Pub Date : 2024-06-01Epub Date: 2024-05-09DOI: 10.1080/21541264.2024.2350162
Alana E Belkevich, Andrew Y Khalil, Wayne A Decatur, Ryan J Palumbo, Bruce A Knutson
Genome compaction is a common evolutionary feature of parasites. The unicellular, obligate intracellular parasite Encephalitozoon cuniculi has one of smallest known eukaryotic genomes, and is nearly four times smaller than its distant fungi relative, the budding yeast Saccharomyces cerevisiae. Comparison of the proteins encoded by compacted genomes to those encoded by larger genomes can reveal the most highly conserved features of the encoded proteins. In this study, we identified the proteins comprising the RNA polymerases and their corresponding general transcription factors by using several bioinformatic approaches to compare the transcription machinery of E. cuniculi and S. cerevisiae. Surprisingly, our analyses revealed an overall reduction in the size of the proteins comprising transcription machinery of E. cuniculi, which includes the loss of entire regions or functional domains from proteins, as well as the loss of entire proteins and complexes. Unexpectedly, we found that the E. cuniculi ortholog of Rpc37 (a RNA Polymerase III subunit) more closely resembles the H. sapiens ortholog of Rpc37 than the S. cerevisiae ortholog of Rpc37, in both size and structure. Overall, our findings provide new insight into the minimal core eukaryotic transcription machinery and help define the most critical features of Pol components and general transcription factors.
基因组压缩是寄生虫常见的进化特征。单细胞、强制性胞内寄生虫阴沟脑虫的基因组是已知最小的真核生物基因组之一,比它的远亲真菌--芽殖酵母小近四倍。将紧凑基因组编码的蛋白质与较大基因组编码的蛋白质进行比较,可以发现编码蛋白质中最高度保守的特征。在本研究中,我们通过使用多种生物信息学方法来比较阴沟肠杆菌和酿酒酵母菌的转录机制,从而确定了由 RNA 聚合酶及其相应的一般转录因子组成的蛋白质。令人惊讶的是,我们的分析表明,组成阴沟肠杆菌转录机制的蛋白质的体积整体缩小,其中包括蛋白质整个区域或功能域的消失,以及整个蛋白质和复合物的消失。意外的是,我们发现阴沟肠杆菌 Rpc37 的直向同源物(RNA 聚合酶 III 亚基)在大小和结构上都比 S. cerevisiae 的 Rpc37 直向同源物更接近 H. sapiens 的 Rpc37 直向同源物。总之,我们的发现为了解真核生物最小核心转录机制提供了新的视角,并有助于确定 Pol 成分和一般转录因子的最关键特征。
{"title":"Minimization and complete loss of general transcription factor proteins in the intracellular parasite <i>Encephalitozoon cuniculi</i>.","authors":"Alana E Belkevich, Andrew Y Khalil, Wayne A Decatur, Ryan J Palumbo, Bruce A Knutson","doi":"10.1080/21541264.2024.2350162","DOIUrl":"10.1080/21541264.2024.2350162","url":null,"abstract":"<p><p>Genome compaction is a common evolutionary feature of parasites. The unicellular, obligate intracellular parasite <i>Encephalitozoon cuniculi</i> has one of smallest known eukaryotic genomes, and is nearly four times smaller than its distant fungi relative, the budding yeast <i>Saccharomyces cerevisiae</i>. Comparison of the proteins encoded by compacted genomes to those encoded by larger genomes can reveal the most highly conserved features of the encoded proteins. In this study, we identified the proteins comprising the RNA polymerases and their corresponding general transcription factors by using several bioinformatic approaches to compare the transcription machinery of <i>E. cuniculi</i> and <i>S. cerevisiae</i>. Surprisingly, our analyses revealed an overall reduction in the size of the proteins comprising transcription machinery of <i>E. cuniculi</i>, which includes the loss of entire regions or functional domains from proteins, as well as the loss of entire proteins and complexes. Unexpectedly, we found that the <i>E. cuniculi</i> ortholog of Rpc37 (a RNA Polymerase III subunit) more closely resembles the <i>H. sapiens</i> ortholog of Rpc37 than the <i>S. cerevisiae</i> ortholog of Rpc37, in both size and structure. Overall, our findings provide new insight into the minimal core eukaryotic transcription machinery and help define the most critical features of Pol components and general transcription factors.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"97-113"},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-13DOI: 10.1080/21541264.2024.2331887
Bonawentura Kochel
Low-dimensional negative feedback systems (NFSs) were developed within a signal flow model to describe the oscillatory activities of NF-κB caused by interactions with its inhibitor IκBα. The NFSs were established as 3rd- and 4th-order linear systems containing unperturbed and perturbed negative feedback (NF) loops with constant or time-varying NF strengths and a feed-forward loop. NF-related analytical solutions to the NFSs representing the time courses of NF-κB and IκBα were determined and their exact mathematical relationship was found. The NFS's parameters were determined to fit the experimental time courses of NF-κB in TNF-α-stimulated embryonic fibroblasts, rela-/- embryonic fibroblasts reconstituted with RelA, C9L cells, GFP-p65 knock-in embryonic fibroblasts and embryogenic fibroblasts lacking Iκβ and IκBε, LPS-stimulated IC-21 macrophages treated or not with DCPA, and anti-IgM-stimulated DT40 B-lymphocytes. The unperturbed and perturbed NFSs describing the above biosystems generated isochronous and non-isochronous solutions, depending on a constant or time-varying NF strength, respectively. The oscillation period of the NF-coupled solutions, the phase difference between them and the time delays in the appearance of cytoplasmic IκBα after stimulation of NF-κB were determined. A significant divergence between the IκBα solutions to the NFSs and the IκBα experimental courses led to a rejection of the NF coupling between NF-κB and IκBα in the above biosystems. It was shown that neither the linearity nor the low dimensionality of the NFSs altered the NF relationship and the divergence between the IκBα solutions to the NFS and IκBα experimental time courses. Although the NF relationship between IκBα and NF-κB was not confirmed in all the experimental data analyzed, delayed negative feedback was found in some cases.
{"title":"Negative feedback systems for modelling NF-κB transcription factor oscillatory activity.","authors":"Bonawentura Kochel","doi":"10.1080/21541264.2024.2331887","DOIUrl":"10.1080/21541264.2024.2331887","url":null,"abstract":"<p><p>Low-dimensional negative feedback systems (NFSs) were developed within a signal flow model to describe the oscillatory activities of NF-κB caused by interactions with its inhibitor IκBα. The NFSs were established as 3<sup>rd</sup>- and 4<sup>th</sup>-order linear systems containing unperturbed and perturbed negative feedback (NF) loops with constant or time-varying NF strengths and a feed-forward loop. NF-related analytical solutions to the NFSs representing the time courses of NF-κB and IκBα were determined and their exact mathematical relationship was found. The NFS's parameters were determined to fit the experimental time courses of NF-κB in TNF-α-stimulated embryonic fibroblasts, <i>rela</i><sup>-/-</sup> embryonic fibroblasts reconstituted with RelA, C9L cells, GFP-p65 knock-in embryonic fibroblasts and embryogenic fibroblasts lacking Iκβ and IκBε, LPS-stimulated IC-21 macrophages treated or not with DCPA, and anti-IgM-stimulated DT40 B-lymphocytes. The unperturbed and perturbed NFSs describing the above biosystems generated isochronous and non-isochronous solutions, depending on a constant or time-varying NF strength, respectively. The oscillation period of the NF-coupled solutions, the phase difference between them and the time delays in the appearance of cytoplasmic IκBα after stimulation of NF-κB were determined. A significant divergence between the IκBα solutions to the NFSs and the IκBα experimental courses led to a rejection of the NF coupling between NF-κB and IκBα in the above biosystems. It was shown that neither the linearity nor the low dimensionality of the NFSs altered the NF relationship and the divergence between the IκBα solutions to the NFS and IκBα experimental time courses. Although the NF relationship between IκBα and NF-κB was not confirmed in all the experimental data analyzed, delayed negative feedback was found in some cases.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"65-96"},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-07-20DOI: 10.1080/21541264.2024.2379161
Yumi Minyi Yao, Irina Miodownik, Michael P O'Hagan, Muhammad Jbara, Ariel Afek
Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.
转录因子(TFs)复杂地穿梭于庞大的基因组中,定位并结合特定的 DNA 序列,以调节基因表达程序。这些相互作用发生在动态的细胞环境中,在这种环境中,DNA 和转录因子蛋白不断经历化学和结构扰动,包括表观遗传修饰、DNA 损伤、机械应力和翻译后修饰 (PTM)。虽然这些因素中有很多都会影响 TF-DNA 结合的相互作用,但了解它们的影响仍然具有挑战性且不全面。本综述探讨了有关这些动态变化及其对 TF-DNA 相互作用的潜在影响的现有文献。
{"title":"Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome.","authors":"Yumi Minyi Yao, Irina Miodownik, Michael P O'Hagan, Muhammad Jbara, Ariel Afek","doi":"10.1080/21541264.2024.2379161","DOIUrl":"10.1080/21541264.2024.2379161","url":null,"abstract":"<p><p>Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"114-138"},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-09-03DOI: 10.1080/21541264.2024.2387895
Markéta Šoltysová, Pavlína Řezáčová
The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion. On the other hand, SorC/DeoR proteins are involved in a variety of peripheral carbohydrate catabolic pathways and quorum sensing functions, including virulence. Despite the abundance and importance of this family, SorC proteins seem to be on the periphery of scientific interest, which might be caused by the fragmentary information about its representatives. This review aims to compile the existing knowledge and provide material to inspire future questions about the SorC protein family.
SorC 家族是一大类细菌转录调节因子,参与控制碳水化合物分解代谢和法定人数感应。SorC 蛋白由一个保守的 C 端效应结合域和一个 N 端 DNA 结合域组成,其类型将该家族分为两个亚家族:SorC/DeoR 和 SorC/CggR。众所周知,SorC/CggR 亚家族的蛋白质能调节糖酵解的关键节点--磷酸三糖的相互转化。另一方面,SorC/DeoR 蛋白参与各种外围碳水化合物分解途径和法定人数感应功能,包括毒力。尽管SorC蛋白家族的数量众多且十分重要,但它似乎仍处于科学兴趣的边缘,这可能是由于有关其代表蛋白的信息较为零散造成的。本综述旨在梳理现有的知识,并提供材料以启发未来有关 SorC 蛋白家族的问题。
{"title":"Structure and function of bacterial transcription regulators of the SorC family.","authors":"Markéta Šoltysová, Pavlína Řezáčová","doi":"10.1080/21541264.2024.2387895","DOIUrl":"10.1080/21541264.2024.2387895","url":null,"abstract":"<p><p>The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion. On the other hand, SorC/DeoR proteins are involved in a variety of peripheral carbohydrate catabolic pathways and quorum sensing functions, including virulence. Despite the abundance and importance of this family, SorC proteins seem to be on the periphery of scientific interest, which might be caused by the fragmentary information about its representatives. This review aims to compile the existing knowledge and provide material to inspire future questions about the SorC protein family.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"139-160"},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-10-01DOI: 10.1080/21541264.2024.2406717
Kamal Ajit, Monika Gullerova
Genotoxic stress resulting from DNA damage is resolved through a signaling cascade known as the DNA Damage Response (DDR). The repair of damaged DNA is essential for cell survival, often requiring the DDR to attenuate other cellular processes such as the cell cycle, DNA replication, and transcription of genes not involved in DDR. The complex relationship between DDR and transcription has only recently been investigated. Transcription can facilitate the DDR in response to double-strand breaks (DSBs) and stimulate nucleotide excision repair (NER). However, transcription may need to be reduced to prevent potential interference with the repair machinery. In this review, we discuss various mechanisms that regulate transcription repression in response to different types of DNA damage, categorizing them by their range and duration of effect. Finally, we explore various models of transcription recovery following DNA damage-induced repression.
DNA 损伤导致的基因毒性应激可通过一种称为 DNA 损伤反应(DDR)的信号级联来解决。受损 DNA 的修复对细胞存活至关重要,通常需要 DDR 来减弱其他细胞过程,如细胞周期、DNA 复制和不参与 DDR 的基因转录。DDR 与转录之间的复杂关系直到最近才得到研究。转录可以促进 DDR 对双链断裂(DSB)做出反应,并刺激核苷酸切除修复(NER)。然而,转录可能需要减少,以防止对修复机制的潜在干扰。在这篇综述中,我们讨论了针对不同类型 DNA 损伤的转录抑制的各种调控机制,并根据其作用范围和持续时间进行了分类。最后,我们探讨了 DNA 损伤诱导抑制后转录恢复的各种模型。
{"title":"From silence to symphony: transcriptional repression and recovery in response to DNA damage.","authors":"Kamal Ajit, Monika Gullerova","doi":"10.1080/21541264.2024.2406717","DOIUrl":"10.1080/21541264.2024.2406717","url":null,"abstract":"<p><p>Genotoxic stress resulting from DNA damage is resolved through a signaling cascade known as the DNA Damage Response (DDR). The repair of damaged DNA is essential for cell survival, often requiring the DDR to attenuate other cellular processes such as the cell cycle, DNA replication, and transcription of genes not involved in DDR. The complex relationship between DDR and transcription has only recently been investigated. Transcription can facilitate the DDR in response to double-strand breaks (DSBs) and stimulate nucleotide excision repair (NER). However, transcription may need to be reduced to prevent potential interference with the repair machinery. In this review, we discuss various mechanisms that regulate transcription repression in response to different types of DNA damage, categorizing them by their range and duration of effect. Finally, we explore various models of transcription recovery following DNA damage-induced repression.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"161-175"},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142366921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-02-15DOI: 10.1080/21541264.2024.2316972
Ling Wang
RNA polymerases are the central enzymes of gene expression and function frequently in either a head-on or co-directional manner on the busy DNA track. Whether and how these collisions between RNA polymerases contribute to transcriptional regulation is mysterious. Increasing evidence from biochemical and single-molecule studies suggests that RNA polymerase collisions function as an important regulator to fine-tune transcription, rather than creating deleterious "traffic jams". This review summarizes the recent progress on elucidating the consequences of RNA polymerase collisions during transcription and highlights the significance of cooperation and coordination between RNA polymerases.
{"title":"RNA polymerase collisions and their role in transcription.","authors":"Ling Wang","doi":"10.1080/21541264.2024.2316972","DOIUrl":"10.1080/21541264.2024.2316972","url":null,"abstract":"<p><p>RNA polymerases are the central enzymes of gene expression and function frequently in either a head-on or co-directional manner on the busy DNA track. Whether and how these collisions between RNA polymerases contribute to transcriptional regulation is mysterious. Increasing evidence from biochemical and single-molecule studies suggests that RNA polymerase collisions function as an important regulator to fine-tune transcription, rather than creating deleterious \"traffic jams\". This review summarizes the recent progress on elucidating the consequences of RNA polymerase collisions during transcription and highlights the significance of cooperation and coordination between RNA polymerases.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"38-47"},"PeriodicalIF":4.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-03-26DOI: 10.1080/21541264.2024.2334110
Alex W Walls, Adam Z Rosenthal
Bacterial transcription is not monolithic. Microbes exist in a wide variety of cell states that help them adapt to their environment, acquire and produce essential nutrients, and engage in both competition and cooperation with their neighbors. While we typically think of bacterial adaptation as a group behavior, where all cells respond in unison, there is often a mixture of phenotypic responses within a bacterial population, where distinct cell types arise. A primary phenomenon driving these distinct cell states is transcriptional heterogeneity. Given that bacterial mRNA transcripts are extremely short-lived compared to eukaryotes, their transcriptional state is closely associated with their physiology, and thus the transcriptome of a bacterial cell acts as a snapshot of the behavior of that bacterium. Therefore, the application of single-cell transcriptomics to microbial populations will provide novel insight into cellular differentiation and bacterial ecology. In this review, we provide an overview of transcriptional heterogeneity in microbial systems, discuss the findings already provided by single-cell approaches, and plot new avenues of inquiry in transcriptional regulation, cellular biology, and mechanisms of heterogeneity that are made possible when microbial communities are analyzed at single-cell resolution.
{"title":"Bacterial phenotypic heterogeneity through the lens of single-cell RNA sequencing.","authors":"Alex W Walls, Adam Z Rosenthal","doi":"10.1080/21541264.2024.2334110","DOIUrl":"10.1080/21541264.2024.2334110","url":null,"abstract":"<p><p>Bacterial transcription is not monolithic. Microbes exist in a wide variety of cell states that help them adapt to their environment, acquire and produce essential nutrients, and engage in both competition and cooperation with their neighbors. While we typically think of bacterial adaptation as a group behavior, where all cells respond in unison, there is often a mixture of phenotypic responses within a bacterial population, where distinct cell types arise. A primary phenomenon driving these distinct cell states is transcriptional heterogeneity. Given that bacterial mRNA transcripts are extremely short-lived compared to eukaryotes, their transcriptional state is closely associated with their physiology, and thus the transcriptome of a bacterial cell acts as a snapshot of the behavior of that bacterium. Therefore, the application of single-cell transcriptomics to microbial populations will provide novel insight into cellular differentiation and bacterial ecology. In this review, we provide an overview of transcriptional heterogeneity in microbial systems, discuss the findings already provided by single-cell approaches, and plot new avenues of inquiry in transcriptional regulation, cellular biology, and mechanisms of heterogeneity that are made possible when microbial communities are analyzed at single-cell resolution.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"48-62"},"PeriodicalIF":4.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-02-20DOI: 10.1080/21541264.2024.2316965
Tyler K Fenstermaker, Svetlana Petruk, Alexander Mazo
DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.
DNA 复制和 RNA 转录都以 DNA 为模板,因此需要协调它们的活动。该领域的主流理论认为,为了使复制叉继续进行,转录机制必须从 DNA 上驱逐出去,直到复制完成。如果不这样做,这些机器就会发生碰撞,这些碰撞会引发各种修复机制,需要其中一种酶(通常是 RNA 聚合酶)发生位移,复制才能继续进行。这一模型也是表观遗传书签理论的核心,该理论认为在复制过程中 RNA 聚合酶的移位需要逐步重建染色质结构,从而引导转录蛋白的招募和转录的恢复。我们在讨论这些理论的同时,也提出了一些新的数据,这些数据表明这两个过程可能不像以前认为的那样相互不利。这包括一些发现,它们表明这些过程可以在没有分叉崩溃的情况下发生,而且 RNA 聚合酶在 DNA 复制过程中可能只会发生短暂的移位。我们讨论了 RNA 聚合酶可能保留在复制叉上并在复制后迅速与 DNA 重新结合的潜在机制。这些发现非常重要,不仅是这两个过程如何能够和谐进行的新证据,还因为它们对转录程序如何通过 DNA 复制得以维持产生了影响。为此,我们还讨论了复制和转录的协调问题,以修正目前关于活性基因状态如何通过 S 期传递的表观遗传书签理论。
{"title":"An emerging paradigm in epigenetic marking: coordination of transcription and replication.","authors":"Tyler K Fenstermaker, Svetlana Petruk, Alexander Mazo","doi":"10.1080/21541264.2024.2316965","DOIUrl":"10.1080/21541264.2024.2316965","url":null,"abstract":"<p><p>DNA replication and RNA transcription both utilize DNA as a template and therefore need to coordinate their activities. The predominant theory in the field is that in order for the replication fork to proceed, transcription machinery has to be evicted from DNA until replication is complete. If that does not occur, these machineries collide, and these collisions elicit various repair mechanisms which require displacement of one of the enzymes, often RNA polymerase, in order for replication to proceed. This model is also at the heart of the epigenetic bookmarking theory, which implies that displacement of RNA polymerase during replication requires gradual re-building of chromatin structure, which guides recruitment of transcriptional proteins and resumption of transcription. We discuss these theories but also bring to light newer data that suggest that these two processes may not be as detrimental to one another as previously thought. This includes findings suggesting that these processes can occur without fork collapse and that RNA polymerase may only be transiently displaced during DNA replication. We discuss potential mechanisms by which RNA polymerase may be retained at the replication fork and quickly rebind to DNA post-replication. These discoveries are important, not only as new evidence as to how these two processes are able to occur harmoniously but also because they have implications on how transcriptional programs are maintained through DNA replication. To this end, we also discuss the coordination of replication and transcription in light of revising the current epigenetic bookmarking theory of how the active gene status can be transmitted through S phase.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"22-37"},"PeriodicalIF":4.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-09-01DOI: 10.1080/21541264.2023.2246868
Lucía Ramos-Alonso, Pierre Chymkowitch
The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.
{"title":"Maintaining transcriptional homeostasis during cell cycle.","authors":"Lucía Ramos-Alonso, Pierre Chymkowitch","doi":"10.1080/21541264.2023.2246868","DOIUrl":"10.1080/21541264.2023.2246868","url":null,"abstract":"<p><p>The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations. This article delves into the specific gene expression and chromatin regulatory mechanisms that facilitate the preservation of transcriptional identity during replication and mitosis. Furthermore, we emphasize our recent findings revealing the unconventional role of yeast centromeres and mitotic chromosomes in maintaining transcriptional fidelity beyond mitosis.</p>","PeriodicalId":47009,"journal":{"name":"Transcription-Austin","volume":" ","pages":"1-21"},"PeriodicalIF":4.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11093055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10132578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}