首页 > 最新文献

Transcription-Austin最新文献

英文 中文
Evolution of the genetic code. 遗传密码的演变
IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-02-01 Epub Date: 2021-05-18 DOI: 10.1080/21541264.2021.1927652
Lei Lei, Zachary Frome Burton

Diverse models have been advanced for the evolution of the genetic code. Here, models for tRNA, aminoacyl-tRNA synthetase (aaRS) and genetic code evolution were combined with an understanding of EF-Tu suppression of tRNA 3rd anticodon position wobbling. The result is a highly detailed scheme that describes the placements of all amino acids in the standard genetic code. The model describes evolution of 6-, 4-, 3-, 2- and 1-codon sectors. Innovation in column 3 of the code is explained. Wobbling and code degeneracy are explained. Separate distribution of serine sectors between columns 2 and 4 of the code is described. We conclude that very little chaos contributed to evolution of the genetic code and that the pattern of evolution of aaRS enzymes describes a history of the evolution of the code. A model is proposed to describe the biological selection for the earliest evolution of the code and for protocell evolution.

遗传密码的进化有多种模式。在这里,我们将 tRNA、氨基酰-tRNA 合成酶(araRS)和遗传密码进化模型与对 EF-Tu 抑制 tRNA 第 3 个反密码子位置摆动的理解结合起来。结果是一个非常详细的方案,描述了标准遗传密码中所有氨基酸的位置。该模型描述了 6、4、3、2 和 1 个密码子区段的进化。对代码第 3 列的创新进行了解释。解释了摇摆和代码退化。描述了丝氨酸区段在代码第 2 列和第 4 列之间的独立分布。我们得出结论,遗传密码的进化几乎没有混沌的贡献,aaRS酶的进化模式描述了密码的进化史。我们提出了一个模型来描述密码最早进化和原细胞进化的生物选择。
{"title":"Evolution of the genetic code.","authors":"Lei Lei, Zachary Frome Burton","doi":"10.1080/21541264.2021.1927652","DOIUrl":"10.1080/21541264.2021.1927652","url":null,"abstract":"<p><p>Diverse models have been advanced for the evolution of the genetic code. Here, models for tRNA, aminoacyl-tRNA synthetase (aaRS) and genetic code evolution were combined with an understanding of EF-Tu suppression of tRNA 3<sup>rd</sup> anticodon position wobbling. The result is a highly detailed scheme that describes the placements of all amino acids in the standard genetic code. The model describes evolution of 6-, 4-, 3-, 2- and 1-codon sectors. Innovation in column 3 of the code is explained. Wobbling and code degeneracy are explained. Separate distribution of serine sectors between columns 2 and 4 of the code is described. We conclude that very little chaos contributed to evolution of the genetic code and that the pattern of evolution of aaRS enzymes describes a history of the evolution of the code. A model is proposed to describe the biological selection for the earliest evolution of the code and for protocell evolution.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"12 1","pages":"28-53"},"PeriodicalIF":3.6,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cf/79/KTRN_12_1927652.PMC8172153.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38992935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA polymerase III and antiviral innate immune response. RNA聚合酶III与抗病毒先天免疫反应。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2021-02-01 Epub Date: 2021-02-24 DOI: 10.1080/21541264.2021.1890915
Nayef Jarrous, Alexander Rouvinski

The innate immune system has numerous signal transduction pathways that lead to the production of type I interferons in response to exposure of cells to external stimuli. One of these pathways comprises RNA polymerase (Pol) III that senses common DNA viruses, such as cytomegalovirus, vaccinia, herpes simplex virus-1 and varicella zoster virus. This polymerase detects and transcribes viral genomic regions to generate AU-rich transcripts that bring to the induction of type I interferons. Remarkably, Pol III is also stimulated by foreign non-viral DNAs and expression of one of its subunits is induced by an RNA virus, the Sindbis virus. Moreover, a protein subunit of RNase P, which is known to associate with Pol III in initiation complexes, is induced by viral infection. Accordingly, alliance of the two tRNA enzymes in innate immunity merits a consideration.

先天免疫系统有许多信号转导途径,导致细胞暴露于外部刺激时产生I型干扰素。这些途径之一包括RNA聚合酶(Pol) III,它能感知常见的DNA病毒,如巨细胞病毒、牛痘病毒、单纯疱疹病毒-1和水痘带状疱疹病毒。这种聚合酶检测并转录病毒基因组区域,生成富au转录本,从而诱导I型干扰素。值得注意的是,Pol III也受到外来非病毒dna的刺激,其一个亚基的表达可由RNA病毒Sindbis病毒诱导。此外,RNase P的一个蛋白质亚基,已知在起始复合物中与Pol III相关,可被病毒感染诱导。因此,两种tRNA酶在先天免疫中的联合值得考虑。
{"title":"RNA polymerase III and antiviral innate immune response.","authors":"Nayef Jarrous,&nbsp;Alexander Rouvinski","doi":"10.1080/21541264.2021.1890915","DOIUrl":"https://doi.org/10.1080/21541264.2021.1890915","url":null,"abstract":"<p><p>The innate immune system has numerous signal transduction pathways that lead to the production of type I interferons in response to exposure of cells to external stimuli. One of these pathways comprises RNA polymerase (Pol) III that senses common DNA viruses, such as cytomegalovirus, vaccinia, herpes simplex virus-1 and varicella zoster virus. This polymerase detects and transcribes viral genomic regions to generate AU-rich transcripts that bring to the induction of type I interferons. Remarkably, Pol III is also stimulated by foreign non-viral DNAs and expression of one of its subunits is induced by an RNA virus, the Sindbis virus. Moreover, a protein subunit of RNase P, which is known to associate with Pol III in initiation complexes, is induced by viral infection. Accordingly, alliance of the two tRNA enzymes in innate immunity merits a consideration.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"12 1","pages":"1-11"},"PeriodicalIF":3.6,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2021.1890915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25397710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Incomplete removal of ribosomal RNA can affect chromatin RNA-seq data analysis. 核糖体RNA的不完全去除会影响染色质RNA-seq数据分析。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2020-10-01 DOI: 10.1080/21541264.2020.1794491
Michael Tellier, Shona Murphy
Next-generation sequencing has become one of the major approaches to investigate transcription regulation. RNA-seq, which sequences the RNA complement, can provide a snapshot of the steady-state le...
{"title":"Incomplete removal of ribosomal RNA can affect chromatin RNA-seq data analysis.","authors":"Michael Tellier,&nbsp;Shona Murphy","doi":"10.1080/21541264.2020.1794491","DOIUrl":"https://doi.org/10.1080/21541264.2020.1794491","url":null,"abstract":"Next-generation sequencing has become one of the major approaches to investigate transcription regulation. RNA-seq, which sequences the RNA complement, can provide a snapshot of the steady-state le...","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"11 5","pages":"230-235"},"PeriodicalIF":3.6,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2020.1794491","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10749510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Chromatin accessibility and transcription factor binding through the perspective of mitosis. 从有丝分裂的角度看染色质可及性和转录因子结合。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2020-10-01 Epub Date: 2020-10-15 DOI: 10.1080/21541264.2020.1825907
Rémi-Xavier Coux, Nick D L Owens, Pablo Navarro

Chromatin accessibility is generally perceived as a common property of active regulatory elements where transcription factors are recruited via DNA-specific interactions and other physico-chemical properties to regulate gene transcription. Recent work in the context of mitosis provides less trivial and potentially more interesting relationships than previously anticipated.

染色质可接近性通常被认为是活性调控元件的共同特性,其中转录因子通过dna特异性相互作用和其他物理化学特性来调节基因转录。在有丝分裂的背景下,最近的工作提供了比以前预期的更少琐碎和可能更有趣的关系。
{"title":"Chromatin accessibility and transcription factor binding through the perspective of mitosis.","authors":"Rémi-Xavier Coux,&nbsp;Nick D L Owens,&nbsp;Pablo Navarro","doi":"10.1080/21541264.2020.1825907","DOIUrl":"https://doi.org/10.1080/21541264.2020.1825907","url":null,"abstract":"<p><p>Chromatin accessibility is generally perceived as a common property of active regulatory elements where transcription factors are recruited via DNA-specific interactions and other physico-chemical properties to regulate gene transcription. Recent work in the context of mitosis provides less trivial and potentially more interesting relationships than previously anticipated.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"236-240"},"PeriodicalIF":3.6,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2020.1825907","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38583255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Long-range chromatin interactions in pathogenic gene expression control. 致病性基因表达控制中的远程染色质相互作用。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2020-10-01 Epub Date: 2020-11-05 DOI: 10.1080/21541264.2020.1843958
Nahyun Kong, Inkyung Jung

A large number of distal cis-regulatory elements (cREs) have been annotated in the human genome, which plays a central role in orchestrating spatiotemporal gene expression. Since many cREs regulate non-adjacent genes, long-range cRE-promoter interactions are an important factor in the functional characterization of the engaged cREs. In this regard, recent studies have demonstrated that identification of long-range target genes can decipher the effect of genetic mutations residing within cREs on abnormal gene expression. In addition, investigation of altered long-range cREs-promoter interactions induced by chromosomal rearrangements has revealed their critical roles in pathogenic gene expression. In this review, we briefly discuss how the analysis of 3D chromatin structure can help us understand the functional impact of cREs harboring disease-associated genetic variants and how chromosomal rearrangements disrupting topologically associating domains can lead to pathogenic gene expression.

大量的远端顺式调控元件(cREs)在人类基因组中被标注,它们在调控基因时空表达中起着核心作用。由于许多cre调控非相邻基因,远程cre -启动子相互作用是参与cre功能表征的重要因素。在这方面,最近的研究表明,鉴定远程靶基因可以破译位于cre内的基因突变对异常基因表达的影响。此外,对染色体重排诱导的远程cre -启动子相互作用改变的研究揭示了它们在致病基因表达中的关键作用。在这篇综述中,我们简要地讨论了三维染色质结构分析如何帮助我们了解含有疾病相关遗传变异的cre的功能影响,以及染色体重排破坏拓扑相关结构域如何导致致病基因表达。
{"title":"Long-range chromatin interactions in pathogenic gene expression control.","authors":"Nahyun Kong,&nbsp;Inkyung Jung","doi":"10.1080/21541264.2020.1843958","DOIUrl":"https://doi.org/10.1080/21541264.2020.1843958","url":null,"abstract":"<p><p>A large number of distal <i>cis</i>-regulatory elements (<i>c</i>REs) have been annotated in the human genome, which plays a central role in orchestrating spatiotemporal gene expression. Since many <i>c</i>REs regulate non-adjacent genes, long-range <i>c</i>RE-promoter interactions are an important factor in the functional characterization of the engaged <i>c</i>REs. In this regard, recent studies have demonstrated that identification of long-range target genes can decipher the effect of genetic mutations residing within <i>c</i>REs on abnormal gene expression. In addition, investigation of altered long-range <i>c</i>REs-promoter interactions induced by chromosomal rearrangements has revealed their critical roles in pathogenic gene expression. In this review, we briefly discuss how the analysis of 3D chromatin structure can help us understand the functional impact of <i>c</i>REs harboring disease-associated genetic variants and how chromosomal rearrangements disrupting topologically associating domains can lead to pathogenic gene expression.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"211-216"},"PeriodicalIF":3.6,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2020.1843958","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38570375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
RNA polymerase II-binding aptamers in human ACRO1 satellites disrupt transcription in cis. RNA聚合酶ii结合适体在人类ACRO1卫星中破坏顺式转录。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2020-10-01 DOI: 10.1080/21541264.2020.1790990
Jennifer L Boots, Frederike von Pelchrzim, Adam Weiss, Bob Zimmermann, Theres Friesacher, Maximilian Radtke, Marek Żywicki, Doris Chen, Katarzyna Matylla-Kulińska, Bojan Zagrovic, Renée Schroeder

Transcription elongation is a highly regulated process affected by many proteins, RNAs and the underlying DNA. Here we show that the nascent RNA can interfere with transcription in human cells, extending our previous findings from bacteria and yeast. We identified a variety of Pol II-binding aptamers (RAPs), prominent in repeat elements such as ACRO1 satellites, LINE1 retrotransposons and CA simple repeats, and also in several protein-coding genes. ACRO1 repeat, when translated in silico, exhibits ~50% identity with the Pol II CTD sequence. Taken together with a recent proposal that proteins in general tend to interact with RNAs similar to their cognate mRNAs, this suggests a mechanism for RAP binding. Using a reporter construct, we show that ACRO1 potently inhibits Pol II elongation in cis. We propose a novel mode of transcriptional regulation in humans, in which the nascent RNA binds Pol II to silence its own expression.

转录延伸是一个高度调控的过程,受许多蛋白质、rna和潜在DNA的影响。在这里,我们展示了新生RNA可以干扰人类细胞的转录,扩展了我们之前在细菌和酵母上的发现。我们发现了多种Pol ii结合适体(RAPs),主要存在于重复元件如ACRO1卫星、LINE1反转录转座子和CA简单重复中,以及一些蛋白质编码基因中。当在计算机上翻译时,ACRO1重复序列与Pol II CTD序列有50%的一致性。结合最近提出的蛋白质通常倾向于与其同源mrna相似的rna相互作用的建议,这表明RAP结合的机制。使用报告结构,我们发现ACRO1有效地抑制顺式Pol II延伸。我们提出了一种新的人类转录调控模式,其中新生RNA结合Pol II以沉默其自身的表达。
{"title":"RNA polymerase II-binding aptamers in human ACRO1 satellites disrupt transcription <i>in cis</i>.","authors":"Jennifer L Boots,&nbsp;Frederike von Pelchrzim,&nbsp;Adam Weiss,&nbsp;Bob Zimmermann,&nbsp;Theres Friesacher,&nbsp;Maximilian Radtke,&nbsp;Marek Żywicki,&nbsp;Doris Chen,&nbsp;Katarzyna Matylla-Kulińska,&nbsp;Bojan Zagrovic,&nbsp;Renée Schroeder","doi":"10.1080/21541264.2020.1790990","DOIUrl":"https://doi.org/10.1080/21541264.2020.1790990","url":null,"abstract":"<p><p>Transcription elongation is a highly regulated process affected by many proteins, RNAs and the underlying DNA. Here we show that the nascent RNA can interfere with transcription in human cells, extending our previous findings from bacteria and yeast. We identified a variety of Pol II-binding aptamers (RAPs), prominent in repeat elements such as ACRO1 satellites, LINE1 retrotransposons and CA simple repeats, and also in several protein-coding genes. ACRO1 repeat, when translated <i>in silico</i>, exhibits ~50% identity with the Pol II CTD sequence. Taken together with a recent proposal that proteins in general tend to interact with RNAs similar to their cognate mRNAs, this suggests a mechanism for RAP binding. Using a reporter construct, we show that ACRO1 potently inhibits Pol II elongation <i>in cis</i>. We propose a novel mode of transcriptional regulation in humans, in which the nascent RNA binds Pol II to silence its own expression.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"11 5","pages":"217-229"},"PeriodicalIF":3.6,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2020.1790990","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10592515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Archaeal transcription. 古生物转录。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2020-10-01 Epub Date: 2020-10-28 DOI: 10.1080/21541264.2020.1838865
Breanna R Wenck, Thomas J Santangelo

Increasingly sophisticated biochemical and genetic techniques are unraveling the regulatory factors and mechanisms that control gene expression in the Archaea. While some similarities in regulatory strategies are universal, archaeal-specific regulatory strategies are emerging to complement a complex patchwork of shared archaeal-bacterial and archaeal-eukaryotic regulatory mechanisms employed in the archaeal domain. The prokaryotic archaea encode core transcription components with homology to the eukaryotic transcription apparatus and also share a simplified eukaryotic-like initiation mechanism, but also deploy tactics common to bacterial systems to regulate promoter usage and influence elongation-termination decisions. We review the recently established complete archaeal transcription cycle, highlight recent findings of the archaeal transcription community and detail the expanding post-initiation regulation imposed on archaeal transcription.

日益复杂的生化和遗传技术正在揭示控制古细菌基因表达的调控因子和机制。虽然调控策略存在一些普遍的相似性,但古细菌特异性调控策略正在出现,以补充古细菌领域所采用的古细菌-细菌和古细菌-真核生物共享调控机制的复杂拼凑。原核古细菌编码的核心转录元件与真核生物的转录装置具有同源性,它们还共享一种简化的类真核生物启动机制,但也采用细菌系统常用的策略来调控启动子的使用并影响延伸-终止决策。我们回顾了最近建立的完整的古细菌转录周期,重点介绍了古细菌转录界的最新发现,并详细介绍了对古细菌转录施加的不断扩大的启动后调控。
{"title":"Archaeal transcription.","authors":"Breanna R Wenck, Thomas J Santangelo","doi":"10.1080/21541264.2020.1838865","DOIUrl":"10.1080/21541264.2020.1838865","url":null,"abstract":"<p><p>Increasingly sophisticated biochemical and genetic techniques are unraveling the regulatory factors and mechanisms that control gene expression in the Archaea. While some similarities in regulatory strategies are universal, archaeal-specific regulatory strategies are emerging to complement a complex patchwork of shared archaeal-bacterial and archaeal-eukaryotic regulatory mechanisms employed in the archaeal domain. The prokaryotic archaea encode core transcription components with homology to the eukaryotic transcription apparatus and also share a simplified eukaryotic-like initiation mechanism, but also deploy tactics common to bacterial systems to regulate promoter usage and influence elongation-termination decisions. We review the recently established complete archaeal transcription cycle, highlight recent findings of the archaeal transcription community and detail the expanding post-initiation regulation imposed on archaeal transcription.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"199-210"},"PeriodicalIF":3.6,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7714419/pdf/KTRN_11_1838865.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38537161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant transcription links environmental cues and phenotypic plasticity. 植物转录连接环境线索和表型可塑性。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2020-06-01 DOI: 10.1080/21541264.2020.1837498
M Crespi
Photosynthetic organisms on land and in water produce the biomass and oxygen necessary for life on Earth. They are the first link in the food chain contributing to the life cycle. Plants, as sessile organisms, are forced to adapt to changing environmental constraints in order to ensure their growth and the faithful transmission of their genetic information. Plants are key elements for food, feed, human health, the environment and industry, and to improve plant production in a sustainable way is a major challenge for the future. In the current context of population growth and limitation of arable lands and fossil resources, global food security is intertwined with understanding how plants grow, differentiate and adapt to a changing environment. Indeed, plants have the ability to express different phenotypes from a given genotype, depending on multiple environmental stimuli as well as the capacity to regenerate their organs (e.g. leaves) in direct response to the environment (e.g. summer light conditions). This major phenotypic and developmental plasticity is a critical feature of plants and implies sophisticated molecular mechanisms regulating the expression of genes and the inheritance of expression patterns[1]. Indeed, environmental cues (e.g. light) have a strong impact on transcription in plant cells and changes in gene activity can also take place without altering the DNA sequence. These gene expression changes can pass on during cell divisions from one generation to the next (the foundation of “epigenetics”) or can be reversible once the environmental constraint fades. Plants partially achieve this growth and developmental plasticity by modulating the repertoire of transcribed genes. Advances in molecular biology and biotechnologies (e.g. high-throughput sequencing) have brought about a new dimension in the understanding of the mechanisms regulating the expression and transmission of genetic information in response to the environment. However, it also evidenced that post-transcriptional processes, such as alternative splicing, non-coding RNA mediated regulations or mRNA stability, also emerged as a key mechanism for gene regulation during plant adaptation to the environment[2]. Consequently, photosynthetic organisms, by their way of life, their phenotypic plasticity and their great ecological diversity constitute interesting experimental models to deciphering new ins and outs of transcriptional and epigenetic regulatory mechanisms in the regulation of developmental and phenotypic plasticity, adaptation to biotic and abiotic stresses and, in the longer term, the evolution of life in a changing environment. Due to these fascinating aspects of plant biology, in this issue of transcription, we decide to revise several emerging trends in plant transcriptional regulatory mechanisms and explore future research venues. We start with the review of de Leone et al [3]. which describes a thorough update on the transcriptional regulations involved in the
{"title":"Plant transcription links environmental cues and phenotypic plasticity.","authors":"M Crespi","doi":"10.1080/21541264.2020.1837498","DOIUrl":"https://doi.org/10.1080/21541264.2020.1837498","url":null,"abstract":"Photosynthetic organisms on land and in water produce the biomass and oxygen necessary for life on Earth. They are the first link in the food chain contributing to the life cycle. Plants, as sessile organisms, are forced to adapt to changing environmental constraints in order to ensure their growth and the faithful transmission of their genetic information. Plants are key elements for food, feed, human health, the environment and industry, and to improve plant production in a sustainable way is a major challenge for the future. In the current context of population growth and limitation of arable lands and fossil resources, global food security is intertwined with understanding how plants grow, differentiate and adapt to a changing environment. Indeed, plants have the ability to express different phenotypes from a given genotype, depending on multiple environmental stimuli as well as the capacity to regenerate their organs (e.g. leaves) in direct response to the environment (e.g. summer light conditions). This major phenotypic and developmental plasticity is a critical feature of plants and implies sophisticated molecular mechanisms regulating the expression of genes and the inheritance of expression patterns[1]. Indeed, environmental cues (e.g. light) have a strong impact on transcription in plant cells and changes in gene activity can also take place without altering the DNA sequence. These gene expression changes can pass on during cell divisions from one generation to the next (the foundation of “epigenetics”) or can be reversible once the environmental constraint fades. Plants partially achieve this growth and developmental plasticity by modulating the repertoire of transcribed genes. Advances in molecular biology and biotechnologies (e.g. high-throughput sequencing) have brought about a new dimension in the understanding of the mechanisms regulating the expression and transmission of genetic information in response to the environment. However, it also evidenced that post-transcriptional processes, such as alternative splicing, non-coding RNA mediated regulations or mRNA stability, also emerged as a key mechanism for gene regulation during plant adaptation to the environment[2]. Consequently, photosynthetic organisms, by their way of life, their phenotypic plasticity and their great ecological diversity constitute interesting experimental models to deciphering new ins and outs of transcriptional and epigenetic regulatory mechanisms in the regulation of developmental and phenotypic plasticity, adaptation to biotic and abiotic stresses and, in the longer term, the evolution of life in a changing environment. Due to these fascinating aspects of plant biology, in this issue of transcription, we decide to revise several emerging trends in plant transcriptional regulatory mechanisms and explore future research venues. We start with the review of de Leone et al [3]. which describes a thorough update on the transcriptional regulations involved in the","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"11 3-4","pages":"97-99"},"PeriodicalIF":3.6,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2020.1837498","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38655206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
It's a matter of time: the role of transcriptional regulation in the circadian clock-pathogen crosstalk in plants. 这是一个时间问题:转录调节在植物生物钟-病原体串扰中的作用。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2020-06-01 Epub Date: 2020-09-16 DOI: 10.1080/21541264.2020.1820300
María José de Leone, C Esteban Hernando, Santiago Mora-García, Marcelo J Yanovsky

Most living organisms possess an internal timekeeping mechanism known as the circadian clock, which enhances fitness by synchronizing the internal timing of biological processes with diurnal and seasonal environmental changes. In plants, the pace of these biological rhythms relies on oscillations in the expression level of hundreds of genes tightly controlled by a group of core clock regulators and co-regulators that engage in transcriptional and translational feedback loops. In the last decade, the role of several core clock genes in the control of defense responses has been addressed, and a growing amount of evidence demonstrates that circadian regulation is relevant for plant immunity. A reciprocal connection between these pathways was also established following the observation that in Arabidopsis thaliana, as well as in crop species like tomato, plant-pathogen interactions trigger a reconfiguration of the circadian transcriptional network. In this review, we summarize the current knowledge regarding the interaction between the circadian clock and biotic stress responses at the transcriptional level, and discuss the relevance of this crosstalk in the plant-pathogen evolutionary arms race. A better understanding of these processes could aid in the development of genetic tools that improve traditional breeding practices, enhancing tolerance to plant diseases that threaten crop yield and food security all around the world.

大多数生物都有一种叫做生物钟的内部计时机制,它通过使生物过程的内部计时与昼夜和季节环境变化同步来增强适应性。在植物中,这些生物节律的节奏依赖于数百个基因表达水平的振荡,这些基因受到一组核心时钟调节器和参与转录和翻译反馈回路的共同调节器的严格控制。在过去的十年中,几个核心时钟基因在控制防御反应中的作用已经得到解决,越来越多的证据表明,昼夜节律调节与植物免疫有关。在观察拟南芥以及番茄等作物物种后,这些途径之间的相互联系也被建立起来,植物-病原体相互作用引发了昼夜节律转录网络的重新配置。在这篇综述中,我们总结了目前在转录水平上关于生物钟和生物应激反应之间相互作用的知识,并讨论了这种串扰在植物-病原体进化军备竞赛中的相关性。更好地了解这些过程可能有助于开发遗传工具,改进传统育种方法,增强对威胁全世界作物产量和粮食安全的植物病害的耐受性。
{"title":"It's a matter of time: the role of transcriptional regulation in the circadian clock-pathogen crosstalk in plants.","authors":"María José de Leone,&nbsp;C Esteban Hernando,&nbsp;Santiago Mora-García,&nbsp;Marcelo J Yanovsky","doi":"10.1080/21541264.2020.1820300","DOIUrl":"https://doi.org/10.1080/21541264.2020.1820300","url":null,"abstract":"<p><p>Most living organisms possess an internal timekeeping mechanism known as the circadian clock, which enhances fitness by synchronizing the internal timing of biological processes with diurnal and seasonal environmental changes. In plants, the pace of these biological rhythms relies on oscillations in the expression level of hundreds of genes tightly controlled by a group of core clock regulators and co-regulators that engage in transcriptional and translational feedback loops. In the last decade, the role of several core clock genes in the control of defense responses has been addressed, and a growing amount of evidence demonstrates that circadian regulation is relevant for plant immunity. A reciprocal connection between these pathways was also established following the observation that in <i>Arabidopsis thaliana</i>, as well as in crop species like tomato, plant-pathogen interactions trigger a reconfiguration of the circadian transcriptional network. In this review, we summarize the current knowledge regarding the interaction between the circadian clock and biotic stress responses at the transcriptional level, and discuss the relevance of this crosstalk in the plant-pathogen evolutionary arms race. A better understanding of these processes could aid in the development of genetic tools that improve traditional breeding practices, enhancing tolerance to plant diseases that threaten crop yield and food security all around the world.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"11 3-4","pages":"100-116"},"PeriodicalIF":3.6,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2020.1820300","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38482919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Long noncoding RNAs shape transcription in plants. 长链非编码rna在植物中塑造转录。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2020-06-01 Epub Date: 2020-05-14 DOI: 10.1080/21541264.2020.1764312
Leandro Lucero, Camille Fonouni-Farde, Martin Crespi, Federico Ariel
ABSTRACT The advent of novel high-throughput sequencing techniques has revealed that eukaryotic genomes are massively transcribed although only a small fraction of RNAs exhibits protein-coding capacity. In the last years, long noncoding RNAs (lncRNAs) have emerged as regulators of eukaryotic gene expression in a wide range of molecular mechanisms. Plant lncRNAs can be transcribed by alternative RNA polymerases, acting directly as long transcripts or can be processed into active small RNAs. Several lncRNAs have been recently shown to interact with chromatin, DNA or nuclear proteins to condition the epigenetic environment of target genes or modulate the activity of transcriptional complexes. In this review, we will summarize the recent discoveries about the actions of plant lncRNAs in the regulation of gene expression at the transcriptional level.
新型高通量测序技术的出现揭示了真核生物基因组的大量转录,尽管只有一小部分rna具有蛋白质编码能力。在过去的几年里,长链非编码rna (lncRNAs)在广泛的分子机制中成为真核生物基因表达的调节因子。植物lncrna可以被其他RNA聚合酶转录,直接作为长转录物或加工成活性小RNA。一些lncrna最近被证明与染色质、DNA或核蛋白相互作用,以调节靶基因的表观遗传环境或调节转录复合物的活性。本文就植物lncrna在转录水平调控基因表达方面的最新发现进行综述。
{"title":"Long noncoding RNAs shape transcription in plants.","authors":"Leandro Lucero,&nbsp;Camille Fonouni-Farde,&nbsp;Martin Crespi,&nbsp;Federico Ariel","doi":"10.1080/21541264.2020.1764312","DOIUrl":"https://doi.org/10.1080/21541264.2020.1764312","url":null,"abstract":"ABSTRACT The advent of novel high-throughput sequencing techniques has revealed that eukaryotic genomes are massively transcribed although only a small fraction of RNAs exhibits protein-coding capacity. In the last years, long noncoding RNAs (lncRNAs) have emerged as regulators of eukaryotic gene expression in a wide range of molecular mechanisms. Plant lncRNAs can be transcribed by alternative RNA polymerases, acting directly as long transcripts or can be processed into active small RNAs. Several lncRNAs have been recently shown to interact with chromatin, DNA or nuclear proteins to condition the epigenetic environment of target genes or modulate the activity of transcriptional complexes. In this review, we will summarize the recent discoveries about the actions of plant lncRNAs in the regulation of gene expression at the transcriptional level.","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"11 3-4","pages":"160-171"},"PeriodicalIF":3.6,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541264.2020.1764312","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37935159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
期刊
Transcription-Austin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1