Pub Date : 2023-05-23DOI: 10.1108/mmms-10-2022-0219
I. Aliyu, S. M. Sapuan, E. S. Zainudin, M. Zuhri, Y. Ridwan
PurposeThe conflicting results on the corrosion characteristics of aluminium matrix composites reinforced with agrarian waste have stimulated an investigation on the hardness and corrosion rate of sugar palm fibre ash (SPFA) reinforced LM26 Al/alloy composite by varying the SPFA from 0 to 10 wt% in an interval of 2 wt%. This paper aims to discuss the aforementioned issue.Design/methodology/approachThe composites were produced via stir-casting and the hardness was determined using a Vickers hardness testing machine, corrosion rate was examined through the weight loss method by immersion in 0.5, 1.0 and 1.5 M hydrochloric acid (HCl) at temperatures of 303, 318, and 333 K for the maximum duration of 120 h. The morphological study was conducted using a scanning electron microscope (SEM) on the samples before and after immersion in HCl.FindingsThe incorporation of SPFA improved the hardness of the alloy from 58.22 to 93.62 VH after 10 wt% addition. The corrosion rate increases with increased content of SPFA, the concentration of HCl and temperature. The least corrosion rate of 0.0272 mpy was observed for the LM26 Al alloy in 0.5 M after 24 h while the highest corrosion rate of 0.8511 mpy was recorded for LM26 Al/10 wt% SPFA in 1.5 M HCl acid after 120 h. The SEM image of corroded samples revealed an increased number of pits with increased SPFA content.Research limitations/implicationsThe work is limited to SPFA up to 10 wt% as reinforcement in LM26 Al alloy, the use of HCl as corrosion medium, temperatures in the range of 303–333 K, and a weight loss method were used to evaluate the corrosion rate.Originality/valueThe corrosion rate was determined for LM26 Al/SPFA composites with various amounts of SPFA in 0.5, 1.0 and 1.5 M HCl at 303, 318 and 333 K and compared with the matrix alloy.
{"title":"Hardness and corrosion behaviour of stir cast LM26 Al/sugar palm fibre ash composites","authors":"I. Aliyu, S. M. Sapuan, E. S. Zainudin, M. Zuhri, Y. Ridwan","doi":"10.1108/mmms-10-2022-0219","DOIUrl":"https://doi.org/10.1108/mmms-10-2022-0219","url":null,"abstract":"PurposeThe conflicting results on the corrosion characteristics of aluminium matrix composites reinforced with agrarian waste have stimulated an investigation on the hardness and corrosion rate of sugar palm fibre ash (SPFA) reinforced LM26 Al/alloy composite by varying the SPFA from 0 to 10 wt% in an interval of 2 wt%. This paper aims to discuss the aforementioned issue.Design/methodology/approachThe composites were produced via stir-casting and the hardness was determined using a Vickers hardness testing machine, corrosion rate was examined through the weight loss method by immersion in 0.5, 1.0 and 1.5 M hydrochloric acid (HCl) at temperatures of 303, 318, and 333 K for the maximum duration of 120 h. The morphological study was conducted using a scanning electron microscope (SEM) on the samples before and after immersion in HCl.FindingsThe incorporation of SPFA improved the hardness of the alloy from 58.22 to 93.62 VH after 10 wt% addition. The corrosion rate increases with increased content of SPFA, the concentration of HCl and temperature. The least corrosion rate of 0.0272 mpy was observed for the LM26 Al alloy in 0.5 M after 24 h while the highest corrosion rate of 0.8511 mpy was recorded for LM26 Al/10 wt% SPFA in 1.5 M HCl acid after 120 h. The SEM image of corroded samples revealed an increased number of pits with increased SPFA content.Research limitations/implicationsThe work is limited to SPFA up to 10 wt% as reinforcement in LM26 Al alloy, the use of HCl as corrosion medium, temperatures in the range of 303–333 K, and a weight loss method were used to evaluate the corrosion rate.Originality/valueThe corrosion rate was determined for LM26 Al/SPFA composites with various amounts of SPFA in 0.5, 1.0 and 1.5 M HCl at 303, 318 and 333 K and compared with the matrix alloy.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46843393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-22DOI: 10.1108/mmms-09-2022-0193
Pandimani Pandimani
PurposeThe ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to accentuate the nonlinear parametric finite element (FE) simulations of RC sections under monotonic loading.Design/methodology/approachThe concrete matrix and steel reinforcement are the primary constituent materials of RC beams. The material properties such as tensile reinforcement area, tensile bars yield strength, concrete compressive strength and strain rate in tensile reinforcement at nominal strength have significantly influenced the ultimate response of RC beams. Therefore, these intensive parameters are considered in this study to ascertain their effect on the RC beam's ultimate behavior. The nonlinear response up to the ultimate load capacity and the crack evolutions of RC beams are predicted efficiently.FindingsThe parametric study reveals that increasing the tensile steel reinforcements (from Ast = 213–857 mm2) significantly improves the ultimate load capacity by 229% and yield deflections by 20%. However, it declines the ultimate deflection by 47% and ductility by 56% substantially. Varying the strain limit (?tn = 0.010–0.0015) of tensile reinforcement has proficiently increased the ultimate load-resisting capacity by 20%, whereas the ductility declined by 62%. When the concrete strength increases (from fck = 25–65 MPa), the cracking load increases profoundly by 51%, whereas the ultimate capacity has found an insignificant effect.Originality/valueThe load-deflection response plots extracted from the proposed numerical model exhibit satisfactory accuracy (less than 9% deviation) against the experimental curves available in the literature, which emphasizes the proficiency of the proposed FE model.
{"title":"Computational modeling and simulations for predicting the nonlinear responses of reinforced concrete beams","authors":"Pandimani Pandimani","doi":"10.1108/mmms-09-2022-0193","DOIUrl":"https://doi.org/10.1108/mmms-09-2022-0193","url":null,"abstract":"PurposeThe ultimate capacity and ductility behavior of a reinforced concrete (RC) beam generally depends on its constituent material properties. This study aims to use ANSYS to accentuate the nonlinear parametric finite element (FE) simulations of RC sections under monotonic loading.Design/methodology/approachThe concrete matrix and steel reinforcement are the primary constituent materials of RC beams. The material properties such as tensile reinforcement area, tensile bars yield strength, concrete compressive strength and strain rate in tensile reinforcement at nominal strength have significantly influenced the ultimate response of RC beams. Therefore, these intensive parameters are considered in this study to ascertain their effect on the RC beam's ultimate behavior. The nonlinear response up to the ultimate load capacity and the crack evolutions of RC beams are predicted efficiently.FindingsThe parametric study reveals that increasing the tensile steel reinforcements (from Ast = 213–857 mm2) significantly improves the ultimate load capacity by 229% and yield deflections by 20%. However, it declines the ultimate deflection by 47% and ductility by 56% substantially. Varying the strain limit (?tn = 0.010–0.0015) of tensile reinforcement has proficiently increased the ultimate load-resisting capacity by 20%, whereas the ductility declined by 62%. When the concrete strength increases (from fck = 25–65 MPa), the cracking load increases profoundly by 51%, whereas the ultimate capacity has found an insignificant effect.Originality/valueThe load-deflection response plots extracted from the proposed numerical model exhibit satisfactory accuracy (less than 9% deviation) against the experimental curves available in the literature, which emphasizes the proficiency of the proposed FE model.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48661640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-16DOI: 10.1108/mmms-12-2022-0283
Minh Thi Tran, Son Thai
PurposeThe main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with variable thickness.Design/methodology/approachA numerical study was conducted on the dynamic behavior of multi-directional functionally graded plates. Rectangular and circular plates with variable thickness are taken into investigation. The third-order shear deformation plate theory of Reddy is used to describe the displacement field, while the equation of motion is developed based on the Hamilton's principle. Isogeometric Analysis approach is employed as a discretization tool to develop the system equation, where NURBS basis functions are used. The famous Newmark method is used to solve time-dependent problems.FindingsThe results obtained from this study indicated that the thickness gradation has a more considerable effect than in-plane variation of materials in MFGM plates. Additionally, the influence of the damping factor is observed to affect the vibration amplitude of the plate. The results obtained from this study could be used for future investigations, where the viscous elasticity and other dynamic factors are considered.Originality/valueAlthough there have been a number of studies in the literature devoted to analyzing the linear static bending and free vibration of FGM and MFGM plates with variable thickness, the study on dynamic response of FGM and MFGM plate is still limited. Therefore, this study is dedicated to the investigation of the dynamic behavior of multi-directional functionally graded plates.
{"title":"Transient analysis of variable thickness multi-directional functionally graded plates using isogeometric analysis","authors":"Minh Thi Tran, Son Thai","doi":"10.1108/mmms-12-2022-0283","DOIUrl":"https://doi.org/10.1108/mmms-12-2022-0283","url":null,"abstract":"PurposeThe main objective of this study is to develop a numerical model based on Isogeometric Analysis to study the dynamic behavior of multi-directional functionally graded plates with variable thickness.Design/methodology/approachA numerical study was conducted on the dynamic behavior of multi-directional functionally graded plates. Rectangular and circular plates with variable thickness are taken into investigation. The third-order shear deformation plate theory of Reddy is used to describe the displacement field, while the equation of motion is developed based on the Hamilton's principle. Isogeometric Analysis approach is employed as a discretization tool to develop the system equation, where NURBS basis functions are used. The famous Newmark method is used to solve time-dependent problems.FindingsThe results obtained from this study indicated that the thickness gradation has a more considerable effect than in-plane variation of materials in MFGM plates. Additionally, the influence of the damping factor is observed to affect the vibration amplitude of the plate. The results obtained from this study could be used for future investigations, where the viscous elasticity and other dynamic factors are considered.Originality/valueAlthough there have been a number of studies in the literature devoted to analyzing the linear static bending and free vibration of FGM and MFGM plates with variable thickness, the study on dynamic response of FGM and MFGM plate is still limited. Therefore, this study is dedicated to the investigation of the dynamic behavior of multi-directional functionally graded plates.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46013604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-15DOI: 10.1108/mmms-11-2022-0259
Fan Yang, Jihui Wang, Changzeng Wang, Junlei Chen, A. Ding
PurposeIn order to find an appropriate method to synthesize a new high-efficiency flame retardant for epoxy resin.Design/methodology/approachIn this work, a flame retardant with heterocyclic groups, HOMP, was acquired after removing the obstacle from triazines which was not readily soluble. The molecular structure, thermal and flame retardant properties were fully characterized and analyzed. Also, the mechanism was researched through multi-methodologies. As well, the authors evaluated the effects of HOMP on mechanical properties.FindingsThe results suggested that HOMP helped extinguish the combustion of specimens and could reach an LOI value of 29.2% and the V0 level in the UL-94 test with a phosphorus content of only 0.6wt%. With respect to the mechanism, HOMP was a gas-phase flame retardant and helped generate a thicker carbon protective coating. However, for the mechanical properties, the addition of HOMP enhanced the compressibility, while the tensile strength decreased significantly.Originality/valueThe approach not only simplified the operations but also obtained HOMP with excellent flame retardant properties.
{"title":"Synthesis of an efficient phosphorus and triazine ring-containing reactive flame retardant for epoxy resin","authors":"Fan Yang, Jihui Wang, Changzeng Wang, Junlei Chen, A. Ding","doi":"10.1108/mmms-11-2022-0259","DOIUrl":"https://doi.org/10.1108/mmms-11-2022-0259","url":null,"abstract":"PurposeIn order to find an appropriate method to synthesize a new high-efficiency flame retardant for epoxy resin.Design/methodology/approachIn this work, a flame retardant with heterocyclic groups, HOMP, was acquired after removing the obstacle from triazines which was not readily soluble. The molecular structure, thermal and flame retardant properties were fully characterized and analyzed. Also, the mechanism was researched through multi-methodologies. As well, the authors evaluated the effects of HOMP on mechanical properties.FindingsThe results suggested that HOMP helped extinguish the combustion of specimens and could reach an LOI value of 29.2% and the V0 level in the UL-94 test with a phosphorus content of only 0.6wt%. With respect to the mechanism, HOMP was a gas-phase flame retardant and helped generate a thicker carbon protective coating. However, for the mechanical properties, the addition of HOMP enhanced the compressibility, while the tensile strength decreased significantly.Originality/valueThe approach not only simplified the operations but also obtained HOMP with excellent flame retardant properties.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62116984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-15DOI: 10.1108/mmms-09-2022-0179
Yiming Li, Chenyang Lv
PurposeTo extend the reuse method and rate of straw biomass, this paper investigated the effect of lignin synthetic phenolic resin (LPF) on the rheological properties of asphalt binder.Design/methodology/approachFour LPFs with 25%, 50%, 75% and 100% substitution rates were prepared by replacing phenol with lignin in synthetic resins and using it as a modifier to prepare a bio-asphalt binder. Temperature sweep tests were conducted to evaluate aging resistance and temperature sensitivity of the bio-asphalt binder. The rutting resistance of the bio-asphalt binder was evaluated by frequency sweeps and multiple stress creep recovery (MSCR) test. Linear amplitude sweep (LAS) tests were conducted to evaluate the fatigue resistance of the bio-asphalt binder. A master curve was constructed to further analyze the rheological properties of the bio-asphalt binder at different frequencies. The low-temperature cracking resistance of the binder was evaluated by G-R parameters, critical temperatures and ΔTc. Fourier transform infrared spectroscopy (FTIR) was performed to investigate the changes in the functional groups of the binder before and after aging.FindingsThe results indicated that adding LPF could improve the high-temperature rutting resistance, fatigue resistance, aging resistance of asphalt and the binders are less affected by temperature. Additionally, LPF slightly prohibited the low-temperature performance of the asphalt binder, which, however, was significantly lower than the base asphalt degradation during aging. Compared with base asphalt binders, the bio-asphalt binder showed no new absorption peaks generated after adding LPF, identifying that the improved asphalt binder performance by LPF was a mainly physical modification.Originality/valueThe main objective of this paper is to further improve the substitution rate (i.e. the mass substitution ratio of lignin to phenol) of lignin and broaden the application of biomass resins, thus realizing resource sustainability.
{"title":"Assessment of the effect of straw lignin-based synthetic resin as a modifier on the rheological properties of asphalt binder towards better utilization of straw biomass","authors":"Yiming Li, Chenyang Lv","doi":"10.1108/mmms-09-2022-0179","DOIUrl":"https://doi.org/10.1108/mmms-09-2022-0179","url":null,"abstract":"PurposeTo extend the reuse method and rate of straw biomass, this paper investigated the effect of lignin synthetic phenolic resin (LPF) on the rheological properties of asphalt binder.Design/methodology/approachFour LPFs with 25%, 50%, 75% and 100% substitution rates were prepared by replacing phenol with lignin in synthetic resins and using it as a modifier to prepare a bio-asphalt binder. Temperature sweep tests were conducted to evaluate aging resistance and temperature sensitivity of the bio-asphalt binder. The rutting resistance of the bio-asphalt binder was evaluated by frequency sweeps and multiple stress creep recovery (MSCR) test. Linear amplitude sweep (LAS) tests were conducted to evaluate the fatigue resistance of the bio-asphalt binder. A master curve was constructed to further analyze the rheological properties of the bio-asphalt binder at different frequencies. The low-temperature cracking resistance of the binder was evaluated by G-R parameters, critical temperatures and ΔTc. Fourier transform infrared spectroscopy (FTIR) was performed to investigate the changes in the functional groups of the binder before and after aging.FindingsThe results indicated that adding LPF could improve the high-temperature rutting resistance, fatigue resistance, aging resistance of asphalt and the binders are less affected by temperature. Additionally, LPF slightly prohibited the low-temperature performance of the asphalt binder, which, however, was significantly lower than the base asphalt degradation during aging. Compared with base asphalt binders, the bio-asphalt binder showed no new absorption peaks generated after adding LPF, identifying that the improved asphalt binder performance by LPF was a mainly physical modification.Originality/valueThe main objective of this paper is to further improve the substitution rate (i.e. the mass substitution ratio of lignin to phenol) of lignin and broaden the application of biomass resins, thus realizing resource sustainability.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42882829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-12DOI: 10.1108/mmms-09-2022-0167
M. Athar, Adeel Ahmad, Yasir Khan
PurposeTo explore the fusion of dust particles and of polymers in a viscous liquid is the main purpose of this article. Newtonian fluid as a base fluid is considered and the mutual presence of polymers and dusty bodies is investigated. It discusses the steady laminar flow and heat transportation of a polymeric dusty liquid induced by a uniformly heated, penetrable and stretchable surface inside the boundary layer.Design/methodology/approachThe mathematical system incorporates separate equations of energy and momentum for dusty bodies and for fluid. The classical Oldroyd-B model is chosen for exploring polymer presence. For the fluid phase, this model adds another stress to the conservation law of momentum. Appropriate similarity variables are introduced to transform the system of partial differential equations (PDEs) into a system of nonlinear ordinary differential equations (ODEs). The problem is solved by introducing a numerical iterative procedure which turned out to be fastly converging.FindingsExpeditious changes inside the boundary layer cause polymers to deform. No changes outside the boundary layer are noticed on account of polymer stretching. The dependence of heat transfer rate and skin friction on the parameter of polymer concentration and Weissenberg number is analyzed and displayed graphically against interaction parameters for temperature and velocity, dust particles’ mass concentration, Eckert and Prandtl numbers. Combining effects of polymers and dust particles cause skin friction to decrease and heat transfer rate to increase. Increasing values of interaction parameter for velocity, dust particles’ mass concentration and Eckert number reduces the drag coefficient and local Nusselt number. On the other hand, the Prandtl number and interaction parameter of temperature magnify the heat flux at the wall.Research limitations/implicationsThis article studies the infinite extensibility of polymers. FENE and FENE-P models can be used to investigate the polymer presence in dusty fluids in the future.Originality/valueIn this article, the authors’ aim is to study the combined presence of polymers and dusty bodies. Keeping the existing literature in view, this type of fusion is not studied yet. Polymer inclusion in a viscous dusty fluid is studied and the behavior of fluid flow and heat transportation is investigated within the boundary layer over a permeable linearly stretching sheet.
{"title":"Polymer presence in boundary layer flow and heat transfer of dusty fluid over a stretching surface","authors":"M. Athar, Adeel Ahmad, Yasir Khan","doi":"10.1108/mmms-09-2022-0167","DOIUrl":"https://doi.org/10.1108/mmms-09-2022-0167","url":null,"abstract":"PurposeTo explore the fusion of dust particles and of polymers in a viscous liquid is the main purpose of this article. Newtonian fluid as a base fluid is considered and the mutual presence of polymers and dusty bodies is investigated. It discusses the steady laminar flow and heat transportation of a polymeric dusty liquid induced by a uniformly heated, penetrable and stretchable surface inside the boundary layer.Design/methodology/approachThe mathematical system incorporates separate equations of energy and momentum for dusty bodies and for fluid. The classical Oldroyd-B model is chosen for exploring polymer presence. For the fluid phase, this model adds another stress to the conservation law of momentum. Appropriate similarity variables are introduced to transform the system of partial differential equations (PDEs) into a system of nonlinear ordinary differential equations (ODEs). The problem is solved by introducing a numerical iterative procedure which turned out to be fastly converging.FindingsExpeditious changes inside the boundary layer cause polymers to deform. No changes outside the boundary layer are noticed on account of polymer stretching. The dependence of heat transfer rate and skin friction on the parameter of polymer concentration and Weissenberg number is analyzed and displayed graphically against interaction parameters for temperature and velocity, dust particles’ mass concentration, Eckert and Prandtl numbers. Combining effects of polymers and dust particles cause skin friction to decrease and heat transfer rate to increase. Increasing values of interaction parameter for velocity, dust particles’ mass concentration and Eckert number reduces the drag coefficient and local Nusselt number. On the other hand, the Prandtl number and interaction parameter of temperature magnify the heat flux at the wall.Research limitations/implicationsThis article studies the infinite extensibility of polymers. FENE and FENE-P models can be used to investigate the polymer presence in dusty fluids in the future.Originality/valueIn this article, the authors’ aim is to study the combined presence of polymers and dusty bodies. Keeping the existing literature in view, this type of fusion is not studied yet. Polymer inclusion in a viscous dusty fluid is studied and the behavior of fluid flow and heat transportation is investigated within the boundary layer over a permeable linearly stretching sheet.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43710103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-08DOI: 10.1108/mmms-11-2022-0265
Berkay Ergene, G. Atlıhan, A. Pınar
PurposeThis study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and geometrical property as tapered angle (0, 0.25 and 0.50) on vibrational behavior of 3D-printed polyethylene terephthalate glycol (PET-G) tapered beams with fused filament fabrication (FFF) method.Design/methodology/approachIn this performance, all test specimens were modeled in AutoCAD 2020 software and then 3D-printed by FFF. The effects of printing parameters on the natural frequencies of 3D-printed PET-G beams with different tapered angles were also analyzed experimentally, and numerically (finite element analysis) via Ansys APDL 16 program. In addition to vibrational properties, tensile strength, elasticity modulus, hardness, and surface roughness of the 3D-printed PET-G parts were examined.FindingsIt can be stated that average surface roughness values ranged between 1.63 and 6.91 µm. In addition, the highest and lowest hardness values were found as 68.6 and 58.4 Shore D. Tensile strength and elasticity modulus increased with the increase of infill rate and decrease of the layer height. In conclusion, natural frequency of the 3D-printed PET-G beams went up with higher infill rate values though no critical change was observed for layer height and a change in tapered angle fluctuated the natural frequency values significantly.Research limitations/implicationsThe influence of printing parameters on the vibrational properties of 3D-printed PET-G beams with different tapered angles was carried out and the determination of these effects is quite important. On the other hand, with the addition of glass or carbon fiber reinforcements to the PET-G filaments, the material and vibrational properties of the parts can be examined in future works.Practical implicationsAs a result of this study, it was shown that natural frequencies of the 3D-printed tapered beams from PET-G material can be predicted via finite element analysis after obtaining material data with the help of mechanical/physical tests. In addition, the outcome of this study can be used as a reference during the design of parts that are subjected to vibration such as turbine blades, drone arms, propellers, orthopedic implants, scaffolds and gears.Social implicationsIt is believed that determination of the effect of the most used 3D printing parameters (layer height and infill rate) and geometrical property of tapered angle on natural frequencies of the 3D-printed parts will be very useful for researchers and engineers; especially when the importance of resonance is known well.Originality/valueWhen the literature efforts are scanned in depth, it can be seen that there are many studies about mechanical or wear properties of the 3D-printed parts. However, this is the first study which focuses on the influences of the both 3D printing parameters and tapered angles on the vibrational behaviors of the tapered PET-G beams p
{"title":"Experimental and finite element analyses on the vibration behavior of 3D-printed PET-G tapered beams with fused filament fabrication","authors":"Berkay Ergene, G. Atlıhan, A. Pınar","doi":"10.1108/mmms-11-2022-0265","DOIUrl":"https://doi.org/10.1108/mmms-11-2022-0265","url":null,"abstract":"PurposeThis study aims to reveal the influences of three-dimensional (3D) printing parameters such as layer heights (0.1 mm, 0.2 mm and 0.4 mm), infill rates (40, 70 and 100%) and geometrical property as tapered angle (0, 0.25 and 0.50) on vibrational behavior of 3D-printed polyethylene terephthalate glycol (PET-G) tapered beams with fused filament fabrication (FFF) method.Design/methodology/approachIn this performance, all test specimens were modeled in AutoCAD 2020 software and then 3D-printed by FFF. The effects of printing parameters on the natural frequencies of 3D-printed PET-G beams with different tapered angles were also analyzed experimentally, and numerically (finite element analysis) via Ansys APDL 16 program. In addition to vibrational properties, tensile strength, elasticity modulus, hardness, and surface roughness of the 3D-printed PET-G parts were examined.FindingsIt can be stated that average surface roughness values ranged between 1.63 and 6.91 µm. In addition, the highest and lowest hardness values were found as 68.6 and 58.4 Shore D. Tensile strength and elasticity modulus increased with the increase of infill rate and decrease of the layer height. In conclusion, natural frequency of the 3D-printed PET-G beams went up with higher infill rate values though no critical change was observed for layer height and a change in tapered angle fluctuated the natural frequency values significantly.Research limitations/implicationsThe influence of printing parameters on the vibrational properties of 3D-printed PET-G beams with different tapered angles was carried out and the determination of these effects is quite important. On the other hand, with the addition of glass or carbon fiber reinforcements to the PET-G filaments, the material and vibrational properties of the parts can be examined in future works.Practical implicationsAs a result of this study, it was shown that natural frequencies of the 3D-printed tapered beams from PET-G material can be predicted via finite element analysis after obtaining material data with the help of mechanical/physical tests. In addition, the outcome of this study can be used as a reference during the design of parts that are subjected to vibration such as turbine blades, drone arms, propellers, orthopedic implants, scaffolds and gears.Social implicationsIt is believed that determination of the effect of the most used 3D printing parameters (layer height and infill rate) and geometrical property of tapered angle on natural frequencies of the 3D-printed parts will be very useful for researchers and engineers; especially when the importance of resonance is known well.Originality/valueWhen the literature efforts are scanned in depth, it can be seen that there are many studies about mechanical or wear properties of the 3D-printed parts. However, this is the first study which focuses on the influences of the both 3D printing parameters and tapered angles on the vibrational behaviors of the tapered PET-G beams p","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48524320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-08DOI: 10.1108/mmms-01-2023-0017
Lucas Willian Aguiar Mattias, L. J. Araujo
PurposeThis study aims to optimize the structural design of reinforced concrete columns with variable hollow circular sections.Design/methodology/approachThe columns were optimized according to the criteria of instability (buckling) and mechanical strength (compression and/or tensile strength). To perform the optimizations, routines are developed in Python using the penalty and sequential linearization programming (SLP) function methods to optimize the elements satisfying the buckling and stress criteria.FindingsAt the end of the optimization process, the optimal section is obtained for the example of a circular column with a variable section, this section has an average radius of 5% smaller than that initially defined.Originality/valueThe theoretical basis for column optimization and the structuring of an algorithm in Python language for the computational resolution of these problems are presented in a didactic way, as well as the comparative efficiency of the methods.
{"title":"Optimization of reinforced concrete columns with variable circular cross-section hollowed using the criterion of instability and mechanical strength","authors":"Lucas Willian Aguiar Mattias, L. J. Araujo","doi":"10.1108/mmms-01-2023-0017","DOIUrl":"https://doi.org/10.1108/mmms-01-2023-0017","url":null,"abstract":"PurposeThis study aims to optimize the structural design of reinforced concrete columns with variable hollow circular sections.Design/methodology/approachThe columns were optimized according to the criteria of instability (buckling) and mechanical strength (compression and/or tensile strength). To perform the optimizations, routines are developed in Python using the penalty and sequential linearization programming (SLP) function methods to optimize the elements satisfying the buckling and stress criteria.FindingsAt the end of the optimization process, the optimal section is obtained for the example of a circular column with a variable section, this section has an average radius of 5% smaller than that initially defined.Originality/valueThe theoretical basis for column optimization and the structuring of an algorithm in Python language for the computational resolution of these problems are presented in a didactic way, as well as the comparative efficiency of the methods.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43835221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-18DOI: 10.1108/mmms-10-2022-0212
Dr. Anish R, K. Shankar
PurposeThe purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.Design/methodology/approachA parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.FindingsThe errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.Originality/valueIn this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.
{"title":"Identification of multiple nonlinear lap joints using instantaneous power flow balance","authors":"Dr. Anish R, K. Shankar","doi":"10.1108/mmms-10-2022-0212","DOIUrl":"https://doi.org/10.1108/mmms-10-2022-0212","url":null,"abstract":"PurposeThe purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.Design/methodology/approachA parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.FindingsThe errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.Originality/valueIn this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44051918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-03DOI: 10.1108/mmms-02-2023-0044
Yushan Gao, Ping Zhang, S. Huo
PurposeRegeneratively cooled thrust chamber is a key component of reusable liquid rocket engines. Subjected to cyclic thermal-mechanical loadings, its failure can seriously affect the service life of engines. QCr0.8 copper alloy is widely used in thrust chamber walls due to its excellent thermal conductivity, and its mechanical and fatigue properties are essential for the evaluation of thrust chamber life. This paper contributes to the understanding of the damage mechanism and material selection of regeneratively cooled thrust chambers for reusable liquid rocket engines.Design/methodology/approachIn this paper, tensile and low-cycle fatigue (LCF) tests were conducted for QCr0.8 alloy, and a Chaboche combined hardening model was established to describe the elastic-plastic behavior of QCr0.8 at different temperatures and strain levels. In addition, an LCF life prediction model was established based on the Manson–Coffin formula. The reliability and accuracy of models were then verified by simulations in ABAQUS. Finally, the service life was evaluated for a regenerative cooling thrust chamber, under the condition of cyclic startup and shutdown.FindingsIn this paper, a Chaboche combined hardening model was established to describe the elastoplastic behavior of QCr0.8 alloy at different temperatures and strain levels through LCF experiments. The parameters of the fitted Chaboche model were simulated in ABAQUS, and the simulation results were compared with the experimental results. The results show that the model has high reliability and accuracy in characterizing the viscoplastic behavior of QCr0.8 alloy.Originality/value(1)The parameters of a Chaboche combined hardening constitutive model and LCF life equation were optimized by tensile and strain-controlled fatigue tests of QCr0.8 copper alloy. (2) Based on the Manson–Coffin formula, the reliability and accuracy of constitutive model were then verified by simulations in ABAQUS. (3)Thermal-mechanical analysis was carried out for regeneratively cooled thrust chamber wall of a reusable liquid rocket engine, and the service life considering LCF, creep and ratcheting damage was analyzed.
{"title":"An investigation on the cyclic deformation and service life of a reusable liquid rocket engine thrust chamber wall","authors":"Yushan Gao, Ping Zhang, S. Huo","doi":"10.1108/mmms-02-2023-0044","DOIUrl":"https://doi.org/10.1108/mmms-02-2023-0044","url":null,"abstract":"PurposeRegeneratively cooled thrust chamber is a key component of reusable liquid rocket engines. Subjected to cyclic thermal-mechanical loadings, its failure can seriously affect the service life of engines. QCr0.8 copper alloy is widely used in thrust chamber walls due to its excellent thermal conductivity, and its mechanical and fatigue properties are essential for the evaluation of thrust chamber life. This paper contributes to the understanding of the damage mechanism and material selection of regeneratively cooled thrust chambers for reusable liquid rocket engines.Design/methodology/approachIn this paper, tensile and low-cycle fatigue (LCF) tests were conducted for QCr0.8 alloy, and a Chaboche combined hardening model was established to describe the elastic-plastic behavior of QCr0.8 at different temperatures and strain levels. In addition, an LCF life prediction model was established based on the Manson–Coffin formula. The reliability and accuracy of models were then verified by simulations in ABAQUS. Finally, the service life was evaluated for a regenerative cooling thrust chamber, under the condition of cyclic startup and shutdown.FindingsIn this paper, a Chaboche combined hardening model was established to describe the elastoplastic behavior of QCr0.8 alloy at different temperatures and strain levels through LCF experiments. The parameters of the fitted Chaboche model were simulated in ABAQUS, and the simulation results were compared with the experimental results. The results show that the model has high reliability and accuracy in characterizing the viscoplastic behavior of QCr0.8 alloy.Originality/value(1)The parameters of a Chaboche combined hardening constitutive model and LCF life equation were optimized by tensile and strain-controlled fatigue tests of QCr0.8 copper alloy. (2) Based on the Manson–Coffin formula, the reliability and accuracy of constitutive model were then verified by simulations in ABAQUS. (3)Thermal-mechanical analysis was carried out for regeneratively cooled thrust chamber wall of a reusable liquid rocket engine, and the service life considering LCF, creep and ratcheting damage was analyzed.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46709051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}