首页 > 最新文献

Transcription-Austin最新文献

英文 中文
RNA polymerase collisions and their role in transcription. RNA 聚合酶碰撞及其在转录中的作用
IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-02-01 Epub Date: 2024-02-15 DOI: 10.1080/21541264.2024.2316972
Ling Wang

RNA polymerases are the central enzymes of gene expression and function frequently in either a head-on or co-directional manner on the busy DNA track. Whether and how these collisions between RNA polymerases contribute to transcriptional regulation is mysterious. Increasing evidence from biochemical and single-molecule studies suggests that RNA polymerase collisions function as an important regulator to fine-tune transcription, rather than creating deleterious "traffic jams". This review summarizes the recent progress on elucidating the consequences of RNA polymerase collisions during transcription and highlights the significance of cooperation and coordination between RNA polymerases.

RNA 聚合酶是基因表达的核心酶,在繁忙的 DNA 轨道上经常以正面或同方向的方式发挥作用。这些 RNA 聚合酶之间的碰撞是否以及如何对转录调控起作用尚不清楚。来自生化和单分子研究的越来越多的证据表明,RNA 聚合酶碰撞是微调转录的重要调节器,而不是造成有害的 "交通堵塞"。本综述总结了阐明转录过程中 RNA 聚合酶碰撞后果的最新进展,并强调了 RNA 聚合酶之间合作与协调的重要性。
{"title":"RNA polymerase collisions and their role in transcription.","authors":"Ling Wang","doi":"10.1080/21541264.2024.2316972","DOIUrl":"10.1080/21541264.2024.2316972","url":null,"abstract":"<p><p>RNA polymerases are the central enzymes of gene expression and function frequently in either a head-on or co-directional manner on the busy DNA track. Whether and how these collisions between RNA polymerases contribute to transcriptional regulation is mysterious. Increasing evidence from biochemical and single-molecule studies suggests that RNA polymerase collisions function as an important regulator to fine-tune transcription, rather than creating deleterious \"traffic jams\". This review summarizes the recent progress on elucidating the consequences of RNA polymerase collisions during transcription and highlights the significance of cooperation and coordination between RNA polymerases.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"38-47"},"PeriodicalIF":3.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maintaining transcriptional homeostasis during cell cycle. 在细胞周期中维持转录平衡
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2023-09-01 DOI: 10.1080/21541264.2023.2246868
Lucía Ramos-Alonso, Pierre Chymkowitch

The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.

在整个细胞分裂周期中保持定义细胞特征的基因表达模式对于延续细胞系至关重要。然而,细胞在细胞周期不同阶段的进展会严重破坏染色质的可及性、表观遗传标记和转录调控因子的招募。值得注意的是,染色质在S期会暂时解体,在有丝分裂期会发生急剧的凝集,这对细胞世代间基因表达模式的保存是一个重大挑战。本文深入探讨了在复制和有丝分裂过程中促进转录特性保存的特定基因表达和染色质调控机制。此外,我们还强调了我们最近的发现,这些发现揭示了酵母中心粒和有丝分裂染色体在有丝分裂后保持转录忠实性的非常规作用。
{"title":"Maintaining transcriptional homeostasis during cell cycle.","authors":"Lucía Ramos-Alonso, Pierre Chymkowitch","doi":"10.1080/21541264.2023.2246868","DOIUrl":"10.1080/21541264.2023.2246868","url":null,"abstract":"<p><p>The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"1-21"},"PeriodicalIF":3.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10132578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An emerging paradigm in epigenetic marking: coordination of transcription and replication. 表观遗传标记的新范式:转录与复制的协调。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2024-02-20 DOI: 10.1080/21541264.2024.2316965
Tyler K Fenstermaker, Svetlana Petruk, Alexander Mazo

DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.

DNA 复制和 RNA 转录都以 DNA 为模板,因此需要协调它们的活动。该领域的主流理论认为,为了使复制叉继续进行,转录机制必须从 DNA 上驱逐出去,直到复制完成。如果不这样做,这些机器就会发生碰撞,这些碰撞会引发各种修复机制,需要其中一种酶(通常是 RNA 聚合酶)发生位移,复制才能继续进行。这一模型也是表观遗传书签理论的核心,该理论认为在复制过程中 RNA 聚合酶的移位需要逐步重建染色质结构,从而引导转录蛋白的招募和转录的恢复。我们在讨论这些理论的同时,也提出了一些新的数据,这些数据表明这两个过程可能不像以前认为的那样相互不利。这包括一些发现,它们表明这些过程可以在没有分叉崩溃的情况下发生,而且 RNA 聚合酶在 DNA 复制过程中可能只会发生短暂的移位。我们讨论了 RNA 聚合酶可能保留在复制叉上并在复制后迅速与 DNA 重新结合的潜在机制。这些发现非常重要,不仅是这两个过程如何能够和谐进行的新证据,还因为它们对转录程序如何通过 DNA 复制得以维持产生了影响。为此,我们还讨论了复制和转录的协调问题,以修正目前关于活性基因状态如何通过 S 期传递的表观遗传书签理论。
{"title":"An emerging paradigm in epigenetic marking: coordination of transcription and replication.","authors":"Tyler K Fenstermaker, Svetlana Petruk, Alexander Mazo","doi":"10.1080/21541264.2024.2316965","DOIUrl":"10.1080/21541264.2024.2316965","url":null,"abstract":"<p><p>DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"22-37"},"PeriodicalIF":3.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-01 Epub Date: 2024-03-21 DOI: 10.1080/21541264.2024.2333606
{"title":"Correction.","authors":"","doi":"10.1080/21541264.2024.2333606","DOIUrl":"10.1080/21541264.2024.2333606","url":null,"abstract":"","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"63"},"PeriodicalIF":3.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140185991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting bacterial transcription factors for infection control: opportunities and challenges. 针对细菌转录因子进行感染控制:机遇与挑战。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-21 DOI: 10.1080/21541264.2023.2293523
Ahmed Al-Tohamy, Anne Grove

The rising threat of antibiotic resistance in pathogenic bacteria emphasizes the need for new therapeutic strategies. This review focuses on bacterial transcription factors (TFs), which play crucial roles in bacterial pathogenesis. We discuss the regulatory roles of these factors through examples, and we outline potential therapeutic strategies targeting bacterial TFs. Specifically, we discuss the use of small molecules to interfere with TF function and the development of transcription factor decoys, oligonucleotides that compete with promoters for TF binding. We also cover peptides that target the interaction between the bacterial TF and other factors, such as RNA polymerase, and the targeting of sigma factors. These strategies, while promising, come with challenges, from identifying targets to designing interventions, managing side effects, and accounting for changing bacterial resistance patterns. We also delve into how Artificial Intelligence contributes to these efforts and how it may be exploited in the future, and we touch on the roles of multidisciplinary collaboration and policy to advance this research domain.Abbreviations: AI, artificial intelligence; CNN, convolutional neural networks; DTI: drug-target interaction; HTH, helix-turn-helix; IHF, integration host factor; LTTRs, LysR-type transcriptional regulators; MarR, multiple antibiotic resistance regulator; MRSA, methicillin resistant Staphylococcus aureus; MSA: multiple sequence alignment; NAP, nucleoid-associated protein; PROTACs, proteolysis targeting chimeras; RNAP, RNA polymerase; TF, transcription factor; TFD, transcription factor decoying; TFTRs, TetR-family transcriptional regulators; wHTH, winged helix-turn-helix.

病原菌对抗生素的耐药性威胁日益严重,这凸显了对新治疗策略的需求。本综述重点探讨细菌转录因子(TFs),它们在细菌致病过程中发挥着至关重要的作用。我们通过实例讨论了这些因子的调控作用,并概述了针对细菌转录因子的潜在治疗策略。具体来说,我们讨论了使用小分子干扰 TF 功能以及开发转录因子诱饵(与启动子竞争 TF 结合的寡核苷酸)的问题。我们还讨论了针对细菌 TF 与其他因子(如 RNA 聚合酶)之间相互作用的肽,以及针对 sigma 因子的研究。这些策略虽然前景广阔,但也面临着各种挑战,包括确定靶点、设计干预措施、控制副作用以及考虑不断变化的细菌抗药性模式。我们还深入探讨了人工智能对这些工作的贡献以及未来可能的利用方式,并探讨了多学科合作和政策在推进这一研究领域中的作用:缩写:AI,人工智能;CNN,卷积神经网络;DTI,药物-靶标相互作用;HTH,螺旋-翻转-螺旋;IHF,整合宿主因子;LTTRs,LysR 型转录调节因子;MarR,多重抗生素耐药性调节因子;MRSA,耐甲氧西林金黄色葡萄球菌;MSA:MSA:多重序列比对;NAP:核糖体相关蛋白;PROTACs:蛋白水解靶向嵌合体;RNAP:RNA 聚合酶;TF:转录因子;TFD:转录因子诱导;TFTRs:TetR-家族转录调节因子;wHTH:翼螺旋-转螺旋。
{"title":"Targeting bacterial transcription factors for infection control: opportunities and challenges.","authors":"Ahmed Al-Tohamy, Anne Grove","doi":"10.1080/21541264.2023.2293523","DOIUrl":"10.1080/21541264.2023.2293523","url":null,"abstract":"<p><p>The rising threat of antibiotic resistance in pathogenic bacteria emphasizes the need for new therapeutic strategies. This review focuses on bacterial transcription factors (TFs), which play crucial roles in bacterial pathogenesis. We discuss the regulatory roles of these factors through examples, and we outline potential therapeutic strategies targeting bacterial TFs. Specifically, we discuss the use of small molecules to interfere with TF function and the development of transcription factor decoys, oligonucleotides that compete with promoters for TF binding. We also cover peptides that target the interaction between the bacterial TF and other factors, such as RNA polymerase, and the targeting of sigma factors. These strategies, while promising, come with challenges, from identifying targets to designing interventions, managing side effects, and accounting for changing bacterial resistance patterns. We also delve into how Artificial Intelligence contributes to these efforts and how it may be exploited in the future, and we touch on the roles of multidisciplinary collaboration and policy to advance this research domain.<b>Abbreviations:</b> AI, artificial intelligence; CNN, convolutional neural networks; DTI: drug-target interaction; HTH, helix-turn-helix; IHF, integration host factor; LTTRs, LysR-type transcriptional regulators; MarR, multiple antibiotic resistance regulator; MRSA, methicillin resistant <i>Staphylococcus aureus</i>; MSA: multiple sequence alignment; NAP, nucleoid-associated protein; PROTACs, proteolysis targeting chimeras; RNAP, RNA polymerase; TF, transcription factor; TFD, transcription factor decoying; TFTRs, TetR-family transcriptional regulators; wHTH, winged helix-turn-helix.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"1-28"},"PeriodicalIF":3.6,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138832205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription factors in the development and treatment of immune disorders. 转录因子在免疫疾病的发展和治疗中的作用。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-12-15 DOI: 10.1080/21541264.2023.2294623
Samantha D Patalano, Paula Fuxman Bass, Juan I Fuxman Bass

Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.

免疫功能在转录水平上受到转录因子(TF)与启动子和增强子元件结合的高度控制。一些转录因子家族在免疫基因表达中发挥着重要作用,包括 NF-κB、STAT、IRF、AP-1、NRs 和 NFAT,它们触发抗病原反应、促进细胞分化并维持免疫系统的平衡。这些 TFs 的异构体和变体的异常表达、激活或序列可导致自身免疫和炎症性疾病以及血液和实体瘤癌症。因此,TFs 已成为极具吸引力的药物靶点,尽管由于缺乏小分子结合口袋和存在内在紊乱区域,大多数 TFs 以前被认为是 "不可药用的"。然而,TF 结构和功能的几个方面可以作为治疗干预的靶点,如配体结合域、TF 之间以及与辅助因子之间的蛋白-蛋白相互作用、TF-DNA 结合、TF 稳定性、上游信号通路和 TF 表达。在这篇综述中,我们将概述每个重要的 TF 家族、它们在免疫中的功能以及它们所涉及的一些相关疾病。此外,我们还讨论了用药物靶向 TFs 的方法、这些领域的最新研究进展及其临床应用,然后介绍了靶向 TFs 治疗免疫疾病的优缺点。
{"title":"Transcription factors in the development and treatment of immune disorders.","authors":"Samantha D Patalano, Paula Fuxman Bass, Juan I Fuxman Bass","doi":"10.1080/21541264.2023.2294623","DOIUrl":"10.1080/21541264.2023.2294623","url":null,"abstract":"<p><p>Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed \"undruggable\" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"1-23"},"PeriodicalIF":3.6,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138802192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional and spatiotemporal regulation of the dauer program. 脑电程序的转录和时空调控。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-11-01 Epub Date: 2023-03-23 DOI: 10.1080/21541264.2023.2190295
Luciana F Godoy, Daniel Hochbaum

Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.

当秀丽隐杆线虫感觉到环境不适合发育时,它可以进入一个被称为“dauer”的滞育阶段。这意味着偏离了典型的发育轨迹,需要严格控制发育时钟和大规模的组织重塑。在过去的几十年里,控制dauer发育决策的信号通路的核心成分已经被确定,但它们在获取dauer特异性性状方面发挥作用的组织仍在深入研究中。越来越多的证据表明,这些途径参与了复杂的串扰和反馈循环。在这篇综述中,我们总结了目前关于dauer程序的转录调控及其相关组织的知识。更好地理解这一过程将有助于深入了解如何实现发展可塑性,以及如何在强有力的监管下做出发展决策,以确保要么全有要么全无的反应。此外,这种发育决策也可以作为相关发育障碍的简化模型。缩写:AID Auxin诱导的Degron DA Dafacronic酸Daf-c dauer形成组成型Daf-d dauer形成缺陷的DTC远端细胞ECM修饰的细胞外基质GPCR G蛋白偶联受体IIS胰岛素/IGF-1信号传导ILPs胰岛素样肽LBD配体结合结构域PDL4后dauer L4 TGF-β转化生长因子βWT野生型。
{"title":"Transcriptional and spatiotemporal regulation of the dauer program.","authors":"Luciana F Godoy, Daniel Hochbaum","doi":"10.1080/21541264.2023.2190295","DOIUrl":"10.1080/21541264.2023.2190295","url":null,"abstract":"<p><p><i>Caenorhabditis elegans</i> can enter a diapause stage called \"dauer\" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.<b>Abbreviations:</b> AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"14 1-2","pages":"27-48"},"PeriodicalIF":3.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9833792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The circular logic of mRNA homeostasis. mRNA稳态的循环逻辑。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-11-01 Epub Date: 2023-02-26 DOI: 10.1080/21541264.2023.2183684
Alysia R Bryll, Craig L Peterson

Eukaryotic cells rely upon dynamic, multifaceted regulation at each step of RNA biogenesis to maintain mRNA pools and ensure normal protein synthesis. Studies in budding yeast indicate a buffering phenomenon that preserves global mRNA levels through the reciprocal balancing of RNA synthesis rates and mRNA decay. In short, changes in transcription impact the efficiency of mRNA degradation and defects in either nuclear or cytoplasmic mRNA degradation are somehow sensed and relayed to control a compensatory change in mRNA transcription rates. Here, we review current views on molecular mechanisms that might explain this apparent bidirectional sensing process that ensures homeostasis of the stable mRNA pool.

真核细胞在RNA生物发生的每一步都依赖于动态的、多方面的调节来维持mRNA库并确保正常的蛋白质合成。对芽苗酵母的研究表明,存在一种缓冲现象,通过RNA合成速率和mRNA衰变的相互平衡来保持全球mRNA水平。简言之,转录的变化影响mRNA降解的效率,细胞核或细胞质中的mRNA降解缺陷以某种方式被感知和传递,以控制mRNA转录率的补偿变化。在这里,我们回顾了目前关于分子机制的观点,这些观点可能解释了这种明显的双向传感过程,该过程确保了稳定mRNA库的稳态。
{"title":"The circular logic of mRNA homeostasis.","authors":"Alysia R Bryll, Craig L Peterson","doi":"10.1080/21541264.2023.2183684","DOIUrl":"10.1080/21541264.2023.2183684","url":null,"abstract":"<p><p>Eukaryotic cells rely upon dynamic, multifaceted regulation at each step of RNA biogenesis to maintain mRNA pools and ensure normal protein synthesis. Studies in budding yeast indicate a buffering phenomenon that preserves global mRNA levels through the reciprocal balancing of RNA synthesis rates and mRNA decay. In short, changes in transcription impact the efficiency of mRNA degradation and defects in either nuclear or cytoplasmic mRNA degradation are somehow sensed and relayed to control a compensatory change in mRNA transcription rates. Here, we review current views on molecular mechanisms that might explain this apparent bidirectional sensing process that ensures homeostasis of the stable mRNA pool.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"14 1-2","pages":"18-26"},"PeriodicalIF":3.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9888517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Never a dull enzyme, RNA polymerase II. 决不是一种迟钝的酶,RNA聚合酶II。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-11-01 Epub Date: 2023-05-02 DOI: 10.1080/21541264.2023.2208023
Jie Huang, Xiong Ji

RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.

RNA聚合酶II(Pol II)由12个亚基组成,它们在细胞核内协同合成mRNA。Pol II被广泛认为是一种被动的全酶,其亚基的分子功能在很大程度上被忽视。最近使用生长素诱导降解物(AID)和多组学技术的研究表明,Pol II的功能多样性是通过其亚基对各种转录和转录后过程的不同贡献来实现的。通过其亚基以协调的方式调节这些过程,Pol II可以优化其活性以实现多种生物功能。在此,我们回顾了在理解Pol II亚基及其在疾病中的失调、Pol II异质性、PolⅡ簇和RNA聚合酶的调节作用方面的最新进展。
{"title":"Never a dull enzyme, RNA polymerase II.","authors":"Jie Huang, Xiong Ji","doi":"10.1080/21541264.2023.2208023","DOIUrl":"10.1080/21541264.2023.2208023","url":null,"abstract":"<p><p>RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"14 1-2","pages":"49-67"},"PeriodicalIF":3.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9824680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription machinery of the minimalist: comparative genomic analysis provides insights into the (de)regulated transcription mechanism of microsporidia - fungal-relative parasites. 极简转录机制:比较基因组分析提供了对微孢子虫-真菌相关寄生虫(非)调节转录机制的见解。
IF 3.6 Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-11-01 Epub Date: 2023-02-09 DOI: 10.1080/21541264.2023.2174765
Sittinan Chanarat

Microsporidia are eukaryotic obligate intracellular parasites closely related to fungi. Co-evolving with infected hosts, microsporidia have highly reduced their genomes and lacked several biological components. As it is beneficial for intracellular parasites like microsporidia to reduce their genome size, it is therefore reasonable to assume that genes encoding multifactorial complex machinery of transcription could be a potential target to be excluded from microsporidian genomes during the reductive evolution. In such a case, an evolutionary dilemma occurs because microsporidia cannot remove all transcription-machinery-encoding genes, products of which are essential for initialthe initial steps of gene expression. Here, I propose that while genes encoding core machinery are conserved, several genes known to function in fine-tune regulation of transcription are absent. This genome compaction strategy may come at the cost of loosely regulated or less controllable transcription. Alternatively, analogous to microsporidian polar tube, the parasites may have specialized factors to regulate their RNA synthesis.

微孢子虫是与真菌关系密切的真核细胞内专性寄生虫。微孢子虫与受感染的宿主共同进化,其基因组高度减少,缺乏几种生物成分。由于像微孢子虫这样的细胞内寄生虫减少其基因组大小是有益的,因此可以合理地假设,编码多因素复杂转录机制的基因可能是在减少进化过程中被排除在微孢子虫基因组之外的潜在靶点。在这种情况下,会出现进化困境,因为微孢子虫无法去除所有编码基因的转录机制,这些基因的产物对基因表达的初始步骤至关重要。在这里,我提出,虽然编码核心机制的基因是保守的,但一些已知在转录微调调节中发挥作用的基因是缺失的。这种基因组压缩策略可能以调控松散或不太可控的转录为代价。或者,类似于微孢子虫极管,寄生虫可能有专门的因子来调节其RNA合成。
{"title":"Transcription machinery of the minimalist: comparative genomic analysis provides insights into the (de)regulated transcription mechanism of microsporidia - fungal-relative parasites.","authors":"Sittinan Chanarat","doi":"10.1080/21541264.2023.2174765","DOIUrl":"10.1080/21541264.2023.2174765","url":null,"abstract":"<p><p>Microsporidia are eukaryotic obligate intracellular parasites closely related to fungi. Co-evolving with infected hosts, microsporidia have highly reduced their genomes and lacked several biological components. As it is beneficial for intracellular parasites like microsporidia to reduce their genome size, it is therefore reasonable to assume that genes encoding multifactorial complex machinery of transcription could be a potential target to be excluded from microsporidian genomes during the reductive evolution. In such a case, an evolutionary dilemma occurs because microsporidia cannot remove all transcription-machinery-encoding genes, products of which are essential for initialthe initial steps of gene expression. Here, I propose that while genes encoding core machinery are conserved, several genes known to function in fine-tune regulation of transcription are absent. This genome compaction strategy may come at the cost of loosely regulated or less controllable transcription. Alternatively, analogous to microsporidian polar tube, the parasites may have specialized factors to regulate their RNA synthesis.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":"14 1-2","pages":"1-17"},"PeriodicalIF":3.6,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10210024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Transcription-Austin
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1