for a 6 MV photon beam at various off-axis angles and depths. Significant differences were observed, with relative differences exceeding ± 1%. Therefore, this method may not accurately represent lateral variations of energy spectra. We propose directly implementing energy spectra on both central-axis and off-axis to improve dose calculation accuracy for large field. To this end, we introduce reconstruction of PDDs from monoenergetic depth doses (MDDs) along off-axis angles, thereby estimating energy spectra as functions of radial distance. This method derives energy spectra quickly without significantly increasing the beam modeling time. MDDs were computed through Monte Carlo simulations (DOSRZnrc). The variances between reconstructed and measured PDDs were minimized using the generalized-reduced-gradient method to optimize energy spectra. Reconstructed PDDs along off-axis angles of 0°, 1.15°, 2.29°, 3.43°, 4.57°, 5.71°, 6.84°, 7.97°, 9.09°, 10.2° to estimate energy spectra at radial distances of 0-18 cm in 2 cm increments and OARs calculated using estimated energy spectra at 5, 10, and 20 cm depths, well agreed with measurement (relative differences within ± 0.5%). In conclusion, our proposed method accurately estimates lateral energy spectrum variation, thereby improving dose calculation accuracy of pCCC algorithm.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deep-learning-based methods can improve robustness against individual variations in computed tomography (CT) images of the sternocleidomastoid muscle, which is a challenge when using conventional methods based on probabilistic atlases are used for automatic segmentation. Thus, this study proposes a novel multiclass learning approach for the joint segmentation of the sternocleidomastoid and skeletal muscles in CT images, and it employs a two-dimensional U-Net architecture. The proposed method concurrently learns and segmented segments the sternocleidomastoid muscle and the entire skeletal musculature. Consequently, three-dimensional segmentation results are generated for both muscle groups. Experiments conducted on a dataset of 30 body CT images demonstrated segmentation accuracies of 82.94% and 92.73% for the sternocleidomastoid muscle and entire skeletal muscle compartment, respectively. These results outperformed those of conventional methods, such as the single-region learning of a target muscle and multiclass learning of specific muscle pairs. Moreover, the multiclass learning paradigm facilitated a robust segmentation performance regardless of the input image range. This highlights the method's potential for cases that present muscle atrophy or reduced muscle strength. The proposed method exhibits promising capabilities for the high-accuracy joint segmentation of the sternocleidomastoid and skeletal muscles and is effective in recognizing skeletal muscles, thus, it holds promise for integration into computer-aided diagnostic systems for comprehensive musculoskeletal analysis. These findings are expected to enhance medical image analysis techniques and their applications in clinical decision support systems.
{"title":"Joint segmentation of sternocleidomastoid and skeletal muscles in computed tomography images using a multiclass learning approach.","authors":"Kosuke Ashino, Naoki Kamiya, Xiangrong Zhou, Hiroki Kato, Takeshi Hara, Hiroshi Fujita","doi":"10.1007/s12194-024-00839-1","DOIUrl":"https://doi.org/10.1007/s12194-024-00839-1","url":null,"abstract":"<p><p>Deep-learning-based methods can improve robustness against individual variations in computed tomography (CT) images of the sternocleidomastoid muscle, which is a challenge when using conventional methods based on probabilistic atlases are used for automatic segmentation. Thus, this study proposes a novel multiclass learning approach for the joint segmentation of the sternocleidomastoid and skeletal muscles in CT images, and it employs a two-dimensional U-Net architecture. The proposed method concurrently learns and segmented segments the sternocleidomastoid muscle and the entire skeletal musculature. Consequently, three-dimensional segmentation results are generated for both muscle groups. Experiments conducted on a dataset of 30 body CT images demonstrated segmentation accuracies of 82.94% and 92.73% for the sternocleidomastoid muscle and entire skeletal muscle compartment, respectively. These results outperformed those of conventional methods, such as the single-region learning of a target muscle and multiclass learning of specific muscle pairs. Moreover, the multiclass learning paradigm facilitated a robust segmentation performance regardless of the input image range. This highlights the method's potential for cases that present muscle atrophy or reduced muscle strength. The proposed method exhibits promising capabilities for the high-accuracy joint segmentation of the sternocleidomastoid and skeletal muscles and is effective in recognizing skeletal muscles, thus, it holds promise for integration into computer-aided diagnostic systems for comprehensive musculoskeletal analysis. These findings are expected to enhance medical image analysis techniques and their applications in clinical decision support systems.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-06-01DOI: 10.1007/s12194-024-00816-8
Behzad Aminafshar, Hamid Reza Baghani, Ali Asghar Mowlavi
Proton dose calculation in media other than water may be of interest for either research purposes or clinical practice. Current study aims to quantify the required parameters for analytical proton dosimetry in muscle, bone, and PMMA. Required analytical dosimetry parameters were extracted from ICRU-49 report and Janni study. Geant4 Toolkit was also used for Bragg curve simulation inside the investigated media at different proton energies. Calculated and simulated dosimetry data were compared using gamma analysis. Simulated and calculated Bragg curves are consistent, a fact that confirms the validity of reported parameters for analytical proton dosimetry inside considered media. Furthermore, derived analytical parameters for these media are different from those of water. Listed parameters can be reliably utilized for analytical proton dosimetry inside muscle, bone, and PMMA. Furthermore, accurate proton dosimetry inside each medium demands dedicated analytical parameters and one is not allowed to use the water coefficients for non-water media.
{"title":"Analytical parameterization of Bragg curves for proton beams in muscle, bone, and polymethylmethacrylate.","authors":"Behzad Aminafshar, Hamid Reza Baghani, Ali Asghar Mowlavi","doi":"10.1007/s12194-024-00816-8","DOIUrl":"10.1007/s12194-024-00816-8","url":null,"abstract":"<p><p>Proton dose calculation in media other than water may be of interest for either research purposes or clinical practice. Current study aims to quantify the required parameters for analytical proton dosimetry in muscle, bone, and PMMA. Required analytical dosimetry parameters were extracted from ICRU-49 report and Janni study. Geant4 Toolkit was also used for Bragg curve simulation inside the investigated media at different proton energies. Calculated and simulated dosimetry data were compared using gamma analysis. Simulated and calculated Bragg curves are consistent, a fact that confirms the validity of reported parameters for analytical proton dosimetry inside considered media. Furthermore, derived analytical parameters for these media are different from those of water. Listed parameters can be reliably utilized for analytical proton dosimetry inside muscle, bone, and PMMA. Furthermore, accurate proton dosimetry inside each medium demands dedicated analytical parameters and one is not allowed to use the water coefficients for non-water media.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the influence of calculation accuracy in peripheral low-dose regions on the gamma pass rate (GPR), utilizing the Acuros XB (AXB) algorithm and ArcCHECK™ measurement. The effects of varying small field sizes, dose grid sizes, and split-arc techniques on GPR were analyzed. Various small field sizes were employed. Thirty-two single-arc plans with dose grid sizes of 2 mm and 1 mm and prescribed doses of 2, 5, 10, and 20 Gy were calculated using the AXB algorithm. In total, 128 GPR plans were examined. These plans were categorized into three sub-fields (3SF), four sub-fields (4SF), and six sub-fields (6SF). The GPR results deteriorated with smaller target sizes and a 2 mm dose grid size in a single arc. A similar degradation in GPR was observed with smaller target sizes and a 1 mm dose grid size. However, the 1 mm dose grid size generally resulted in better GPR compared with the 2 mm dose grid size for the same target sizes. The GPR improved with finer split angles and a 2 mm dose grid size in the split-arc method. However, no statistically significant improvement was observed with finer split angles and a 1 mm dose grid size. This study demonstrates that coarser dose grid sizes result in lower GPRs in peripheral low-dose regions as calculated by AXB with ArcCHECK™ measurement. To enhance GPR, employing split-arc methods and finer dose grid sizes could be beneficial.
{"title":"Dosimetric effects of small field size, dose grid size, and variable split-arc methods on gamma pass rates in radiation therapy.","authors":"Tsunekazu Kuwae, Takuro Ariga, Takeaki Kusada, Akihiro Nishie","doi":"10.1007/s12194-024-00809-7","DOIUrl":"10.1007/s12194-024-00809-7","url":null,"abstract":"<p><p>This study investigates the influence of calculation accuracy in peripheral low-dose regions on the gamma pass rate (GPR), utilizing the Acuros XB (AXB) algorithm and ArcCHECK™ measurement. The effects of varying small field sizes, dose grid sizes, and split-arc techniques on GPR were analyzed. Various small field sizes were employed. Thirty-two single-arc plans with dose grid sizes of 2 mm and 1 mm and prescribed doses of 2, 5, 10, and 20 Gy were calculated using the AXB algorithm. In total, 128 GPR plans were examined. These plans were categorized into three sub-fields (3SF), four sub-fields (4SF), and six sub-fields (6SF). The GPR results deteriorated with smaller target sizes and a 2 mm dose grid size in a single arc. A similar degradation in GPR was observed with smaller target sizes and a 1 mm dose grid size. However, the 1 mm dose grid size generally resulted in better GPR compared with the 2 mm dose grid size for the same target sizes. The GPR improved with finer split angles and a 2 mm dose grid size in the split-arc method. However, no statistically significant improvement was observed with finer split angles and a 1 mm dose grid size. This study demonstrates that coarser dose grid sizes result in lower GPRs in peripheral low-dose regions as calculated by AXB with ArcCHECK™ measurement. To enhance GPR, employing split-arc methods and finer dose grid sizes could be beneficial.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}