Pub Date : 2024-12-01Epub Date: 2024-10-04DOI: 10.1007/s12194-024-00848-0
Mageshraja Kannan, Sathiyan Saminathan, Varatharaj Chandraraj, B Shwetha, D Gowtham Raj, K M Ganesh
Beam-matched linear accelerators (LA's) require accurate and precise dosimetry for fractionated stereotactic treatment. In this study, the beam data were validated by comparing the three-beam-matched LA's measured data and the vendor reference data. Upon its validation, the accuracy of the volumetric dose delivery for eighty patient-specific fractionated stereotactic treatment plans was evaluated. Measurements of the percentage depth dose (PDD), beam profiles, output factors (OFs), absolute output, and dynamic multi-leaf collimator (MLC) transmission factors for 6 MV and 10 MV flattening filter (FF) and flattening filter-free (FFF) photon beams were obtained from three-beam-matched LA's. The patient-specific quality assurance evaluation for all eighty plans was performed using PTW Octavius 1000 SRS™ array detectors for two-dimensional (2D) fluence measurement. The following 2D gamma passing criteria were used: 1%/1 mm, 2%/1 mm, 1%/2 mm, 2%/2 mm and 3%/2 mm. In all three LA's, gamma analysis for PDD and profile were above 97% with gamma criteria of 1%/1 mm. The differences OFs, absolute output, and dynamic MLC transmission factors were less than ± 1% of base value. For all eighty cases, the median passing rates on the three LA's were above 76%, 88%, 92%, 96%, and 98% for the above-mentioned gamma criteria of the three LA's. The beam-matched LA's showed good agreement between the measured and treatment planning system (TPS) calculated values for fractionated stereotactic VMAT plans with 6 MV and 10 MV (FF and FFF) photon beams. Patients can be shifted and treated on any beam-matched linac without the need of re-planning.
光束匹配直线加速器(LA)需要准确和精确的剂量测定来进行分层立体定向治疗。在这项研究中,通过比较三光束匹配 LA 的测量数据和供应商的参考数据,对光束数据进行了验证。经过验证后,对 80 个特定患者的分次立体定向治疗计划的容积剂量输送准确性进行了评估。从三个光束匹配的 LA 获得了 6 MV 和 10 MV 扁平化滤波器(FF)和无扁平化滤波器(FFF)光子束的百分比深度剂量(PDD)、光束轮廓、输出因子(OFs)、绝对输出和动态多叶准直器(MLC)传输因子的测量数据。使用PTW Octavius 1000 SRS™阵列探测器进行二维(2D)通量测量,对所有80个计划进行患者特定质量保证评估。二维伽马通过标准如下:1%/1毫米、2%/1毫米、1%/2毫米、2%/2毫米和3%/2毫米。在所有三个 LA 中,采用 1%/1毫米的伽玛标准,PDD 和剖面的伽玛分析结果都超过了 97%。OFs、绝对输出和动态 MLC 传输因子的差异均小于基准值的 ± 1%。在所有 80 个案例中,三种 LA 在上述伽马标准下的合格率中位数分别高于 76%、88%、92%、96% 和 98%。在使用 6 MV 和 10 MV(FF 和 FFF)光子束的分层立体定向 VMAT 计划中,光束匹配 LA 的测量值与治疗计划系统(TPS)的计算值之间显示出良好的一致性。病人可以在任何光束匹配的直列加速器上进行转移和治疗,而无需重新规划。
{"title":"Evaluation of patient-specific quality assurance for fractionated stereotactic treatment plans with 6 and 10MV photon beams in beam-matched linacs.","authors":"Mageshraja Kannan, Sathiyan Saminathan, Varatharaj Chandraraj, B Shwetha, D Gowtham Raj, K M Ganesh","doi":"10.1007/s12194-024-00848-0","DOIUrl":"10.1007/s12194-024-00848-0","url":null,"abstract":"<p><p>Beam-matched linear accelerators (LA's) require accurate and precise dosimetry for fractionated stereotactic treatment. In this study, the beam data were validated by comparing the three-beam-matched LA's measured data and the vendor reference data. Upon its validation, the accuracy of the volumetric dose delivery for eighty patient-specific fractionated stereotactic treatment plans was evaluated. Measurements of the percentage depth dose (PDD), beam profiles, output factors (OFs), absolute output, and dynamic multi-leaf collimator (MLC) transmission factors for 6 MV and 10 MV flattening filter (FF) and flattening filter-free (FFF) photon beams were obtained from three-beam-matched LA's. The patient-specific quality assurance evaluation for all eighty plans was performed using PTW Octavius 1000 SRS™ array detectors for two-dimensional (2D) fluence measurement. The following 2D gamma passing criteria were used: 1%/1 mm, 2%/1 mm, 1%/2 mm, 2%/2 mm and 3%/2 mm. In all three LA's, gamma analysis for PDD and profile were above 97% with gamma criteria of 1%/1 mm. The differences OFs, absolute output, and dynamic MLC transmission factors were less than ± 1% of base value. For all eighty cases, the median passing rates on the three LA's were above 76%, 88%, 92%, 96%, and 98% for the above-mentioned gamma criteria of the three LA's. The beam-matched LA's showed good agreement between the measured and treatment planning system (TPS) calculated values for fractionated stereotactic VMAT plans with 6 MV and 10 MV (FF and FFF) photon beams. Patients can be shifted and treated on any beam-matched linac without the need of re-planning.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"896-906"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-09DOI: 10.1007/s12194-024-00841-7
Kazuya Kakuta, Koichi Chida
The aim of this study was to optimise the vessel angle as well as the stack number from the profiles of carbon dioxide digital subtraction angiography (CO2-DSA) images of a water phantom containing an artificial vessel tilted at different angles which imitate arteries in the body. The artificial vessel was tilted at 0°, 15°, and 30° relative to the horizontal axis with its centre as the pivot point, and CO2-DSA images were acquired at each vessel tilt angle. The maximum opacity method was used to stack up to four images of the next frame one by one. The signal-to-noise ratio (SNR) was determined from the profile curves. The Wilcoxon rank sum test was used to evaluate whether the profile curve and SNR differed depending on the vessel tilt angle or stack number, and a p-value of less than 0.05 was considered statistically significant. Images acquired at 0° had a significantly lower SNR than images acquired at 15° (p = 0.10). When the vessel angle was 30°, the profile curves were significantly improved (p < 0.05) when two or more images were stacked over the original image. Images with a good SNR were acquired at the vessel tilt angle of 15°, and the shape of the profile curve was improved when two or more images were stacked on the original image. This study demonstrates that the quality of images acquired using CO2-DSA can be significantly improved through parameter optimisation for image acquisition and post-processing.
{"title":"Parameter optimisation for image acquisition and stacking in carbon dioxide digital subtraction angiography.","authors":"Kazuya Kakuta, Koichi Chida","doi":"10.1007/s12194-024-00841-7","DOIUrl":"10.1007/s12194-024-00841-7","url":null,"abstract":"<p><p>The aim of this study was to optimise the vessel angle as well as the stack number from the profiles of carbon dioxide digital subtraction angiography (CO<sub>2</sub>-DSA) images of a water phantom containing an artificial vessel tilted at different angles which imitate arteries in the body. The artificial vessel was tilted at 0°, 15°, and 30° relative to the horizontal axis with its centre as the pivot point, and CO<sub>2</sub>-DSA images were acquired at each vessel tilt angle. The maximum opacity method was used to stack up to four images of the next frame one by one. The signal-to-noise ratio (SNR) was determined from the profile curves. The Wilcoxon rank sum test was used to evaluate whether the profile curve and SNR differed depending on the vessel tilt angle or stack number, and a p-value of less than 0.05 was considered statistically significant. Images acquired at 0° had a significantly lower SNR than images acquired at 15° (p = 0.10). When the vessel angle was 30°, the profile curves were significantly improved (p < 0.05) when two or more images were stacked over the original image. Images with a good SNR were acquired at the vessel tilt angle of 15°, and the shape of the profile curve was improved when two or more images were stacked on the original image. This study demonstrates that the quality of images acquired using CO<sub>2</sub>-DSA can be significantly improved through parameter optimisation for image acquisition and post-processing.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"862-868"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to develop a novel internal target volume (ITV) definition for respiratory motion targets, considering target motion velocity and time. The proposed ITV was evaluated in respiratory-gated radiotherapy. An ITV modified with target motion velocity and time (ITVvt) was defined as an ITV that includes a target motion based on target motion velocity and time. The target motion velocity was calculated using four-dimensional computed tomography (4DCT) images. The ITVvts were created from phantom and clinical 4DCT images. The phantom 4DCT images were acquired using a solid phantom that moved with a sinusoidal waveform (peak-to-peak amplitudes of 10 and 20 mm and cycles of 2-6 s). The clinical 4DCT images were obtained from eight lung cancer cases. In respiratory-gated radiotherapy, the ITVvt was compared with conventional ITVs for beam times of 0.5-2 s within the gating window. The conventional ITV was created by adding a uniform margin as the maximum motion within the gating window. In the phantom images, the maximum volume difference between the ITVvt and conventional ITV was -81.9%. In the clinical images, the maximum volume difference was -53.6%. Shorter respiratory cycles and longer BTs resulted in smaller ITVvt compared with the conventional ITV. Therefore, the proposed ITVvt plan could be used to reduce treatment volumes and doses to normal tissues.
{"title":"A novel internal target volume definition based on velocity and time of respiratory target motion for external beam radiotherapy.","authors":"Masashi Yamanaka, Teiji Nishio, Kohei Iwabuchi, Hironori Nagata","doi":"10.1007/s12194-024-00837-3","DOIUrl":"10.1007/s12194-024-00837-3","url":null,"abstract":"<p><p>This study aimed to develop a novel internal target volume (ITV) definition for respiratory motion targets, considering target motion velocity and time. The proposed ITV was evaluated in respiratory-gated radiotherapy. An ITV modified with target motion velocity and time (ITVvt) was defined as an ITV that includes a target motion based on target motion velocity and time. The target motion velocity was calculated using four-dimensional computed tomography (4DCT) images. The ITVvts were created from phantom and clinical 4DCT images. The phantom 4DCT images were acquired using a solid phantom that moved with a sinusoidal waveform (peak-to-peak amplitudes of 10 and 20 mm and cycles of 2-6 s). The clinical 4DCT images were obtained from eight lung cancer cases. In respiratory-gated radiotherapy, the ITVvt was compared with conventional ITVs for beam times of 0.5-2 s within the gating window. The conventional ITV was created by adding a uniform margin as the maximum motion within the gating window. In the phantom images, the maximum volume difference between the ITVvt and conventional ITV was -81.9%. In the clinical images, the maximum volume difference was -53.6%. Shorter respiratory cycles and longer BTs resulted in smaller ITVvt compared with the conventional ITV. Therefore, the proposed ITVvt plan could be used to reduce treatment volumes and doses to normal tissues.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"843-853"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-14DOI: 10.1007/s12194-024-00832-8
Hisamichi Takagi, Ken Takeda, Noriyuki Kadoya, Koki Inoue, Shiki Endo, Noriyoshi Takahashi, Takaya Yamamoto, Rei Umezawa, Keiichi Jingu
Urinary toxicities are one of the serious complications of radiotherapy for prostate cancer, and dose-volume histogram of prostatic urethra has been associated with such toxicities in previous reports. Previous research has focused on estimating the prostatic urethra, which is difficult to delineate in CT images; however, these studies, which are limited in number, mainly focused on cases undergoing brachytherapy uses low-dose-rate sources and do not involve external beam radiation therapy (EBRT). In this study, we aimed to develop a deep learning-based method of determining the position of the prostatic urethra in patients eligible for EBRT. We used contour data from 430 patients with localized prostate cancer. In all cases, a urethral catheter was placed when planning CT to identify the prostatic urethra. We used 2D and 3D U-Net segmentation models. The input images included the bladder and prostate, while the output images focused on the prostatic urethra. The 2D model determined the prostate's position based on results from both coronal and sagittal directions. Evaluation metrics included the average distance between centerlines. The average centerline distances for the 2D and 3D models were 2.07 ± 0.87 mm and 2.05 ± 0.92 mm, respectively. Increasing the number of cases while maintaining equivalent accuracy as we did in this study suggests the potential for high generalization performance and the feasibility of using deep learning technology for estimating the position of the prostatic urethra.
{"title":"Development of deep learning-based novel auto-segmentation for the prostatic urethra on planning CT images for prostate cancer radiotherapy.","authors":"Hisamichi Takagi, Ken Takeda, Noriyuki Kadoya, Koki Inoue, Shiki Endo, Noriyoshi Takahashi, Takaya Yamamoto, Rei Umezawa, Keiichi Jingu","doi":"10.1007/s12194-024-00832-8","DOIUrl":"10.1007/s12194-024-00832-8","url":null,"abstract":"<p><p>Urinary toxicities are one of the serious complications of radiotherapy for prostate cancer, and dose-volume histogram of prostatic urethra has been associated with such toxicities in previous reports. Previous research has focused on estimating the prostatic urethra, which is difficult to delineate in CT images; however, these studies, which are limited in number, mainly focused on cases undergoing brachytherapy uses low-dose-rate sources and do not involve external beam radiation therapy (EBRT). In this study, we aimed to develop a deep learning-based method of determining the position of the prostatic urethra in patients eligible for EBRT. We used contour data from 430 patients with localized prostate cancer. In all cases, a urethral catheter was placed when planning CT to identify the prostatic urethra. We used 2D and 3D U-Net segmentation models. The input images included the bladder and prostate, while the output images focused on the prostatic urethra. The 2D model determined the prostate's position based on results from both coronal and sagittal directions. Evaluation metrics included the average distance between centerlines. The average centerline distances for the 2D and 3D models were 2.07 ± 0.87 mm and 2.05 ± 0.92 mm, respectively. Increasing the number of cases while maintaining equivalent accuracy as we did in this study suggests the potential for high generalization performance and the feasibility of using deep learning technology for estimating the position of the prostatic urethra.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"819-826"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We aimed to evaluate the accuracy and repeatability of the T1, T2*, and proton density (PD) values obtained by quantitative parameter mapping (QPM) using the ISMRM/NIST MRI system phantom and compared them with computer simulations. We compared the relaxation times and PD obtained through QPM with the reference values of the ISMRM/NIST MRI system phantom and conventional methods. Furthermore, we evaluated the presence or absence of influences other than noise in T1 and T2* values obtained by QPM by comparing the obtained coefficient of variation (CV) with simulation results. The T1, T2*, and PD values by QPM showed a strong correlation with the measured values and the referenced values. The simulated CVs of QPM calculated for each sphere showed similar trends to those of the actual scans.
{"title":"Assessment of accuracy and repeatability of quantitative parameter mapping in MRI.","authors":"Yuya Hirano, Kinya Ishizaka, Hiroyuki Sugimori, Yo Taniguchi, Tomoki Amemiya, Yoshitaka Bito, Kohsuke Kudo","doi":"10.1007/s12194-024-00836-4","DOIUrl":"10.1007/s12194-024-00836-4","url":null,"abstract":"<p><p>We aimed to evaluate the accuracy and repeatability of the T1, T2*, and proton density (PD) values obtained by quantitative parameter mapping (QPM) using the ISMRM/NIST MRI system phantom and compared them with computer simulations. We compared the relaxation times and PD obtained through QPM with the reference values of the ISMRM/NIST MRI system phantom and conventional methods. Furthermore, we evaluated the presence or absence of influences other than noise in T1 and T2* values obtained by QPM by comparing the obtained coefficient of variation (CV) with simulation results. The T1, T2*, and PD values by QPM showed a strong correlation with the measured values and the referenced values. The simulated CVs of QPM calculated for each sphere showed similar trends to those of the actual scans.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"918-928"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deep-learning-based methods can improve robustness against individual variations in computed tomography (CT) images of the sternocleidomastoid muscle, which is a challenge when using conventional methods based on probabilistic atlases are used for automatic segmentation. Thus, this study proposes a novel multiclass learning approach for the joint segmentation of the sternocleidomastoid and skeletal muscles in CT images, and it employs a two-dimensional U-Net architecture. The proposed method concurrently learns and segmented segments the sternocleidomastoid muscle and the entire skeletal musculature. Consequently, three-dimensional segmentation results are generated for both muscle groups. Experiments conducted on a dataset of 30 body CT images demonstrated segmentation accuracies of 82.94% and 92.73% for the sternocleidomastoid muscle and entire skeletal muscle compartment, respectively. These results outperformed those of conventional methods, such as the single-region learning of a target muscle and multiclass learning of specific muscle pairs. Moreover, the multiclass learning paradigm facilitated a robust segmentation performance regardless of the input image range. This highlights the method's potential for cases that present muscle atrophy or reduced muscle strength. The proposed method exhibits promising capabilities for the high-accuracy joint segmentation of the sternocleidomastoid and skeletal muscles and is effective in recognizing skeletal muscles, thus, it holds promise for integration into computer-aided diagnostic systems for comprehensive musculoskeletal analysis. These findings are expected to enhance medical image analysis techniques and their applications in clinical decision support systems.
{"title":"Joint segmentation of sternocleidomastoid and skeletal muscles in computed tomography images using a multiclass learning approach.","authors":"Kosuke Ashino, Naoki Kamiya, Xiangrong Zhou, Hiroki Kato, Takeshi Hara, Hiroshi Fujita","doi":"10.1007/s12194-024-00839-1","DOIUrl":"10.1007/s12194-024-00839-1","url":null,"abstract":"<p><p>Deep-learning-based methods can improve robustness against individual variations in computed tomography (CT) images of the sternocleidomastoid muscle, which is a challenge when using conventional methods based on probabilistic atlases are used for automatic segmentation. Thus, this study proposes a novel multiclass learning approach for the joint segmentation of the sternocleidomastoid and skeletal muscles in CT images, and it employs a two-dimensional U-Net architecture. The proposed method concurrently learns and segmented segments the sternocleidomastoid muscle and the entire skeletal musculature. Consequently, three-dimensional segmentation results are generated for both muscle groups. Experiments conducted on a dataset of 30 body CT images demonstrated segmentation accuracies of 82.94% and 92.73% for the sternocleidomastoid muscle and entire skeletal muscle compartment, respectively. These results outperformed those of conventional methods, such as the single-region learning of a target muscle and multiclass learning of specific muscle pairs. Moreover, the multiclass learning paradigm facilitated a robust segmentation performance regardless of the input image range. This highlights the method's potential for cases that present muscle atrophy or reduced muscle strength. The proposed method exhibits promising capabilities for the high-accuracy joint segmentation of the sternocleidomastoid and skeletal muscles and is effective in recognizing skeletal muscles, thus, it holds promise for integration into computer-aided diagnostic systems for comprehensive musculoskeletal analysis. These findings are expected to enhance medical image analysis techniques and their applications in clinical decision support systems.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"854-861"},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1007/s12194-024-00866-y
Ryohei Yamauchi, Fumihiro Tomita
The aim of this study is to evaluate the dynamic accuracy and latency of the surface-guided radiotherapy (SGRT) system using TrueBeam and AlignRT in compliance with SGRT guidelines. Beam characteristics-flatness, symmetry, beam quality, and output-were compared between gated and nongated beams using a two-dimensional ionization chamber array and a Farmer-type chamber. Dynamic accuracy was assessed using a moving platform and breast phantom, with measurements taken for various shift values (5, 10, 30 mm), region-of-interest (ROI) shapes, reference-surface image types (DICOM and capture), surface resolutions, and room illuminations. Latency due to differences in frame rates was evaluated using radiochromic film, calculated from position displacements of profiles at two speeds. Differences in beam characteristics between gated and nongated beams were within 0.1%. Dynamic accuracy showed minimal dependence on settings, with deviations of < 1 mm for a 10-mm shift. A maximum displacement of 1.9 mm was observed with a 30-mm shift at the body ROI. Beam-on latency at 12, 16, 25, and 35 frames per second was 253.2 ± 21.9, 225.7 ± 33.7, 177.1 ± 43.0, and 112.4 ± 29.2 ms, respectively, with similar trends for beam-off latency. This study is the first to evaluate the dynamic accuracy of the TrueBeam and AlignRT system under SGRT-specific settings. While accuracy was generally maintained (< 1 mm), ROI shape significantly impacted results. Latency results indicate that certain frame rates may not meet guideline limits, underscoring the need for careful SGRT system use in clinical applications.
{"title":"Evaluation of dynamic accuracy and latency of a surface-guided radiotherapy system.","authors":"Ryohei Yamauchi, Fumihiro Tomita","doi":"10.1007/s12194-024-00866-y","DOIUrl":"https://doi.org/10.1007/s12194-024-00866-y","url":null,"abstract":"<p><p>The aim of this study is to evaluate the dynamic accuracy and latency of the surface-guided radiotherapy (SGRT) system using TrueBeam and AlignRT in compliance with SGRT guidelines. Beam characteristics-flatness, symmetry, beam quality, and output-were compared between gated and nongated beams using a two-dimensional ionization chamber array and a Farmer-type chamber. Dynamic accuracy was assessed using a moving platform and breast phantom, with measurements taken for various shift values (5, 10, 30 mm), region-of-interest (ROI) shapes, reference-surface image types (DICOM and capture), surface resolutions, and room illuminations. Latency due to differences in frame rates was evaluated using radiochromic film, calculated from position displacements of profiles at two speeds. Differences in beam characteristics between gated and nongated beams were within 0.1%. Dynamic accuracy showed minimal dependence on settings, with deviations of < 1 mm for a 10-mm shift. A maximum displacement of 1.9 mm was observed with a 30-mm shift at the body ROI. Beam-on latency at 12, 16, 25, and 35 frames per second was 253.2 ± 21.9, 225.7 ± 33.7, 177.1 ± 43.0, and 112.4 ± 29.2 ms, respectively, with similar trends for beam-off latency. This study is the first to evaluate the dynamic accuracy of the TrueBeam and AlignRT system under SGRT-specific settings. While accuracy was generally maintained (< 1 mm), ROI shape significantly impacted results. Latency results indicate that certain frame rates may not meet guideline limits, underscoring the need for careful SGRT system use in clinical applications.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142751987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite the importance of T2-weighted image in clinical practice, artifacts can significantly degrade image quality and affect diagnosis. This study quantitatively analyzed uterine displacement and surveyed the relationship between the image quality of fast-spin-echo-T2-weighted image of the female pelvis and quantitative value of uterine displacement. Overall, 147 women (mean age, 46.0 ± 12.8 years; age range, 22-84 years) who had undergone pelvic magnetic resonance imaging examination using a 3 T- magnetic resonance imaging scanner were included. Two radiologists performed a visual assessment of the fast-spin-echo-T2-weighted image in the sagittal plane in terms of ghosts and motion blur, and classified the image quality into the following three groups: poor, moderate, and excellent. Uterine displacement on half-Fourier acquisition single-shot turbo spin-echo-cine images was calculated, and the maximum amplitude of uterine displacement and summation of uterine displacement were calculated from the displacement map images. The Kruskal-Wallis and Steel-Dwass tests were performed to compare the maximum amplitude of uterine displacement and summation of uterine displacement among the three groups. Poor, moderate, and excellent image qualities were observed in 48, 71, and 28 patients, respectively. The quality of fast-spin-echo-T2-weighted images degraded statistically significantly with P < 0.01 as the maximum amplitude of uterine displacement increased. The summation of uterine displacement in the poor and moderate groups had greater statistical significance with P < 0.01 than that in the excellent group.
{"title":"Impact of uterine displacement on T<sub>2</sub>-weighted image quality in the female pelvic MRI.","authors":"Hironobu Ishikawa, Masahiko Monma, Yoshiyuki Ishimori, Kousaku Saotome, Shiro Ishii, Hirofumi Sekino, Ryo Yamakuni, Takeyasu Kakamu, Daisuke Oura, Yuma Takahashi, Shinya Seino, Masanori Yusa, Hiroshi Ito","doi":"10.1007/s12194-024-00861-3","DOIUrl":"https://doi.org/10.1007/s12194-024-00861-3","url":null,"abstract":"<p><p>Despite the importance of T<sub>2</sub>-weighted image in clinical practice, artifacts can significantly degrade image quality and affect diagnosis. This study quantitatively analyzed uterine displacement and surveyed the relationship between the image quality of fast-spin-echo-T<sub>2</sub>-weighted image of the female pelvis and quantitative value of uterine displacement. Overall, 147 women (mean age, 46.0 ± 12.8 years; age range, 22-84 years) who had undergone pelvic magnetic resonance imaging examination using a 3 T- magnetic resonance imaging scanner were included. Two radiologists performed a visual assessment of the fast-spin-echo-T<sub>2</sub>-weighted image in the sagittal plane in terms of ghosts and motion blur, and classified the image quality into the following three groups: poor, moderate, and excellent. Uterine displacement on half-Fourier acquisition single-shot turbo spin-echo-cine images was calculated, and the maximum amplitude of uterine displacement and summation of uterine displacement were calculated from the displacement map images. The Kruskal-Wallis and Steel-Dwass tests were performed to compare the maximum amplitude of uterine displacement and summation of uterine displacement among the three groups. Poor, moderate, and excellent image qualities were observed in 48, 71, and 28 patients, respectively. The quality of fast-spin-echo-T<sub>2</sub>-weighted images degraded statistically significantly with P < 0.01 as the maximum amplitude of uterine displacement increased. The summation of uterine displacement in the poor and moderate groups had greater statistical significance with P < 0.01 than that in the excellent group.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142733262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The advancement of irradiation technology has increased the demand for quality control of radiation therapy equipment. Consequently, the number of quality control items and required personnel have also increased. However, differences in the proportion of qualified personnel to irradiation techniques have caused bias in quality control systems among institutions. To standardize the quality across institutions, researchers should conduct mutual quality control by analyzing the quality control data of one institution at another institution and comparing the results with those of their own institutions. This study uses failure mode and effects analysis (FMEA) to identify potential risks in 12 radiation therapy institutions, compares the results before and after implementation of mutual quality control, and examines the utility of mutual quality control in risk reduction. Furthermore, a cost-effectiveness factor is introduced into FMEA to evaluate the utility of mutual quality control.
{"title":"Standardization of radiation therapy quality control system through mutual quality control based on failure mode and effects analysis.","authors":"Yuki Tanimoto, Masataka Oita, Kazunobu Koshi, Kiyoshi Ishiwaki, Futoshi Hiramatsu, Toshihisa Sasaki, Hiroki Ise, Takashi Miyagawa, Takeshi Maeda, Shinsuke Okahira, Takashi Hamaguchi, Tatsuya Kawaguchi, Norihiro Funada, Shuhei Yamamoto, Akira Hiroshige, Yuki Mukai, Shohei Yoshida, Yoshiki Fujita, Atsuki Nakahira, Hirofumi Honda","doi":"10.1007/s12194-024-00857-z","DOIUrl":"10.1007/s12194-024-00857-z","url":null,"abstract":"<p><p>The advancement of irradiation technology has increased the demand for quality control of radiation therapy equipment. Consequently, the number of quality control items and required personnel have also increased. However, differences in the proportion of qualified personnel to irradiation techniques have caused bias in quality control systems among institutions. To standardize the quality across institutions, researchers should conduct mutual quality control by analyzing the quality control data of one institution at another institution and comparing the results with those of their own institutions. This study uses failure mode and effects analysis (FMEA) to identify potential risks in 12 radiation therapy institutions, compares the results before and after implementation of mutual quality control, and examines the utility of mutual quality control in risk reduction. Furthermore, a cost-effectiveness factor is introduced into FMEA to evaluate the utility of mutual quality control.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uncertainties in the steps of external beam radiotherapy (EBRT) affect patient outcomes. However, few studies have investigated major contributors to these uncertainties. This study investigated factors contributing to reducing uncertainty in delivering a dose to a target volume. The EBRT process was classified into four steps: reference dosimetry, relative dosimetry [percentage depth doses (PDDs) and off-center ratios (OCRs)], dose calculations (PDDs and OCRs in a virtual water phantom), and patient setup using an image-guided radiation therapy system. We evaluated the uncertainties for these steps in conventionally fractionated EBRT for intracranial disease using 4-, 6-, and 10-MV flattened photon beams generated from clinical linear accelerators following the Guide to the Expression of Uncertainty in Measurement and an uncertainty evaluation method with uncorrected deflection. The following were the major contributors to these uncertainties: beam quality conversion factors for reference dosimetry; charge measurements, chamber depth, source-to-surface distance, water evaporation, and field size for relative dosimetry; dose calculation accuracy for the dose calculations; image registration, radiation-imaging isocenter coincidence, variation in radiation isocenter due to gantry and couch rotation, and intrafractional motion for the patient setup. Among the four steps, the relative dosimetry and dose calculation (namely, both penumbral OCRs) steps involved an uncertainty of more than 5% with a coverage factor of 1. In the EBRT process evaluated herein, the uncertainties in the relative dosimetry and dose calculations must be reduced.
{"title":"Quantification of uncertainties in reference and relative dose measurements, dose calculations, and patient setup in modern external beam radiotherapy.","authors":"Naoki Kinoshita, Morihito Shimizu, Kana Motegi, Yusuke Tsuruta, Toru Takakura, Hiroshi Oguchi, Chie Kurokawa","doi":"10.1007/s12194-024-00856-0","DOIUrl":"https://doi.org/10.1007/s12194-024-00856-0","url":null,"abstract":"<p><p>Uncertainties in the steps of external beam radiotherapy (EBRT) affect patient outcomes. However, few studies have investigated major contributors to these uncertainties. This study investigated factors contributing to reducing uncertainty in delivering a dose to a target volume. The EBRT process was classified into four steps: reference dosimetry, relative dosimetry [percentage depth doses (PDDs) and off-center ratios (OCRs)], dose calculations (PDDs and OCRs in a virtual water phantom), and patient setup using an image-guided radiation therapy system. We evaluated the uncertainties for these steps in conventionally fractionated EBRT for intracranial disease using 4-, 6-, and 10-MV flattened photon beams generated from clinical linear accelerators following the Guide to the Expression of Uncertainty in Measurement and an uncertainty evaluation method with uncorrected deflection. The following were the major contributors to these uncertainties: beam quality conversion factors for reference dosimetry; charge measurements, chamber depth, source-to-surface distance, water evaporation, and field size for relative dosimetry; dose calculation accuracy for the dose calculations; image registration, radiation-imaging isocenter coincidence, variation in radiation isocenter due to gantry and couch rotation, and intrafractional motion for the patient setup. Among the four steps, the relative dosimetry and dose calculation (namely, both penumbral OCRs) steps involved an uncertainty of more than 5% with a coverage factor of 1. In the EBRT process evaluated herein, the uncertainties in the relative dosimetry and dose calculations must be reduced.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}