Pub Date : 2024-12-02DOI: 10.1007/s12010-024-05114-y
Upasana Sharma, Tikkam Singh, Veena Agrawal
Gentiana kurroo Royle, a critically endangered Himalayan herb, is valued in treating leucoderma, syphilis, bronchial asthma, hepatitis, etc. The current investigation performed quantitative and qualitative phytochemical analysis of G. kurroo root extracts prepared in chloroform, methanol, and ethyl acetate. The phenolic and flavonoid contents were the highest in methanol and chloroform extract, respectively. Several pharmacologically important compounds were identified through gas chromatography-mass spectrometry. Antioxidant analysis revealed methanolic extract to be the most efficient scavenger of 2,2-diphenyl-1-picrylhydrazyl (IC50 = 114 µg mL-1), hydrogen peroxide (IC50 = 109.9 µg mL-1), and superoxide (IC50 = 74.63 µg mL-1) radicals. Gentiopicroside was isolated from the methanolic root extract through silica-gel column-chromatography, and the characterization of concentrated fractions was achieved employing various analytical techniques. Pertaining to silver nanoparticle (GkAgNPs) synthesis, different physicochemical parameters were optimized and it was observed that root extract treated with silver-nitrate (0.5 mM) at 60 °C and incubated in dark for at least 120 min after initial color change, yielded GkAgNPs optimally. GkAgNPs were anisotropic and polydisperse and exhibited characteristic surface plasmon resonance (424 nm), crystalline face-centered cubic geometry, size (50-300 nm), and zeta-potential (- 16.3 mV). FT-IR spectra indicated the involvement of phenols and flavonoids in AgNPs synthesis. GkAgNPs were evidenced as strongly cytotoxic (IC50 = 1.964 µg mL-1) against HeLa cells and also showed deformed cellular morphology, a significant reduction in viable cell counts and colony-forming efficiency (4.08%). The findings suggest potential applications in drug development for treating serious human diseases. To the best of our knowledge, this study represents the first report on the isolation of gentiopicroside, the bio-fabrication of GkAgNPs using G.kurroo root extract, and their strong bioefficacy against HeLa cells.
{"title":"Phytochemical Analysis, Isolation, and Characterization of Gentiopicroside from Gentiana kurroo and Cytotoxicity of Biosynthesized Silver Nanoparticles Against HeLa Cells.","authors":"Upasana Sharma, Tikkam Singh, Veena Agrawal","doi":"10.1007/s12010-024-05114-y","DOIUrl":"https://doi.org/10.1007/s12010-024-05114-y","url":null,"abstract":"<p><p>Gentiana kurroo Royle, a critically endangered Himalayan herb, is valued in treating leucoderma, syphilis, bronchial asthma, hepatitis, etc. The current investigation performed quantitative and qualitative phytochemical analysis of G. kurroo root extracts prepared in chloroform, methanol, and ethyl acetate. The phenolic and flavonoid contents were the highest in methanol and chloroform extract, respectively. Several pharmacologically important compounds were identified through gas chromatography-mass spectrometry. Antioxidant analysis revealed methanolic extract to be the most efficient scavenger of 2,2-diphenyl-1-picrylhydrazyl (IC<sub>50</sub> = 114 µg mL<sup>-1</sup>), hydrogen peroxide (IC<sub>50</sub> = 109.9 µg mL<sup>-1</sup>), and superoxide (IC<sub>50</sub> = 74.63 µg mL<sup>-1</sup>) radicals. Gentiopicroside was isolated from the methanolic root extract through silica-gel column-chromatography, and the characterization of concentrated fractions was achieved employing various analytical techniques. Pertaining to silver nanoparticle (GkAgNPs) synthesis, different physicochemical parameters were optimized and it was observed that root extract treated with silver-nitrate (0.5 mM) at 60 °C and incubated in dark for at least 120 min after initial color change, yielded GkAgNPs optimally. GkAgNPs were anisotropic and polydisperse and exhibited characteristic surface plasmon resonance (424 nm), crystalline face-centered cubic geometry, size (50-300 nm), and zeta-potential (- 16.3 mV). FT-IR spectra indicated the involvement of phenols and flavonoids in AgNPs synthesis. GkAgNPs were evidenced as strongly cytotoxic (IC<sub>50</sub> = 1.964 µg mL<sup>-1</sup>) against HeLa cells and also showed deformed cellular morphology, a significant reduction in viable cell counts and colony-forming efficiency (4.08%). The findings suggest potential applications in drug development for treating serious human diseases. To the best of our knowledge, this study represents the first report on the isolation of gentiopicroside, the bio-fabrication of GkAgNPs using G.kurroo root extract, and their strong bioefficacy against HeLa cells.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s12010-024-05122-y
Ashmitha Kalairaj, Swethashree Rajendran, R Karthikeyan, Rames C Panda, T Senthilvelan
Food preservation aims to maintain safe and nutritious food for extended periods by inhibiting microbial growth that causes spoilage and poses health risks. Traditional chemical preservatives like sodium sulfite, sodium nitrite, sodium benzoate, tBHQ and BHA have raised concerns due to potential carcinogenicity, genotoxicity and allergies with long-term consumption. As a natural alternative, bacteriocins have emerged for food preservation. These ribosomally synthesised antimicrobial peptides are produced by various microorganisms, including bacteria, fungi and yeast, typically during their stationary growth phase. Bacteriocins are categorised into four classes based on structure and function, with molecular weights averaging between 30 and 80 kDa. They exhibit antimicrobial activity against a range of bacteria, mediating complex interactions between bacterial species and enhancing competitiveness and survival of producer strains. Both gram-positive and gram-negative bacteria produce bacteriocins. Recent advancements have identified and optimized bacteriocins for applications in food technology, extending shelf life, managing foodborne illnesses and contributing to public health preservation. Their eco-friendly nature and safety profile make bacteriocins promising for future food preservation strategies without detrimental effects on humans or animals. The current review has mainly focused on the preservation of food products using bacteriocin.
{"title":"A Comprehensive Review on Preparation of Silver Nanoparticles from a Bacteriocin for the Natural Preservation of Food Products.","authors":"Ashmitha Kalairaj, Swethashree Rajendran, R Karthikeyan, Rames C Panda, T Senthilvelan","doi":"10.1007/s12010-024-05122-y","DOIUrl":"https://doi.org/10.1007/s12010-024-05122-y","url":null,"abstract":"<p><p>Food preservation aims to maintain safe and nutritious food for extended periods by inhibiting microbial growth that causes spoilage and poses health risks. Traditional chemical preservatives like sodium sulfite, sodium nitrite, sodium benzoate, tBHQ and BHA have raised concerns due to potential carcinogenicity, genotoxicity and allergies with long-term consumption. As a natural alternative, bacteriocins have emerged for food preservation. These ribosomally synthesised antimicrobial peptides are produced by various microorganisms, including bacteria, fungi and yeast, typically during their stationary growth phase. Bacteriocins are categorised into four classes based on structure and function, with molecular weights averaging between 30 and 80 kDa. They exhibit antimicrobial activity against a range of bacteria, mediating complex interactions between bacterial species and enhancing competitiveness and survival of producer strains. Both gram-positive and gram-negative bacteria produce bacteriocins. Recent advancements have identified and optimized bacteriocins for applications in food technology, extending shelf life, managing foodborne illnesses and contributing to public health preservation. Their eco-friendly nature and safety profile make bacteriocins promising for future food preservation strategies without detrimental effects on humans or animals. The current review has mainly focused on the preservation of food products using bacteriocin.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s12010-024-05131-x
Xiao Fu, Wan-Jun Ye, Gang Yuan, Xue-Li Zhang, Rui-Yuan Niu
Bio-cement is a green and energy-saving building material, which has received wide attention in the field of ecological environment and geotechnical engineering in recent years. The aim of this study is to investigate the improvement effect of plant-based bio-cement (PBBC) in synergistic treatment of sand with organic materials, to highlight the effective use of tap water in PBBC, and to analyze the crack evolution pattern during the damage of specimens by using image processing techniques. The results showed that tap water can be used as a solvent for PBBC instead of deionized water. The characteristic trend of urease solutions prepared at different temperature environments was obvious, and the activity value of urease solution with low concentration is positively correlated with the ambient temperature, although the activity value is not high, it is not easy to inactivate. The incorporation of organic materials increased the peak stress up to 1809.30 kPa compared to the specimens modified only by PBBC. The damage of the specimens under uniaxial compression consisted of four stages: compaction, elastic deformation, pre-peak brittle damage and post-peak macroscopic damage. The corresponding crack evolution is the interpenetration of small-sized cracks into large-sized main cracks. The large-sized main cracks transform into penetration cracks before damage, and the small-sized cracks are distributed around the penetration cracks. The crack evolution parameters obtained by MATLAB processing are positively correlated with the strain.
{"title":"Experimental Study on Mechanical Properties of Cured Sand Combined with Plant-Based Bio-cement (PBBC) and Organic Materials.","authors":"Xiao Fu, Wan-Jun Ye, Gang Yuan, Xue-Li Zhang, Rui-Yuan Niu","doi":"10.1007/s12010-024-05131-x","DOIUrl":"https://doi.org/10.1007/s12010-024-05131-x","url":null,"abstract":"<p><p>Bio-cement is a green and energy-saving building material, which has received wide attention in the field of ecological environment and geotechnical engineering in recent years. The aim of this study is to investigate the improvement effect of plant-based bio-cement (PBBC) in synergistic treatment of sand with organic materials, to highlight the effective use of tap water in PBBC, and to analyze the crack evolution pattern during the damage of specimens by using image processing techniques. The results showed that tap water can be used as a solvent for PBBC instead of deionized water. The characteristic trend of urease solutions prepared at different temperature environments was obvious, and the activity value of urease solution with low concentration is positively correlated with the ambient temperature, although the activity value is not high, it is not easy to inactivate. The incorporation of organic materials increased the peak stress up to 1809.30 kPa compared to the specimens modified only by PBBC. The damage of the specimens under uniaxial compression consisted of four stages: compaction, elastic deformation, pre-peak brittle damage and post-peak macroscopic damage. The corresponding crack evolution is the interpenetration of small-sized cracks into large-sized main cracks. The large-sized main cracks transform into penetration cracks before damage, and the small-sized cracks are distributed around the penetration cracks. The crack evolution parameters obtained by MATLAB processing are positively correlated with the strain.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edible and medicinal mushrooms are valuable sources of polysaccharides, known for their dual roles as immunostimulants and immunosuppressants. This study aimed to enhance polysaccharide content by fusing two mushroom species, P. florida and C. militaris, while exploring their antioxidant and antibacterial potential. These mushrooms have diverse health benefits, including lowering high cholesterol, providing anti-inflammatory effects, supporting diabetes management, aiding in cancer treatment, and enhancing the efficacy of COVID-19 vaccines. Successful hyphal fusion was achieved, and optimal culture conditions were determined using response surface methodology. The hybrids exhibited superior growth compared to the parental strains. Hyphal fusion improved several attributes, resulting in diverse hybrids with increased biomass and metabolite production. FTIR analysis confirmed the presence of exopolysaccharides, with concentrations measured at 28.4 g/L (P1), 31.50 g/L (CD), and 36.74 g/L (F3). GC-MS analysis identified various bioactive metabolites, including a higher concentration of dimethyl palmitamine in the hybrid, a novel compound, butanenitrile, 2-(methoxymethoxy), which was not found in the parental strains. These compounds are likely responsible for the enhanced antimicrobial and antioxidant activities.
{"title":"GC-MS Analysis of Polysaccharides from an Intergeneric Hybrid of Pleurotus florida and Cordyceps militaris: A Comparative Study.","authors":"Varsha Meshram, Prachi Thakur, Shailesh Kumar Jadhav, Nagendra Kumar Chandrawanshi","doi":"10.1007/s12010-024-05121-z","DOIUrl":"https://doi.org/10.1007/s12010-024-05121-z","url":null,"abstract":"<p><p>Edible and medicinal mushrooms are valuable sources of polysaccharides, known for their dual roles as immunostimulants and immunosuppressants. This study aimed to enhance polysaccharide content by fusing two mushroom species, P. florida and C. militaris, while exploring their antioxidant and antibacterial potential. These mushrooms have diverse health benefits, including lowering high cholesterol, providing anti-inflammatory effects, supporting diabetes management, aiding in cancer treatment, and enhancing the efficacy of COVID-19 vaccines. Successful hyphal fusion was achieved, and optimal culture conditions were determined using response surface methodology. The hybrids exhibited superior growth compared to the parental strains. Hyphal fusion improved several attributes, resulting in diverse hybrids with increased biomass and metabolite production. FTIR analysis confirmed the presence of exopolysaccharides, with concentrations measured at 28.4 g/L (P1), 31.50 g/L (CD), and 36.74 g/L (F3). GC-MS analysis identified various bioactive metabolites, including a higher concentration of dimethyl palmitamine in the hybrid, a novel compound, butanenitrile, 2-(methoxymethoxy), which was not found in the parental strains. These compounds are likely responsible for the enhanced antimicrobial and antioxidant activities.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1007/s12010-024-05093-0
Nor Aina Nordin, Samson Soon, Jamaliah B Senawi, Zurin Azlin M Jinin, Siti Suri Arshad, Abdul Rahaman Yasmin, Farah Asilah Azri
Foot-and-mouth disease (FMD) is known for its highly contagious properties among cloven-hoofed animals resulting in significant morbidity rates. Incursions of this disease have caused significant losses in affected countries in Southeast Asia and Africa, even within EU countries which resulted in significant financial losses. This study is aimed at addressing existing limitations by creating a diagnostic method using aptamer-based assay. Three DNA aptamers were engineered to target the VP2 region of the FMD viral capsid protein. Since VP2 demonstrates a highly conserved amino acid sequence across serotypes, the specifically designed aptamers can detect different serotypes of the virus. Aptamers were evaluated against VP2 capsid protein, which was synthesized based on sequences from serotypes A, O, and Asia 1 of the FMD virus. After the recombinant VP2 capsid protein was developed, expressed, and refined, it was applied using enzyme-linked aptamer sorbent assay (ELASA) to determine aptamers' binding capability. A similar test was further conducted with purified FMD virus from serotype A and serotype O. The ELASA results displayed a notable sensitivity in identifying the FMDV. Under optimized conditions, the aptamers have LOD as low as 0.11 ng/mL with LOQ as low as 0.34 ng/mL. The binding strength analyzed using the equilibrium dissociation constant (Kd) showed strong binding affinity at 3.092 ± 0.05 nM. Based on these findings, the method shows significant potential with high sensitivity and specificity for FMD virus detection assay.
{"title":"Aptamer-Based Detection of Foot-and-Mouth Disease Virus Using Single-Stranded DNA Probe.","authors":"Nor Aina Nordin, Samson Soon, Jamaliah B Senawi, Zurin Azlin M Jinin, Siti Suri Arshad, Abdul Rahaman Yasmin, Farah Asilah Azri","doi":"10.1007/s12010-024-05093-0","DOIUrl":"https://doi.org/10.1007/s12010-024-05093-0","url":null,"abstract":"<p><p>Foot-and-mouth disease (FMD) is known for its highly contagious properties among cloven-hoofed animals resulting in significant morbidity rates. Incursions of this disease have caused significant losses in affected countries in Southeast Asia and Africa, even within EU countries which resulted in significant financial losses. This study is aimed at addressing existing limitations by creating a diagnostic method using aptamer-based assay. Three DNA aptamers were engineered to target the VP2 region of the FMD viral capsid protein. Since VP2 demonstrates a highly conserved amino acid sequence across serotypes, the specifically designed aptamers can detect different serotypes of the virus. Aptamers were evaluated against VP2 capsid protein, which was synthesized based on sequences from serotypes A, O, and Asia 1 of the FMD virus. After the recombinant VP2 capsid protein was developed, expressed, and refined, it was applied using enzyme-linked aptamer sorbent assay (ELASA) to determine aptamers' binding capability. A similar test was further conducted with purified FMD virus from serotype A and serotype O. The ELASA results displayed a notable sensitivity in identifying the FMDV. Under optimized conditions, the aptamers have LOD as low as 0.11 ng/mL with LOQ as low as 0.34 ng/mL. The binding strength analyzed using the equilibrium dissociation constant (Kd) showed strong binding affinity at 3.092 ± 0.05 nM. Based on these findings, the method shows significant potential with high sensitivity and specificity for FMD virus detection assay.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1007/s12010-024-05112-0
Yuepeng Wang
Cholangiocarcinoma is a hepatobiliary system tumor with a high mortality rate. Although durvalumab and trastuzumab deruxtecan (T-DXd) have shown efficacy in treating cancers such as non-small cell lung cancer, their effects and regulatory mechanisms in cholangiocarcinoma remain unclear. In this study, we aimed to investigate the role and mechanism of durvalumab and T-DXd in inducing apoptosis in cholangiocarcinoma cells. Cholangiocarcinoma cells were treated with varying concentrations of durvalumab and T-DXd, either individually or in combination, to evaluate their effects. Apoptosis was quantified using flow cytometry. Quantitative real-time PCR (qPCR) and Western blotting were used to measure the mRNA expression and protein levels of genes associated with apoptosis and cell cycle regulation. The underlying mechanism was further explored through pathway enrichment analysis of differentially expressed genes (DEGs) and corroborated by qPCR and Western blotting. Xenotransplantation models using immune-deficient NOD-SCID/IL2Rγnull (NSG) mice were established to assess the in vivo effects of durvalumab and T-DXd. Our results showed that both durvalumab and T-DXd inhibited cholangiocarcinoma cell proliferation in a dose-dependent manner. Both agents promoted apoptosis and arrested the cell cycle of cholangiocarcinoma cells, with the combination treatment having the most significant effect. Furthermore, treatment with durvalumab, T-DXd, and the combination downregulated the protein levels of early growth response 1 (EGR1) by inactivating the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo experiments indicated that durvalumab and T-DXd prolonged the survival of NSG mice bearing cholangiocarcinoma xenografts. In conclusion, our findings demonstrated that durvalumab and T-DXd synergistically promoted apoptosis in cholangiocarcinoma cells by inhibiting EGR1 expression through inactivation of the p38 MAPK pathway. This study confirmed the potential of durvalumab and T-DXd for the treatment of cholangiocarcinoma.
胆管癌是一种死亡率很高的肝胆系统肿瘤。尽管德伐卢单抗和曲妥珠单抗德鲁司坦(T-DXd)在治疗非小细胞肺癌等癌症方面显示出了疗效,但它们在胆管癌中的作用和调控机制仍不清楚。本研究旨在探讨杜伐单抗和T-DXd诱导胆管癌细胞凋亡的作用和机制。我们用不同浓度的durvalumab和T-DXd单独或联合处理胆管癌细胞,以评估它们的作用。采用流式细胞术对细胞凋亡进行量化。采用定量实时 PCR(qPCR)和 Western 印迹法测定与细胞凋亡和细胞周期调控相关的基因的 mRNA 表达和蛋白水平。通过对差异表达基因(DEGs)进行通路富集分析,并通过 qPCR 和 Western 印迹分析加以证实,进一步探索了潜在的机制。我们利用免疫缺陷NOD-SCID/IL2Rγnull(NSG)小鼠建立了异种移植模型,以评估durvalumab和T-DXd的体内效应。结果表明,durvalumab和T-DXd都能以剂量依赖的方式抑制胆管癌细胞的增殖。两种药物都能促进胆管癌细胞的凋亡和细胞周期的停止,其中联合治疗的效果最为显著。此外,durvalumab、T-DXd和联合疗法通过使p38丝裂原活化蛋白激酶(MAPK)通路失活,从而降低了早期生长应答1(EGR1)的蛋白水平。体内实验表明,durvalumab和T-DXd延长了携带胆管癌异种移植物的NSG小鼠的存活时间。总之,我们的研究结果表明,durvalumab 和 T-DXd 通过抑制 p38 MAPK 通路,抑制 EGR1 的表达,从而协同促进胆管癌细胞的凋亡。这项研究证实了durvalumab和T-DXd治疗胆管癌的潜力。
{"title":"Durvalumab and T-DXd Synergistically Promote Apoptosis of Cholangiocarcinoma Cells by Downregulating EGR1 Expression Through Inhibiting P38 MAPK Pathway.","authors":"Yuepeng Wang","doi":"10.1007/s12010-024-05112-0","DOIUrl":"https://doi.org/10.1007/s12010-024-05112-0","url":null,"abstract":"<p><p>Cholangiocarcinoma is a hepatobiliary system tumor with a high mortality rate. Although durvalumab and trastuzumab deruxtecan (T-DXd) have shown efficacy in treating cancers such as non-small cell lung cancer, their effects and regulatory mechanisms in cholangiocarcinoma remain unclear. In this study, we aimed to investigate the role and mechanism of durvalumab and T-DXd in inducing apoptosis in cholangiocarcinoma cells. Cholangiocarcinoma cells were treated with varying concentrations of durvalumab and T-DXd, either individually or in combination, to evaluate their effects. Apoptosis was quantified using flow cytometry. Quantitative real-time PCR (qPCR) and Western blotting were used to measure the mRNA expression and protein levels of genes associated with apoptosis and cell cycle regulation. The underlying mechanism was further explored through pathway enrichment analysis of differentially expressed genes (DEGs) and corroborated by qPCR and Western blotting. Xenotransplantation models using immune-deficient NOD-SCID/IL2Rγnull (NSG) mice were established to assess the in vivo effects of durvalumab and T-DXd. Our results showed that both durvalumab and T-DXd inhibited cholangiocarcinoma cell proliferation in a dose-dependent manner. Both agents promoted apoptosis and arrested the cell cycle of cholangiocarcinoma cells, with the combination treatment having the most significant effect. Furthermore, treatment with durvalumab, T-DXd, and the combination downregulated the protein levels of early growth response 1 (EGR1) by inactivating the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo experiments indicated that durvalumab and T-DXd prolonged the survival of NSG mice bearing cholangiocarcinoma xenografts. In conclusion, our findings demonstrated that durvalumab and T-DXd synergistically promoted apoptosis in cholangiocarcinoma cells by inhibiting EGR1 expression through inactivation of the p38 MAPK pathway. This study confirmed the potential of durvalumab and T-DXd for the treatment of cholangiocarcinoma.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An efficient and green method was developed using deep eutectic solvent assistance to enhance the biotransformation method of producing resveratrol from Polygonum cuspidatum Siebold & Zucc, using cellulose-based immobilised Aspergillus niger in the process. Various deep eutectic solvents (DES) were screened to obtain a superior biocatalytic effect. The increase in DES concentration aggravated the degree of cell membrane damage. Natural deep eutectic solvents (NADES) exhibited a more favourable catalytic effect than DES due to their excellent biocompatibility. This enhancement is associated with the hydrogen bonding donor components present in NADES, with catalytic ability ranking as alcohol-based > sugar-based > organic acid. CHCL/EG exhibited the maximum catalytic effect at 1.0 wt%. Under optimal conditions (pH 6.5; temperature, 29.5 °C; ratio of liquid to solid 20:1 (mL/g), and time 47 h), the resveratrol yield reached 32.79 mg/g, which was 13.06-fold to that of the untreated sample (2.51 mg/g). The residual activity of the cellulose-based microreactor was 81.46% after ten trials. The proposed method was successfully employed, demonstrating higher biocatalysis efficiencies and superior environmental protection compared to conventional solvents for resveratrol biocatalysis.
{"title":"A sustainable and Integrated Microbial Biocatalysis of Resveratrol from Polygonum cuspidatum Siebold & Zucc Using Cellulose-Based Immobilised Aspergillus niger with Deep Eutectic Solvent-Assisted Microreactors.","authors":"Shuang Jin, Yubin Ren, Cailiang Peng, Yupeng Cheng, Weili Liu, Yujie Fu, Chen Lv, Hongyao Cai","doi":"10.1007/s12010-024-05118-8","DOIUrl":"https://doi.org/10.1007/s12010-024-05118-8","url":null,"abstract":"<p><p>An efficient and green method was developed using deep eutectic solvent assistance to enhance the biotransformation method of producing resveratrol from Polygonum cuspidatum Siebold & Zucc, using cellulose-based immobilised Aspergillus niger in the process. Various deep eutectic solvents (DES) were screened to obtain a superior biocatalytic effect. The increase in DES concentration aggravated the degree of cell membrane damage. Natural deep eutectic solvents (NADES) exhibited a more favourable catalytic effect than DES due to their excellent biocompatibility. This enhancement is associated with the hydrogen bonding donor components present in NADES, with catalytic ability ranking as alcohol-based > sugar-based > organic acid. CHCL/EG exhibited the maximum catalytic effect at 1.0 wt%. Under optimal conditions (pH 6.5; temperature, 29.5 °C; ratio of liquid to solid 20:1 (mL/g), and time 47 h), the resveratrol yield reached 32.79 mg/g, which was 13.06-fold to that of the untreated sample (2.51 mg/g). The residual activity of the cellulose-based microreactor was 81.46% after ten trials. The proposed method was successfully employed, demonstrating higher biocatalysis efficiencies and superior environmental protection compared to conventional solvents for resveratrol biocatalysis.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lignin, a vital plant component, is key in providing structural integrity and is the second most abundant biopolymer in nature. The growing interest in sustainable and efficient biocatalysis has driven the exploration of lignin nanoparticles (LNPs) as a promising platform for enzyme immobilization. Given lignin's abundance and structural role in plants, converting it into nanoparticles offers a potential eco-friendly alternative to traditional supports. This comprehensive review explores recent advancements in using LNPs for enzyme immobilization, focusing on loading techniques, immobilization efficiency, enzyme activity levels, and various factors that affect the performance of enzymes immobilized on LNPs. The review also addresses the primary challenges associated with enzyme immobilization on LNPs and discusses future innovations in this field. Adopting eco-friendly immobilization platforms based on LNPs is expected to have broad applications in industries like food, pharmaceuticals, animal feed, and detergents. However, there is still potential to customize LNPs further and develop novel immobilization techniques to leverage their benefits fully. By understanding the properties and advantages of these nanostructured lignin supports, researchers can design and create innovative nanocatalysts for various industrial applications.
{"title":"Harnessing Lignin Nanoparticles for Sustainable Enzyme Immobilization: Current Paradigms and Future Innovations.","authors":"Babbiker Mohammed Taher Gorish, Waha Ismail Yahia Abdelmula, Sivasamy Sethupathy, Ashenafi Berhanu Robele, Daochen Zhu","doi":"10.1007/s12010-024-05133-9","DOIUrl":"https://doi.org/10.1007/s12010-024-05133-9","url":null,"abstract":"<p><p>Lignin, a vital plant component, is key in providing structural integrity and is the second most abundant biopolymer in nature. The growing interest in sustainable and efficient biocatalysis has driven the exploration of lignin nanoparticles (LNPs) as a promising platform for enzyme immobilization. Given lignin's abundance and structural role in plants, converting it into nanoparticles offers a potential eco-friendly alternative to traditional supports. This comprehensive review explores recent advancements in using LNPs for enzyme immobilization, focusing on loading techniques, immobilization efficiency, enzyme activity levels, and various factors that affect the performance of enzymes immobilized on LNPs. The review also addresses the primary challenges associated with enzyme immobilization on LNPs and discusses future innovations in this field. Adopting eco-friendly immobilization platforms based on LNPs is expected to have broad applications in industries like food, pharmaceuticals, animal feed, and detergents. However, there is still potential to customize LNPs further and develop novel immobilization techniques to leverage their benefits fully. By understanding the properties and advantages of these nanostructured lignin supports, researchers can design and create innovative nanocatalysts for various industrial applications.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Specific antibodies, which can be used in various experiments, are critical tools for unraveling genes' function, but many commercial antibodies are not tested for these properties. GPATCH1 is a novel G-patch family protein. Genome-wide association studies (GWAS) revealed it as a gene associated with human osteoporosis, and yeast-based research suggested it may be a splicing factor; however, its molecular mechanism remains a mystery. We report here that currently available commercial GPATCH1 antibodies have poor specificity and are not recommended for immunoprecipitation. We elucidated the apparent molecular weight of GPATCH1 to evaluate the antibodies' specificity. Based on this, a specific polyclonal antibody against GPATCH1 that can be used for Western blotting, immunoprecipitation and immunofluorescence was prepared. With the antibodies, we found that GPATCH1 may be a tissue-specific splicing factor. Our study lays the groundwork for further investigations into the molecular mechanisms by which GPATCH1 affects bone metabolism in the future.
{"title":"Development of Polyclonal Antibodies for the Preliminary Characterization of GPATCH1, a Novel Splicing Factor Associated with Human Osteoporosis.","authors":"Aikedaimu Abudukeremu, Guliqiati Azatibieke, Gulisitan Yimiti, Yaqun Guan, Zhe Chen","doi":"10.1007/s12010-024-05132-w","DOIUrl":"https://doi.org/10.1007/s12010-024-05132-w","url":null,"abstract":"<p><p>Specific antibodies, which can be used in various experiments, are critical tools for unraveling genes' function, but many commercial antibodies are not tested for these properties. GPATCH1 is a novel G-patch family protein. Genome-wide association studies (GWAS) revealed it as a gene associated with human osteoporosis, and yeast-based research suggested it may be a splicing factor; however, its molecular mechanism remains a mystery. We report here that currently available commercial GPATCH1 antibodies have poor specificity and are not recommended for immunoprecipitation. We elucidated the apparent molecular weight of GPATCH1 to evaluate the antibodies' specificity. Based on this, a specific polyclonal antibody against GPATCH1 that can be used for Western blotting, immunoprecipitation and immunofluorescence was prepared. With the antibodies, we found that GPATCH1 may be a tissue-specific splicing factor. Our study lays the groundwork for further investigations into the molecular mechanisms by which GPATCH1 affects bone metabolism in the future.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1007/s12010-024-05083-2
Yanping Wu, Zenghui Liang, Kun Li, Junli Feng
Diabetic retinopathy (DR) is one of the most common microvascular complications in diabetes. Accumulating evidence demonstrated that long non-coding RNAs (lncRNAs) played critical regulatory roles in DR. However, the role of lncRNA HOX Transcript Antisense Intergenic RNA (HOTAIR) in the high glucose (HG)-induced human retinal pigment epithelial (RPE) cell injury remains unclear. Herein, we found the expression of HOTAIR was increased in the retina of DR rats and HG-induced ARPE-19 cells. Knockdown of HOTAIR improved viability, inhibited apoptosis, increased Bcl-2 protein levels, and decreased Bax and cleaved caspase 3 protein levels in HG-treated ARPE-19 cells. Moreover, enzyme-linked immunosorbent assay showed that HOTAIR silencing reduced interleukin 6 and tumor necrosis factor-α release of ARPE-19 cells under HG conditions. Mechanistically, luciferase reporter assay and RNA immunoprecipitation assay validated that HOTAIR could directly sponge miR-326 to upregulate transcription factor 4 (TCF4) expression. Furthermore, rescue experiments confirmed that HOTAIR promoted apoptosis and inflammation of HG-treated ARPE-19 cells by the miR-326/TCF4 axis. In summary, HOTAIR enhanced HG-induced retinal pigment epithelial cell injury by promoting apoptosis and inflammation, shedding light on the importance of HOTAIR as a novel potential target for DR treatment.
{"title":"Knockdown of HOTAIR Alleviates High Glucose-Induced Apoptosis and Inflammation in Retinal Pigment Epithelial Cells.","authors":"Yanping Wu, Zenghui Liang, Kun Li, Junli Feng","doi":"10.1007/s12010-024-05083-2","DOIUrl":"https://doi.org/10.1007/s12010-024-05083-2","url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is one of the most common microvascular complications in diabetes. Accumulating evidence demonstrated that long non-coding RNAs (lncRNAs) played critical regulatory roles in DR. However, the role of lncRNA HOX Transcript Antisense Intergenic RNA (HOTAIR) in the high glucose (HG)-induced human retinal pigment epithelial (RPE) cell injury remains unclear. Herein, we found the expression of HOTAIR was increased in the retina of DR rats and HG-induced ARPE-19 cells. Knockdown of HOTAIR improved viability, inhibited apoptosis, increased Bcl-2 protein levels, and decreased Bax and cleaved caspase 3 protein levels in HG-treated ARPE-19 cells. Moreover, enzyme-linked immunosorbent assay showed that HOTAIR silencing reduced interleukin 6 and tumor necrosis factor-α release of ARPE-19 cells under HG conditions. Mechanistically, luciferase reporter assay and RNA immunoprecipitation assay validated that HOTAIR could directly sponge miR-326 to upregulate transcription factor 4 (TCF4) expression. Furthermore, rescue experiments confirmed that HOTAIR promoted apoptosis and inflammation of HG-treated ARPE-19 cells by the miR-326/TCF4 axis. In summary, HOTAIR enhanced HG-induced retinal pigment epithelial cell injury by promoting apoptosis and inflammation, shedding light on the importance of HOTAIR as a novel potential target for DR treatment.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142738120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}