Pub Date : 2024-12-28DOI: 10.1186/s13765-024-00974-8
Bishnu Prasad Pandey, Jong Min Oh, Woong-Hee Shin, Abhimat Subedi, Ankita Dahal, Sumit Bhattarai, Hoon Kim
Fifty-four plant extracts from thirty-two medicinal plants collected in Nepal were evaluated for their inhibitory potential against the enzyme beta-secretase-1 (BACE1), to identify potential therapeutic agents for Alzheimer’s disease (AD). Of the studied extracts, rhizome extract of Rheum australe D. Don showed the highest inhibitory potential, with an IC50 value of 0.872 ± 0.006 µg/mL. After BACE1 inhibitory activity check using 9 fractions collected from Prep-HPLC, further profiling of the metabolites of the best fraction 7 was performed using high-resolution mass spectrometry (HRMS). Results revealed the presence of diverse secondary metabolites, including aloe-emodin-8-O-β-D-glucoside, rhein-8-O-glucoside, piceatannol-3’-O-β-D-glucoside, emodin-8-glucoside, physcion 8-O-β-D-glucoside, desoxyrhaponticin, chrysophanol-8-O-glucoside, rhapontigenin, rhein, desoxyrhapontigenin, piceatannol, chrysophanol, physcion, and aloe-emodin. In-silico docking simulations were performed to identify potent compounds with high binding efficiencies to BACE1. Compound picetannol-3’-O-β-D-glucoside showed the best binding energy (-53.494 kcal/mol) and inhibitory potential with an IC50 value of 1.270 ± 0.130 µM for BACE1. These results suggested that the R. australe D. Don extract is a promising agent for the treatment of AD.
从尼泊尔采集的32种药用植物中提取54种植物提取物,评估其对β -分泌酶-1 (BACE1)的抑制潜力,以确定阿尔茨海默病(AD)的潜在治疗药物。其中,大黄根茎提取物的抑菌活性最高,IC50值为0.872±0.006µg/mL。在使用Prep-HPLC收集的9个部分进行BACE1抑制活性检查后,使用高分辨率质谱(HRMS)进一步分析最佳部分7的代谢物。结果显示,次生代谢产物包括芦荟-大黄素-8-O-β- d -葡萄糖苷、大黄素-8-O-葡萄糖苷、果皮糖醇-3′-O-β- d -葡萄糖苷、大黄素-8-O-β- d -葡萄糖苷、去氧rhapontigenin、大黄素、去氧rhapontigenin、果皮糖醇、大黄酚、果皮糖醇、大黄素、果皮糖醇、果皮糖醇、果皮糖醇、果皮糖醇、果皮糖醇和芦荟大黄素。进行了硅对接模拟,以确定与BACE1具有高结合效率的有效化合物。化合物picetanol -3′-O-β-D-glucoside对BACE1的结合能为-53.494 kcal/mol, IC50值为1.270±0.130µM。这些结果表明,南花丹提取物是一种很有前景的治疗阿尔茨海默病的药物。
{"title":"BACE1 inhibitory potential: screening of medicinal plants collected from Nepal high altitude regions","authors":"Bishnu Prasad Pandey, Jong Min Oh, Woong-Hee Shin, Abhimat Subedi, Ankita Dahal, Sumit Bhattarai, Hoon Kim","doi":"10.1186/s13765-024-00974-8","DOIUrl":"10.1186/s13765-024-00974-8","url":null,"abstract":"<div><p>Fifty-four plant extracts from thirty-two medicinal plants collected in Nepal were evaluated for their inhibitory potential against the enzyme beta-secretase-1 (BACE1), to identify potential therapeutic agents for Alzheimer’s disease (AD). Of the studied extracts, rhizome extract of <i>Rheum australe</i> D. Don showed the highest inhibitory potential, with an IC<sub>50</sub> value of 0.872 ± 0.006 µg/mL. After BACE1 inhibitory activity check using 9 fractions collected from Prep-HPLC, further profiling of the metabolites of the best fraction 7 was performed using high-resolution mass spectrometry (HRMS). Results revealed the presence of diverse secondary metabolites, including aloe-emodin-8-O-β-D-glucoside, rhein-8-O-glucoside, piceatannol-3’-O-β-D-glucoside, emodin-8-glucoside, physcion 8-O-β-D-glucoside, desoxyrhaponticin, chrysophanol-8-O-glucoside, rhapontigenin, rhein, desoxyrhapontigenin, piceatannol, chrysophanol, physcion, and aloe-emodin. In-silico docking simulations were performed to identify potent compounds with high binding efficiencies to BACE1. Compound picetannol-3’-O-β-D-glucoside showed the best binding energy (-53.494 kcal/mol) and inhibitory potential with an IC<sub>50</sub> value of 1.270 ± 0.130 µM for BACE1. These results suggested that the <i>R. australe</i> D. Don extract is a promising agent for the treatment of AD.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00974-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1186/s13765-024-00972-w
You Rim Min, Jun-Bae Hong, Sam Han, Min-Ji Choi, Seong Bo Shim, Hae Won Jang, Jung-Bin Lee
{"title":"Correction: Quantitative analysis of seven commonly used synthetic food color additives by HPLC-PDA","authors":"You Rim Min, Jun-Bae Hong, Sam Han, Min-Ji Choi, Seong Bo Shim, Hae Won Jang, Jung-Bin Lee","doi":"10.1186/s13765-024-00972-w","DOIUrl":"10.1186/s13765-024-00972-w","url":null,"abstract":"","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00972-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1186/s13765-024-00967-7
Priskila Tolangi, Jeehyoung Shim, Raña Mae Sumabat, Sunghan Kim, Hyun-Seung Park, Kyung Do Kim, Hyun Uk Kim, Sanghyun Lee, Joong Hyoun Chin
Milk thistle (Silybum marianum) is a Mediterranean herb renowned for its liver-protective, antioxidant, anti-inflammatory, and detoxifying properties, primarily attributed to the bioactive compound silymarin. Recent studies have also highlighted its potential efficacy against COVID-19, contributing to the growing demand for milk thistle dietary supplements, particularly for liver health and immunity support. Milk thistle seeds, rich in silymarin and unsaturated fatty acids, hold significant industrial value as both medicinal and oilseed crops. To meet the growing demand, it is essential to develop standardized seeds, cultivation practices, and extraction methods aimed at maximizing yields of silymarin and other valuable metabolites. Recent advancements in genetic and genomic research, including the development of the first reference genome of S. marianum, have played a pivotal role in elucidating the biosynthesis pathways of silymarin and optimizing phytochemical production. This review highlights recent advancements in the genetics, genomics, and biochemistry of milk thistle, with particular emphasis on the importance of diverse genetic resources and AI-driven phenomics strategies, such as hyperspectral and RGB imaging, for high-yield and chemotype breeding. Further, feasibility of developing elite cultivars through molecular approaches, such as genome editing and metabolic engineering, is also discussed as the new traits obtained this way would be key to enhancing the commercial value of milk thistle in light of mass production of phytochemicals to meet rising market demands.
{"title":"The genetics and genomics of milk thistle: unlocking its therapeutic potential through modern breeding and biotechnological innovations","authors":"Priskila Tolangi, Jeehyoung Shim, Raña Mae Sumabat, Sunghan Kim, Hyun-Seung Park, Kyung Do Kim, Hyun Uk Kim, Sanghyun Lee, Joong Hyoun Chin","doi":"10.1186/s13765-024-00967-7","DOIUrl":"10.1186/s13765-024-00967-7","url":null,"abstract":"<div><p>Milk thistle (<i>Silybum marianum</i>) is a Mediterranean herb renowned for its liver-protective, antioxidant, anti-inflammatory, and detoxifying properties, primarily attributed to the bioactive compound silymarin. Recent studies have also highlighted its potential efficacy against COVID-19, contributing to the growing demand for milk thistle dietary supplements, particularly for liver health and immunity support. Milk thistle seeds, rich in silymarin and unsaturated fatty acids, hold significant industrial value as both medicinal and oilseed crops. To meet the growing demand, it is essential to develop standardized seeds, cultivation practices, and extraction methods aimed at maximizing yields of silymarin and other valuable metabolites. Recent advancements in genetic and genomic research, including the development of the first reference genome of <i>S. marianum</i>, have played a pivotal role in elucidating the biosynthesis pathways of silymarin and optimizing phytochemical production. This review highlights recent advancements in the genetics, genomics, and biochemistry of milk thistle, with particular emphasis on the importance of diverse genetic resources and AI-driven phenomics strategies, such as hyperspectral and RGB imaging, for high-yield and chemotype breeding. Further, feasibility of developing elite cultivars through molecular approaches, such as genome editing and metabolic engineering, is also discussed as the new traits obtained this way would be key to enhancing the commercial value of milk thistle in light of mass production of phytochemicals to meet rising market demands.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00967-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-25DOI: 10.1186/s13765-024-00973-9
Youngshim Lee, Seunghyun Ahn, Euitaek Jung, Dongsoo Koh, Yoongho Lim, Young Han Lee, Soon Young Shin
Thymic stromal lymphopoietin (TSLP) is a cytokine derived from epithelial cells and plays an essential role in the onset and activation of Th2-derived allergic inflammatory conditions, including atopic dermatitis. Despite their potential as drug targets, well-defined small molecules that effectively block TSLP expression are still lacking. A plant-derived secondary metabolite, aurone, was derivatized based on bioisosteric replacement to identify compounds that inhibit the promoter activity of TSLP. Thirteen (E)-2-benzylidene-1-indanones were designed and synthesized, and their structures were identified using NMR spectroscopy and mass spectrometry. Inhibition of the expression of TSLP triggered by interleukin-4 (IL-4) caused by (E)-2-benzylidene-1-indanones was measured using a TSLP gene promoter-reporter activity assay. Because compound 12, (E)-5-methoxy-2-(3-methoxybenzylidene)-2,3-dihydro-1H-inden-1-one, showed the best activity, further biological experiments, including RT-PCR analysis, quantitative real-time PCR, and inhibitory effects on IL-4-induced early growth response-1 (EGR-1) expression, EGR-1 DNA-binding activity, and IL-4-induced phosphorylation of the mitogen-activated protein kinase (MAPK) signaling cascade were performed. This study demonstrated that compound 12 acts on MAPK to block IL-4-triggered mRNA expression of TSLP via the MAPK-EGR-1 signaling pathway in HaCaT keratinocytes.
{"title":"Design, synthesis, and biological evaluation of (E)-2-benzylidene-1-indanones derivatized by bioisosteric replacement of aurones","authors":"Youngshim Lee, Seunghyun Ahn, Euitaek Jung, Dongsoo Koh, Yoongho Lim, Young Han Lee, Soon Young Shin","doi":"10.1186/s13765-024-00973-9","DOIUrl":"10.1186/s13765-024-00973-9","url":null,"abstract":"<div><p>Thymic stromal lymphopoietin (TSLP) is a cytokine derived from epithelial cells and plays an essential role in the onset and activation of Th2-derived allergic inflammatory conditions, including atopic dermatitis. Despite their potential as drug targets, well-defined small molecules that effectively block TSLP expression are still lacking. A plant-derived secondary metabolite, aurone, was derivatized based on bioisosteric replacement to identify compounds that inhibit the promoter activity of TSLP. Thirteen (<i>E</i>)-2-benzylidene-1-indanones were designed and synthesized, and their structures were identified using NMR spectroscopy and mass spectrometry. Inhibition of the expression of TSLP triggered by interleukin-4 (IL-4) caused by (<i>E</i>)-2-benzylidene-1-indanones was measured using a TSLP gene promoter-reporter activity assay. Because compound <b>12</b>, (<i>E</i>)-5-methoxy-2-(3-methoxybenzylidene)-2,3-dihydro-1<i>H</i>-inden-1-one, showed the best activity, further biological experiments, including RT-PCR analysis, quantitative real-time PCR, and inhibitory effects on IL-4-induced early growth response-1 (EGR-1) expression, EGR-1 DNA-binding activity, and IL-4-induced phosphorylation of the mitogen-activated protein kinase (MAPK) signaling cascade were performed. This study demonstrated that compound <b>12</b> acts on MAPK to block IL-4-triggered mRNA expression of TSLP via the MAPK-EGR-1 signaling pathway in HaCaT keratinocytes.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00973-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aspergillus flavus is a pathogenic fungus with a broad host range, and its secondary metabolite, aflatoxin, recognized as the world’s first naturally occurring carcinogen. Nonetheless, the current control measures for A. flavus are inadequate, thus, it is imperative to seek alternative control methods for this species. In the present study, we identified an antimicrobial peptide AMP-17, which was found to effectively inhibit the conidial germination, growth, conidiation, and aflatoxin production of A. flavus. Additionally, our investigation revealed that the inhibition of A. flavus by AMP-17 is primarily attributed to increase cell membrane permeability, modify cell surface morphology, and compromise cellular integrity, as observed through flow cytometry and scanning electron microscopy. Transcriptome analysis indicated significant transcriptional changes in several genes associated with cell wall, cell membrane, cell cycle, detoxification, and aflatoxin biosynthesis in response to AMP-17 treatment, suggesting disruption of these cellular processes and pathways in A. flavus. Furthermore, AMP-17 exhibited a broad-spectrum antifungal activity against Aspergillus spp. These findings provide a strong theoretical basis for the potential use of AMP-17 as an effective antifungal agent against A. flavus.
{"title":"Mechanism of antimicrobial peptide AMP-17 for inhibition of Aspergillus flavus","authors":"Dongxu Song, Mingming Chen, Longbing Yang, Zhenlong Jiao, Jian Peng, Guo Guo","doi":"10.1186/s13765-024-00964-w","DOIUrl":"10.1186/s13765-024-00964-w","url":null,"abstract":"<div><p><i>Aspergillus flavus</i> is a pathogenic fungus with a broad host range, and its secondary metabolite, aflatoxin, recognized as the world’s first naturally occurring carcinogen. Nonetheless, the current control measures for <i>A</i>. <i>flavus</i> are inadequate, thus, it is imperative to seek alternative control methods for this species. In the present study, we identified an antimicrobial peptide AMP-17, which was found to effectively inhibit the conidial germination, growth, conidiation, and aflatoxin production of <i>A. flavus</i>. Additionally, our investigation revealed that the inhibition of <i>A. flavus</i> by AMP-17 is primarily attributed to increase cell membrane permeability, modify cell surface morphology, and compromise cellular integrity, as observed through flow cytometry and scanning electron microscopy. Transcriptome analysis indicated significant transcriptional changes in several genes associated with cell wall, cell membrane, cell cycle, detoxification, and aflatoxin biosynthesis in response to AMP-17 treatment, suggesting disruption of these cellular processes and pathways in <i>A. flavus</i>. Furthermore, AMP-17 exhibited a broad-spectrum antifungal activity against <i>Aspergillus</i> spp. These findings provide a strong theoretical basis for the potential use of AMP-17 as an effective antifungal agent against <i>A. flavus</i>.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00964-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23DOI: 10.1186/s13765-024-00968-6
Yu Na Lee, Sin Sil Kim, Dong Won Lee, Jae Hong Shim, Sang Ho Jeon, Ahn Sung Roh, Soon Ik Kwon, Dong-Cheol Seo, Seong Heon Kim
The study examined the optimal production conditions and application rates of biochar derived from greenhouse crop by-products to enhance soil improvement and increase crop yield, thereby promoting sustainable agriculture in South Korea. The expansion of greenhouse cultivation has resulted in significant waste management challenges, and biochar production has emerged as a promising recycling solution for these by-products. Biochar was produced from red pepper stalks through pyrolysis at 200 to 600 °C, and its chemical properties, including pH, EC, T-C, and T-N, were analyzed. In this study, the chemical properties of biochar showed a significant increase in pH (from 5.8 to 10.3), EC (from 46.0 to 119.5 dS m⁻¹), and T-C (from 47.7 to 63.1%) with rising pyrolysis temperatures, while T-N decreased due to nitrogen volatilization above 300 °C. In the lettuce cultivation experiment, biochar application significantly improved fresh weight yield, with the biochar-treated group achieving a maximum of 83.3 g pot− 1 in the first cropping season, compared to 62.8 g pot− 1 in the NPK-only treatment group. However, excessive biochar application rates (≥ 800 kg ha⁻¹) led to yield reductions in the second cropping season, likely due to increased soil pH and EC. These results suggest the potential of recycling greenhouse crop residues into biochar to enhance soil fertility and crop productivity while indicating the need to manage application rates to minimize negative impacts from excessive use.
该研究考察了从温室作物副产品中提取生物炭的最佳生产条件和施用量,以加强土壤改良和提高作物产量,从而促进韩国的可持续农业。温室种植的扩大带来了重大的废物管理挑战,而生物炭生产已成为这些副产品的有希望的回收解决方案。以红辣椒秸秆为原料,在200 ~ 600℃条件下热解制得生物炭,并对其pH、EC、T-C、T-N等化学性质进行了分析。在这项研究中,生物炭的化学性质有显著提高的pH值(从5.8到10.3),电子商务(从46.0到119.5 dS米⁻¹),和温度系数(从47.7到63.1%)热解温度上升,而sn由于氮挥发减少超过300°C。在生菜栽培试验中,施用生物炭显著提高了生菜鲜重产量,在第一种植季,生物炭处理组的鲜重产量最高可达83.3 g pot - 1,而仅施用氮磷钾组的鲜重产量最高可达62.8 g pot - 1。然而,过量的生物炭施用量(≥800 kg ha⁻¹)导致第二种植季的产量下降,可能是由于土壤pH和EC的增加。这些结果表明,将温室作物秸秆转化为生物炭具有提高土壤肥力和作物生产力的潜力,同时也表明需要管理施用量,以尽量减少过度使用造成的负面影响。
{"title":"Characterization and application of biochar derived from greenhouse crop by-products for soil improvement and crop productivity in South Korea","authors":"Yu Na Lee, Sin Sil Kim, Dong Won Lee, Jae Hong Shim, Sang Ho Jeon, Ahn Sung Roh, Soon Ik Kwon, Dong-Cheol Seo, Seong Heon Kim","doi":"10.1186/s13765-024-00968-6","DOIUrl":"10.1186/s13765-024-00968-6","url":null,"abstract":"<div><p>The study examined the optimal production conditions and application rates of biochar derived from greenhouse crop by-products to enhance soil improvement and increase crop yield, thereby promoting sustainable agriculture in South Korea. The expansion of greenhouse cultivation has resulted in significant waste management challenges, and biochar production has emerged as a promising recycling solution for these by-products. Biochar was produced from red pepper stalks through pyrolysis at 200 to 600 °C, and its chemical properties, including pH, EC, T-C, and T-N, were analyzed. In this study, the chemical properties of biochar showed a significant increase in pH (from 5.8 to 10.3), EC (from 46.0 to 119.5 dS m⁻¹), and T-C (from 47.7 to 63.1%) with rising pyrolysis temperatures, while T-N decreased due to nitrogen volatilization above 300 °C. In the lettuce cultivation experiment, biochar application significantly improved fresh weight yield, with the biochar-treated group achieving a maximum of 83.3 g pot<sup>− 1</sup> in the first cropping season, compared to 62.8 g pot<sup>− 1</sup> in the NPK-only treatment group. However, excessive biochar application rates (≥ 800 kg ha⁻¹) led to yield reductions in the second cropping season, likely due to increased soil pH and EC. These results suggest the potential of recycling greenhouse crop residues into biochar to enhance soil fertility and crop productivity while indicating the need to manage application rates to minimize negative impacts from excessive use.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00968-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-22DOI: 10.1186/s13765-024-00970-y
Jung-Hwan Yoon, Mahesh Adhikari, Seok Soon Jeong, Sang Phil Lee, Hyuck Soo Kim, Geon Seung Lee, Duck Hwan Park, Heejung Kim, Jae E. Yang
Soil microbial communities are crucial to ecosystem functionality, influencing soil fertility and health. Microbial diversity in soil is impacted by various land-use practices and environmental conditions, but the effects on both prokaryotic and eukaryotic communities remain insufficiently understood. This study investigates the influence of different land-use types and soil chemical properties on the composition and diversity of prokaryotic and eukaryotic microbes using next-generation sequencing (NGS). Soil samples were collected from seven distinct locations in South Korea, representing various land uses, including paddy fields, upland fields, forest areas, hydrocarbon- and heavy-metal-contaminated sites, greenhouse soils, and reclaimed tidal soils. Alpha diversity, assessed using Chao1 and Shannon indices, and beta diversity, evaluated through Bray-Curtis dissimilarity and Principal Coordinates Analysis (PCoA), were used to characterize microbial diversity. Soil chemical properties were analyzed, and their relationships with microbial community structure were examined. Results revealed significant variations in both prokaryotic and eukaryotic diversities across different land uses. Soils under conventional agricultural management (paddy and upland fields) showed higher microbial diversity compared to soils with high salinity, contamination, or low suitability for agriculture. Prokaryotic communities were dominated by Proteobacteria, Chloroflexi, Acidobacteria, and Bacteroidetes, with variations in abundance linked to soil condition and quality. Eukaryotic communities predominantly consisted of Opisthokonta, SAR (Stramenopiles, Alveolates and Rhizaria), and Amoebozoa, with distinct abundance patterns across different soils. In conclusion, land-use practices and soil chemical properties significantly influence microbial diversity and community composition. Soils subjected to less stress, e.g., agricultural soils, exhibited higher microbial diversity, while stressed soils, e.g., contaminated and saline soils, showed reduced diversity. These findings emphasize the importance of understanding the interplay between land management and microbial ecology for optimizing soil fertility and health.
{"title":"Microbial diversity of soils under different land use and chemical conditions","authors":"Jung-Hwan Yoon, Mahesh Adhikari, Seok Soon Jeong, Sang Phil Lee, Hyuck Soo Kim, Geon Seung Lee, Duck Hwan Park, Heejung Kim, Jae E. Yang","doi":"10.1186/s13765-024-00970-y","DOIUrl":"10.1186/s13765-024-00970-y","url":null,"abstract":"<div><p>Soil microbial communities are crucial to ecosystem functionality, influencing soil fertility and health. Microbial diversity in soil is impacted by various land-use practices and environmental conditions, but the effects on both prokaryotic and eukaryotic communities remain insufficiently understood. This study investigates the influence of different land-use types and soil chemical properties on the composition and diversity of prokaryotic and eukaryotic microbes using next-generation sequencing (NGS). Soil samples were collected from seven distinct locations in South Korea, representing various land uses, including paddy fields, upland fields, forest areas, hydrocarbon- and heavy-metal-contaminated sites, greenhouse soils, and reclaimed tidal soils. Alpha diversity, assessed using Chao1 and Shannon indices, and beta diversity, evaluated through Bray-Curtis dissimilarity and Principal Coordinates Analysis (PCoA), were used to characterize microbial diversity. Soil chemical properties were analyzed, and their relationships with microbial community structure were examined. Results revealed significant variations in both prokaryotic and eukaryotic diversities across different land uses. Soils under conventional agricultural management (paddy and upland fields) showed higher microbial diversity compared to soils with high salinity, contamination, or low suitability for agriculture. Prokaryotic communities were dominated by <i>Proteobacteria</i>, <i>Chloroflexi</i>, <i>Acidobacteria</i>, and <i>Bacteroidetes</i>, with variations in abundance linked to soil condition and quality. Eukaryotic communities predominantly consisted of <i>Opisthokonta</i>, SAR (<i>Stramenopiles</i>,<i> Alveolates</i> and <i>Rhizaria)</i>, and Amoebozoa, with distinct abundance patterns across different soils. In conclusion, land-use practices and soil chemical properties significantly influence microbial diversity and community composition. Soils subjected to less stress, e.g., agricultural soils, exhibited higher microbial diversity, while stressed soils, e.g., contaminated and saline soils, showed reduced diversity. These findings emphasize the importance of understanding the interplay between land management and microbial ecology for optimizing soil fertility and health.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00970-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plastic pollution is of critical environmental concern, thus biodegradable plastics (BPs) have emerged as a potential solution to limit plastic waste accumulation. However, the fate of BPs in the environment, particularly their degradation and the subsequent generation of biodegradable microplastic (BMP) particles, remains poorly understood. This review aims to provide comprehensive insights into the biodegradation process of BPs and their impacts on soil and freshwater environments. Microorganisms play a pivotal role in this process by dismantling polymer chains into smaller particles. Factors influencing biodegradation rates include polymer composition, environmental conditions (e.g., temperature, ultraviolet radiation (UV), and pH), and the presence of chemical additives. However, incomplete degradation can result in BMPs, potentially perpetuating their presence in the environment and posing risks to ecosystems and organisms. This review consolidates understanding the mechanisms governing biodegradation and BMP formation, which is imperative for evaluating their environmental consequences and devising effective strategies for managing plastic waste.
{"title":"A review of biodegradation and formation of biodegradable microplastics in soil and freshwater environments","authors":"Nehala Sona Payanthoth, Nik Nurhidayu Nik Mut, Palas Samanta, Guanlin Li, Jinho Jung","doi":"10.1186/s13765-024-00959-7","DOIUrl":"10.1186/s13765-024-00959-7","url":null,"abstract":"<div><p>Plastic pollution is of critical environmental concern, thus biodegradable plastics (BPs) have emerged as a potential solution to limit plastic waste accumulation. However, the fate of BPs in the environment, particularly their degradation and the subsequent generation of biodegradable microplastic (BMP) particles, remains poorly understood. This review aims to provide comprehensive insights into the biodegradation process of BPs and their impacts on soil and freshwater environments. Microorganisms play a pivotal role in this process by dismantling polymer chains into smaller particles. Factors influencing biodegradation rates include polymer composition, environmental conditions (e.g., temperature, ultraviolet radiation (UV), and pH), and the presence of chemical additives. However, incomplete degradation can result in BMPs, potentially perpetuating their presence in the environment and posing risks to ecosystems and organisms. This review consolidates understanding the mechanisms governing biodegradation and BMP formation, which is imperative for evaluating their environmental consequences and devising effective strategies for managing plastic waste.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00959-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1186/s13765-024-00963-x
Nusrat Jahan Methela, Mohammad Shafiqul Islam, Ashim Kumar Das, Hasan Uz Zaman Raihan, Md. Motiar Rohman, Abul Kashem Chowdhury, Bong-Gyu Mun
Recent anthropogenic activities have spurred unparalleled environmental changes, among which elevated salinity levels emerge as a substantial threat to plant growth and development. This threat is characterized by oxidative stress, marked by the excessive generation of reactive oxygen species (ROS), proline accumulation, and lipid peroxidation. This study investigated the response of four maize (Zea mays L.) genotypes - two tolerant (9120 and Super Gold) and two susceptible (Pacific 984 and PS999) - to salinity-induced oxidative stress. Seedlings aged seven days were exposed to 12 dSm− 1 salinity stress for five days, with various parameters including relative water content (RWC), ROS accumulation, proline levels, lipid peroxidation, lipoxigenase (LOX) activity, enzymatic and non-enzymatic antioxidants, and glyoxalases evaluated in fully expanded leaves. Susceptible genotypes exhibited higher RWC loss compared to tolerant genotypes, while proline accumulation was elevated in the latter. Enhanced ROS production (hydrogen peroxide and superoxide), melondialdehyde (MDA) levels, and LOX activity were observed in susceptible genotypes under salinity stress, along with increased oxidation of glutathione (GSH) and ascorbate (ASA) compared to tolerant genotypes. Enzymatic antioxidants such as superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and monodehydroascorbate reductase (MDHAR) displayed higher activity in tolerant genotypes, while catalase (CAT) activity was significantly different between tolerant and susceptible genotypes under salinity stress in maize. Conversely, elevated activities of ascorbate peroxidase (APX), glutathione S-transferase (GST), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) were observed in both genotypes, indicating their crucial role in cellular protection against ROS and metabolites during salt stress. In short, plants have devised tactics to scavenge surplus Reactive Oxygen Species (ROS) and uphold cellular redox balance amidst oxidative stress. This study aims to offer basic knowledge regarding both enzymatic and nonenzymatic antioxidants, and the defense mechanisms they constitute against ROS detoxification upon salt stress conditions; furthermore, it also explores their interactions with cellular components.
{"title":"Antioxidant mechanisms in salt-stressed Maize (Zea mays L.) seedlings: comparative analysis of tolerant and susceptible genotypes","authors":"Nusrat Jahan Methela, Mohammad Shafiqul Islam, Ashim Kumar Das, Hasan Uz Zaman Raihan, Md. Motiar Rohman, Abul Kashem Chowdhury, Bong-Gyu Mun","doi":"10.1186/s13765-024-00963-x","DOIUrl":"10.1186/s13765-024-00963-x","url":null,"abstract":"<div><p>Recent anthropogenic activities have spurred unparalleled environmental changes, among which elevated salinity levels emerge as a substantial threat to plant growth and development. This threat is characterized by oxidative stress, marked by the excessive generation of reactive oxygen species (ROS), proline accumulation, and lipid peroxidation. This study investigated the response of four maize (<i>Zea mays</i> L.) genotypes - two tolerant (9120 and Super Gold) and two susceptible (Pacific 984 and PS999) - to salinity-induced oxidative stress. Seedlings aged seven days were exposed to 12 dSm<sup>− 1</sup> salinity stress for five days, with various parameters including relative water content (RWC), ROS accumulation, proline levels, lipid peroxidation, lipoxigenase (LOX) activity, enzymatic and non-enzymatic antioxidants, and glyoxalases evaluated in fully expanded leaves. Susceptible genotypes exhibited higher RWC loss compared to tolerant genotypes, while proline accumulation was elevated in the latter. Enhanced ROS production (hydrogen peroxide and superoxide), melondialdehyde (MDA) levels, and LOX activity were observed in susceptible genotypes under salinity stress, along with increased oxidation of glutathione (GSH) and ascorbate (ASA) compared to tolerant genotypes. Enzymatic antioxidants such as superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), and monodehydroascorbate reductase (MDHAR) displayed higher activity in tolerant genotypes, while catalase (CAT) activity was significantly different between tolerant and susceptible genotypes under salinity stress in maize. Conversely, elevated activities of ascorbate peroxidase (APX), glutathione S-transferase (GST), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) were observed in both genotypes, indicating their crucial role in cellular protection against ROS and metabolites during salt stress. In short, plants have devised tactics to scavenge surplus Reactive Oxygen Species (ROS) and uphold cellular redox balance amidst oxidative stress. This study aims to offer basic knowledge regarding both enzymatic and nonenzymatic antioxidants, and the defense mechanisms they constitute against ROS detoxification upon salt stress conditions; furthermore, it also explores their interactions with cellular components.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00963-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1186/s13765-024-00966-8
Byeonggyu Kim, Kihwan Kim, Won-Chan Kim
The plant cell wall is composed of a primary and secondary cell wall. The secondary cell wall (SCW) plays a crucial role in the movement of nutrients and water and serves as a barrier against pathogens and environmental stresses. However, the biosynthesis of the SCW is complex, involving a network of genes regulated by environmental factors, including light. In this study, we investigated the nuclear localization of AtGATA5 to determine its potential role as a transcription factor and its involvement in SCW formation. To explore changes in leaf phenotypes in overexpression AtGATA5 and the thickening of interfascicular fiber cells, we conducted a transient activity assay using Arabidopsis protoplasts. The results demonstrated that AtGATA5 can up-regulate NAC-domain transcription factors, which are master regulators of the SCW biosynthesis pathway. Furthermore, gene expression analysis in plants confirmed that as AtGATA5 expression increased, the expression levels of NAC-domain transcription factors also increased. These findings suggest that AtGATA5 plays a functional role in SCW formation by up-regulating master regulators in the SCW biosynthesis pathway. Overall, AtGATA5 may act as a novel regulator of SCW biosynthesis, offering insights into potential application.
{"title":"AtGATA5 acts as a novel regulator in secondary cell wall biosynthesis by modulating NAC-domain transcription factors in Arabidopsis thaliana","authors":"Byeonggyu Kim, Kihwan Kim, Won-Chan Kim","doi":"10.1186/s13765-024-00966-8","DOIUrl":"10.1186/s13765-024-00966-8","url":null,"abstract":"<div><p>The plant cell wall is composed of a primary and secondary cell wall. The secondary cell wall (SCW) plays a crucial role in the movement of nutrients and water and serves as a barrier against pathogens and environmental stresses. However, the biosynthesis of the SCW is complex, involving a network of genes regulated by environmental factors, including light. In this study, we investigated the nuclear localization of AtGATA5 to determine its potential role as a transcription factor and its involvement in SCW formation. To explore changes in leaf phenotypes in overexpression <i>AtGATA5</i> and the thickening of interfascicular fiber cells, we conducted a transient activity assay using Arabidopsis protoplasts. The results demonstrated that <i>AtGATA5</i> can up-regulate NAC-domain transcription factors, which are master regulators of the SCW biosynthesis pathway. Furthermore, gene expression analysis in plants confirmed that as <i>AtGATA5</i> expression increased, the expression levels of NAC-domain transcription factors also increased. These findings suggest that <i>AtGATA5</i> plays a functional role in SCW formation by up-regulating master regulators in the SCW biosynthesis pathway. Overall, <i>AtGATA5</i> may act as a novel regulator of SCW biosynthesis, offering insights into potential application.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00966-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}