Sinhara M. H. D. Perera, Chathuranga Wickramasinghe, B.K.T. Samarasiri, M. Narayana
Thermochemical processes, which include pyrolysis, torrefaction, gasification, combustion, and hydrothermal conversions, are perceived to be more efficient in converting waste biomass to energy and value-added products than biochemical processes. From the chemical point of view, thermochemical processes are highly complex and sensitive to numerous physicochemical properties, thus making reactor and process modeling more challenging. Nevertheless, the successful commercialization of these processes is contingent upon optimized reactor and process designs, which can be effectively achieved via modeling and simulation. Models of various scales with numerous simplifying assumptions have been developed for specific applications of thermochemical conversion of waste biomass. However, there is a research gap that needs to be explored to elaborate the scale of applicability, limitations, accuracy, validity, and special features of each model. This review study investigates all above mentioned important aspects and features of the existing models for all established industrial thermochemical conversion processes with emphasis on waste biomass, thus addressing the research gap mentioned above and presenting commercial-scale applicability in terms of reactor designing, process control and optimization, and potential ways to upgrade existing models for higher accuracy.
{"title":"Modeling of thermochemical conversion of waste biomass – a comprehensive review","authors":"Sinhara M. H. D. Perera, Chathuranga Wickramasinghe, B.K.T. Samarasiri, M. Narayana","doi":"10.18331/brj2021.8.4.3","DOIUrl":"https://doi.org/10.18331/brj2021.8.4.3","url":null,"abstract":"Thermochemical processes, which include pyrolysis, torrefaction, gasification, combustion, and hydrothermal conversions, are perceived to be more efficient in converting waste biomass to energy and value-added products than biochemical processes. From the chemical point of view, thermochemical processes are highly complex and sensitive to numerous physicochemical properties, thus making reactor and process modeling more challenging. Nevertheless, the successful commercialization of these processes is contingent upon optimized reactor and process designs, which can be effectively achieved via modeling and simulation. Models of various scales with numerous simplifying assumptions have been developed for specific applications of thermochemical conversion of waste biomass. However, there is a research gap that needs to be explored to elaborate the scale of applicability, limitations, accuracy, validity, and special features of each model. This review study investigates all above mentioned important aspects and features of the existing models for all established industrial thermochemical conversion processes with emphasis on waste biomass, thus addressing the research gap mentioned above and presenting commercial-scale applicability in terms of reactor designing, process control and optimization, and potential ways to upgrade existing models for higher accuracy.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45450925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Mashkour, M. Rahimnejad, F. Raouf, N. Navidjouy
Materials at the nanoscale show exciting and different properties. In this review, the applications of nanomaterials for modifying the main components of microbial fuel cell (MFC) systems (i.e., electrodes and membranes) and their effect on cell performance are reviewed and critically discussed. Carbon and metal-based nanoparticles and conductive polymers could contribute to the growth of thick anodic and cathodic microbial biofilms, leading to enhanced electron transfer between the electrodes and the biofilm. Extending active surface area, increasing conductivity, and biocompatibility are among the significant attributes of promising nanomaterials used in MFC modifications. The application of nanomaterials in fabricating cathode catalysts (catalyzing oxygen reduction reaction) is also reviewed herein. Among the various nanocatalysts used on the cathode side, metal-based nanocatalysts such as metal oxides and metal-organic frameworks (MOFs) are regarded as inexpensive and high-performance alternatives to the conventionally used high-cost Pt. In addition, polymeric membranes modified with hydrophilic and antibacterial nanoparticles could lead to higher proton conductivity and mitigated biofouling compared to the conventionally used and expensive Nafion. These improvements could lead to more promising cell performance in power generation, wastewater treatment, and nanobiosensing. Future research efforts should also take into account decreasing the production cost of the nanomaterials and the environmental safety aspects of these compounds.
{"title":"A review on the application of nanomaterials in improving microbial fuel cells","authors":"M. Mashkour, M. Rahimnejad, F. Raouf, N. Navidjouy","doi":"10.18331/BRJ2021.8.2.5","DOIUrl":"https://doi.org/10.18331/BRJ2021.8.2.5","url":null,"abstract":"Materials at the nanoscale show exciting and different properties. In this review, the applications of nanomaterials for modifying the main components of microbial fuel cell (MFC) systems (i.e., electrodes and membranes) and their effect on cell performance are reviewed and critically discussed. Carbon and metal-based nanoparticles and conductive polymers could contribute to the growth of thick anodic and cathodic microbial biofilms, leading to enhanced electron transfer between the electrodes and the biofilm. Extending active surface area, increasing conductivity, and biocompatibility are among the significant attributes of promising nanomaterials used in MFC modifications. The application of nanomaterials in fabricating cathode catalysts (catalyzing oxygen reduction reaction) is also reviewed herein. Among the various nanocatalysts used on the cathode side, metal-based nanocatalysts such as metal oxides and metal-organic frameworks (MOFs) are regarded as inexpensive and high-performance alternatives to the conventionally used high-cost Pt. In addition, polymeric membranes modified with hydrophilic and antibacterial nanoparticles could lead to higher proton conductivity and mitigated biofouling compared to the conventionally used and expensive Nafion. These improvements could lead to more promising cell performance in power generation, wastewater treatment, and nanobiosensing. Future research efforts should also take into account decreasing the production cost of the nanomaterials and the environmental safety aspects of these compounds.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43486157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meeting the emission norms specified by governing bodies is one of the major challenges faced by engine manufacturers, especially without sacrificing engine performance and fuel economy. Several methods and techniques are being used globally to reduce engine emissions. Even though emissions can be reduced, doing so usually entails a deterioration in performance. To address this problem, nanoadditives such as cerium oxide (CeO2) nanoparticles are used to reduce engine emissions while improving engine performance. However, some aspects of the application of these nanoadditives are still unknown. In light of that, three sizes of CeO2 nanoparticles (i.e., 10, 30, and 80 nm) and at a constant volume fraction of 80 ppm were added to a 20% blend of waste cooking oil biodiesel and diesel (B20). A single-cylinder diesel engine operating at a 1500 rpm speed and 180 bar fuel injection pressure was used to compare the performance and emission characteristics of the investigated fuel formulations. The results showed that the addition of CeO2 nanoparticles led to performance improvements by reducing brake specific fuel consumption. Moreover, the catalytic action of CeO2 nanoparticles on the hydrocarbons helped achieve effective combustion and reduce the emission of carbon monoxide, unburnt hydrocarbon, oxides of nitrogen, and soot. Interestingly, the size of the nanoadditive played an instrumental role in the improvements achieved, and the use of 30 nm-sized nanoparticles led to the most favorable performance and the lowest engine emissions. More specifically, the fuel formulation harboring 30 nm nanoceria reduced brake specific fuel consumption by 2.5%, NOx emission by 15.7%, and smoke opacity by 34.7%, compared to the additive-free B20. These findings could shed light on the action mechanism of fuel nanoadditives and are expected to pave the way for future research to develop more promising fuel nanoadditives for commercial applications.
{"title":"Effects of particle size of cerium oxide nanoparticles on the combustion behavior and exhaust emissions of a diesel engine powered by biodiesel/diesel blend","authors":"P. Dinesha, Shiva Kumar, M. Rosen","doi":"10.18331/BRJ2021.8.2.3","DOIUrl":"https://doi.org/10.18331/BRJ2021.8.2.3","url":null,"abstract":"Meeting the emission norms specified by governing bodies is one of the major challenges faced by engine manufacturers, especially without sacrificing engine performance and fuel economy. Several methods and techniques are being used globally to reduce engine emissions. Even though emissions can be reduced, doing so usually entails a deterioration in performance. To address this problem, nanoadditives such as cerium oxide (CeO2) nanoparticles are used to reduce engine emissions while improving engine performance. However, some aspects of the application of these nanoadditives are still unknown. In light of that, three sizes of CeO2 nanoparticles (i.e., 10, 30, and 80 nm) and at a constant volume fraction of 80 ppm were added to a 20% blend of waste cooking oil biodiesel and diesel (B20). A single-cylinder diesel engine operating at a 1500 rpm speed and 180 bar fuel injection pressure was used to compare the performance and emission characteristics of the investigated fuel formulations. The results showed that the addition of CeO2 nanoparticles led to performance improvements by reducing brake specific fuel consumption. Moreover, the catalytic action of CeO2 nanoparticles on the hydrocarbons helped achieve effective combustion and reduce the emission of carbon monoxide, unburnt hydrocarbon, oxides of nitrogen, and soot. Interestingly, the size of the nanoadditive played an instrumental role in the improvements achieved, and the use of 30 nm-sized nanoparticles led to the most favorable performance and the lowest engine emissions. More specifically, the fuel formulation harboring 30 nm nanoceria reduced brake specific fuel consumption by 2.5%, NOx emission by 15.7%, and smoke opacity by 34.7%, compared to the additive-free B20. These findings could shed light on the action mechanism of fuel nanoadditives and are expected to pave the way for future research to develop more promising fuel nanoadditives for commercial applications.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47004451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Estefanny Carmona-Garcia, P. Marín-Valencia, J. Solarte-Toro, K. Moustakas, C. A. Cardona-Alzate
Butanol is an important compound used as a building block for producing value-added products and an energy carrier. The main butanol production pathways are conventional acetone–butanol–ethanol (ABE) fermentation and catalytic upgrading of ethanol. On the other hand, the application of biomass as a promising substrate for biofuel production has been widely considered recently. However, few studies have compared different butanol production pathways using biomass as raw material. In light of that, the present work aims (i) to provide a short review of the catalytic ethanol upgrading and (ii) to compare conventional ABE fermentation and catalytic ethanol upgrading processes from the economic and environmental perspectives. Aspen Plus v9.0 was used to simulate both processes. The economic and environmental assessments were carried out considering the Colombian economic context, a gate-to-gate approach, and single impact categories. Considering a processing scale of 1000 ton/d, the conventional ABE fermentation process presented a more favorable technical, economic, and environmental performance for butanol production from biomass. It also offered lower net energy consumption (i.e., 57.9 GJ/ton of butanol) and higher butanol production (i.e., 2.59 ton/h). Nevertheless, the proposed processing scale was insufficient to reach economic feasibility for both processes. To overcome this challenge, the minimum processing scale had to be higher than 1584 ton/d and 1920 ton/d for conventional ABE fermentation and catalytic ethanol upgrading, respectively. Another critical factor in enhancing the economic feasibility of both butanol production pathways was the minimum selling price of butanol. More specifically, prices higher than 1.56 USD/kg and 1.80 USD/kg would be required for conventional ABE fermentation and catalytic ethanol upgrading, respectively. From the environmental impact point of view, the conventional ABE fermentation process led to a lower potential environmental impact than catalytic ethanol upgrading (0.12 PEI/kg vs. 0.18 PEI/kg, respectively).
丁醇是一种重要的化合物,用于生产增值产品和能量载体。丁醇的主要生产途径是传统的丙酮-丁醇-乙醇(ABE)发酵和乙醇的催化升级。另一方面,生物质作为生物燃料生产的一种有前景的基质,近年来得到了广泛的应用。然而,很少有研究对以生物质为原料的不同丁醇生产途径进行比较。鉴于此,本研究旨在(i)对催化乙醇升级进行简要综述,(ii)从经济和环境的角度比较传统的ABE发酵和催化乙醇升级工艺。使用Aspen Plus v9.0来模拟这两个过程。经济和环境评估是考虑到哥伦比亚的经济背景、门到门方法和单一影响类别进行的。考虑到1000吨/天的处理规模,传统的ABE发酵工艺对生物质丁醇的生产具有更有利的技术、经济和环境性能。它还提供了较低的净能耗(即57.9吉焦/吨丁醇)和较高的丁醇产量(即2.59吨/小时)。然而,拟议的加工规模不足以达到这两种工艺的经济可行性。为了克服这一挑战,常规ABE发酵和催化乙醇升级的最小处理规模必须分别高于1584吨/天和1920吨/天。提高两种丁醇生产途径的经济可行性的另一个关键因素是丁醇的最低销售价格。更具体地说,传统ABE发酵和催化乙醇升级的价格分别需要高于1.56美元/公斤和1.80美元/公斤。从环境影响的角度来看,传统ABE发酵工艺的潜在环境影响低于催化乙醇升级(分别为0.12 PEI/kg和0.18 PEI/kg)。
{"title":"Comparison of acetone–butanol–ethanol fermentation and ethanol catalytic upgrading as pathways for butanol production: A techno-economic and environmental assessment","authors":"Estefanny Carmona-Garcia, P. Marín-Valencia, J. Solarte-Toro, K. Moustakas, C. A. Cardona-Alzate","doi":"10.18331/BRJ2021.8.2.4","DOIUrl":"https://doi.org/10.18331/BRJ2021.8.2.4","url":null,"abstract":"Butanol is an important compound used as a building block for producing value-added products and an energy carrier. The main butanol production pathways are conventional acetone–butanol–ethanol (ABE) fermentation and catalytic upgrading of ethanol. On the other hand, the application of biomass as a promising substrate for biofuel production has been widely considered recently. However, few studies have compared different butanol production pathways using biomass as raw material. In light of that, the present work aims (i) to provide a short review of the catalytic ethanol upgrading and (ii) to compare conventional ABE fermentation and catalytic ethanol upgrading processes from the economic and environmental perspectives. Aspen Plus v9.0 was used to simulate both processes. The economic and environmental assessments were carried out considering the Colombian economic context, a gate-to-gate approach, and single impact categories. Considering a processing scale of 1000 ton/d, the conventional ABE fermentation process presented a more favorable technical, economic, and environmental performance for butanol production from biomass. It also offered lower net energy consumption (i.e., 57.9 GJ/ton of butanol) and higher butanol production (i.e., 2.59 ton/h). Nevertheless, the proposed processing scale was insufficient to reach economic feasibility for both processes. To overcome this challenge, the minimum processing scale had to be higher than 1584 ton/d and 1920 ton/d for conventional ABE fermentation and catalytic ethanol upgrading, respectively. Another critical factor in enhancing the economic feasibility of both butanol production pathways was the minimum selling price of butanol. More specifically, prices higher than 1.56 USD/kg and 1.80 USD/kg would be required for conventional ABE fermentation and catalytic ethanol upgrading, respectively. From the environmental impact point of view, the conventional ABE fermentation process led to a lower potential environmental impact than catalytic ethanol upgrading (0.12 PEI/kg vs. 0.18 PEI/kg, respectively).","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48094405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Studies attempting to optimise photosynthetic biogas upgrading by simultaneous investigation of the bubble column-photobioreactor setup have experienced considerable variability in results and conclusions. To identify the sources of such variation, this work quantitatively compared seven design factors (superficial gas velocity; liquid to gas flow rate (L/G) ratio; empty bed residence time; liquid inlet pH; liquid inlet alkalinity; temperature; and algal concentration) using the L16 Taguchi orthogonal array as a screening design of experiment. Assessments were performed using the signal to noise (S/N) ratio on the performance of CO2 removal (CO2 removal efficiency, CO2 absorption rate, and overall CO2 mass transfer coefficient) and O2 stripping (O2 concentration in biomethane and O2 flow rate in biomethane). Results showed that pH and L/G ratio were the most critical design factors. Temperature and gas residence times had minimal impact on the biomethane composition. The interactive effect between pH and L/G ratio was the most impactful, followed by the interactive effects between superficial gas velocity and L/G ratio and pH on CO2 removal efficiency. The impact of L/G ratio, algal concentration, and pH (in that order of impact) caused up to a 90% variation in oxygen content in biomethane. However, algal concentration had a diminishing role as the L/G ratio increased. Using only the statistically significant main effects and interactions, the biomethane composition (CO2% and O2%) was predicted with over 95% confidence through regression equations for superficial gas velocity up to 0.2 cm/s.
{"title":"A comparative evaluation of design factors on bubble column operation in photosynthetic biogas upgrading","authors":"A. Bose, R. O’Shea, Richen Lin, J. Murphy","doi":"10.18331/BRJ2021.8.2.2","DOIUrl":"https://doi.org/10.18331/BRJ2021.8.2.2","url":null,"abstract":"Studies attempting to optimise photosynthetic biogas upgrading by simultaneous investigation of the bubble column-photobioreactor setup have experienced considerable variability in results and conclusions. To identify the sources of such variation, this work quantitatively compared seven design factors (superficial gas velocity; liquid to gas flow rate (L/G) ratio; empty bed residence time; liquid inlet pH; liquid inlet alkalinity; temperature; and algal concentration) using the L16 Taguchi orthogonal array as a screening design of experiment. Assessments were performed using the signal to noise (S/N) ratio on the performance of CO2 removal (CO2 removal efficiency, CO2 absorption rate, and overall CO2 mass transfer coefficient) and O2 stripping (O2 concentration in biomethane and O2 flow rate in biomethane). Results showed that pH and L/G ratio were the most critical design factors. Temperature and gas residence times had minimal impact on the biomethane composition. The interactive effect between pH and L/G ratio was the most impactful, followed by the interactive effects between superficial gas velocity and L/G ratio and pH on CO2 removal efficiency. The impact of L/G ratio, algal concentration, and pH (in that order of impact) caused up to a 90% variation in oxygen content in biomethane. However, algal concentration had a diminishing role as the L/G ratio increased. Using only the statistically significant main effects and interactions, the biomethane composition (CO2% and O2%) was predicted with over 95% confidence through regression equations for superficial gas velocity up to 0.2 cm/s.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":13.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47979748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environmental problems associated with the use of fossil fuels and increase in energy demands due to rise in population and rapid industrialisation, are the driving forces for energy. Catalytic conversion of biomass to renewable energies is among the promising approaches to materialize the above. This requires development of robust catalysts to suppress deactivation due to carbon deposition and agglomeration. In this work, surface properties and chemistry such as exsolution of B-site metal catalyst nanoparticles, particle size and distribution, as well as catalyst-support interactions were tailored through the use of alkaline dopants to enhance catalytic behaviour in valorisation of glycerol. The incorporation of alkaline metals into the lattice of an A-site deficient perovskite modified the surface basic properties and morphology with a consequent robust catalyst-support interaction. This resulted in promising catalytic behaviour of the materials where hydrogen selectivity of over 30% and CO selectivity of over 60% were observed. The catalyst ability to reduce fouling of the catalyst surface as a result of carbon deposition during operation was also profound due to the robust catalyst-support interaction occurring at the exsolved nanoparticles due to their socketing and the synergy between the dopant metals in the alloy in perovskite catalyst systems. In particular, one of the designed systems, La0.4Sr0.2Ca0.3Ni0.1Ti0.9O3±δ, displayed almost 100% resistance to carbon deposition. Therefore, lattice rearrangement using exsolution and choice of suitable dopant could be tailored to improve catalytic performance.
{"title":"Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation","authors":"A. Umar, D. Neagu, J. Irvine","doi":"10.18331/BRJ2021.8.1.5","DOIUrl":"https://doi.org/10.18331/BRJ2021.8.1.5","url":null,"abstract":"Environmental problems associated with the use of fossil fuels and increase in energy demands due to rise in population and rapid industrialisation, are the driving forces for energy. Catalytic conversion of biomass to renewable energies is among the promising approaches to materialize the above. This requires development of robust catalysts to suppress deactivation due to carbon deposition and agglomeration. In this work, surface properties and chemistry such as exsolution of B-site metal catalyst nanoparticles, particle size and distribution, as well as catalyst-support interactions were tailored through the use of alkaline dopants to enhance catalytic behaviour in valorisation of glycerol. The incorporation of alkaline metals into the lattice of an A-site deficient perovskite modified the surface basic properties and morphology with a consequent robust catalyst-support interaction. This resulted in promising catalytic behaviour of the materials where hydrogen selectivity of over 30% and CO selectivity of over 60% were observed. The catalyst ability to reduce fouling of the catalyst surface as a result of carbon deposition during operation was also profound due to the robust catalyst-support interaction occurring at the exsolved nanoparticles due to their socketing and the synergy between the dopant metals in the alloy in perovskite catalyst systems. In particular, one of the designed systems, La0.4Sr0.2Ca0.3Ni0.1Ti0.9O3±δ, displayed almost 100% resistance to carbon deposition. Therefore, lattice rearrangement using exsolution and choice of suitable dopant could be tailored to improve catalytic performance.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":"1 1","pages":""},"PeriodicalIF":13.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41386723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}