Pub Date : 2025-08-03DOI: 10.1016/j.compenvurbsys.2025.102328
Xiao Qian, Shangjia Dong, Rachel Davidson
Housing and household characteristics are key determinants of social and economic well-being, yet our understanding of their interrelationships remains limited. This study addresses this knowledge gap by developing a deep contrastive learning (DCL) model to infer housing-household relationships using the American Community Survey (ACS) Public Use Microdata Sample (PUMS). More broadly, the proposed model is suitable for a class of problems where the goal is to learn joint relationships between two distinct entities without explicitly labeled ground truth data. Our proposed dual-encoder DCL approach leverages co-occurrence patterns in PUMS and introduces a bisect K-means clustering method to overcome the absence of ground truth labels. The dual-encoder DCL architecture is designed to handle the semantic differences between housing (building) and household (people) features while mitigating noise introduced by clustering. To validate the model, we generate a synthetic ground truth dataset and conduct comprehensive evaluations. The model further demonstrates its superior performance in capturing housing-household relationships in Delaware compared to state-of-the-art methods. A transferability test in North Carolina confirms its generalizability across diverse sociodemographic and geographic contexts. Finally, the post-hoc explainable AI analysis using SHAP values reveals that tenure status and mortgage information play a more significant role in housing-household matching than traditionally emphasized factors such as the number of persons and rooms.
{"title":"Deep contrastive learning for feature alignment: Insights from housing-household relationship inference","authors":"Xiao Qian, Shangjia Dong, Rachel Davidson","doi":"10.1016/j.compenvurbsys.2025.102328","DOIUrl":"10.1016/j.compenvurbsys.2025.102328","url":null,"abstract":"<div><div>Housing and household characteristics are key determinants of social and economic well-being, yet our understanding of their interrelationships remains limited. This study addresses this knowledge gap by developing a deep contrastive learning (DCL) model to infer housing-household relationships using the American Community Survey (ACS) Public Use Microdata Sample (PUMS). More broadly, the proposed model is suitable for a class of problems where the goal is to learn joint relationships between two distinct entities without explicitly labeled ground truth data. Our proposed dual-encoder DCL approach leverages co-occurrence patterns in PUMS and introduces a bisect K-means clustering method to overcome the absence of ground truth labels. The dual-encoder DCL architecture is designed to handle the semantic differences between housing (building) and household (people) features while mitigating noise introduced by clustering. To validate the model, we generate a synthetic ground truth dataset and conduct comprehensive evaluations. The model further demonstrates its superior performance in capturing housing-household relationships in Delaware compared to state-of-the-art methods. A transferability test in North Carolina confirms its generalizability across diverse sociodemographic and geographic contexts. Finally, the post-hoc explainable AI analysis using SHAP values reveals that tenure status and mortgage information play a more significant role in housing-household matching than traditionally emphasized factors such as the number of persons and rooms.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102328"},"PeriodicalIF":8.3,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144764047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.compenvurbsys.2025.102332
Xukai Zhao , He Huang , Tao Yang , Yuxing Lu , Lu Zhang , Ruoyu Wang , Zhengliang Liu , Tianyang Zhong , Tianming Liu
Integrating Large Language Models (LLMs) into urban planning presents significant opportunities to enhance efficiency and support data-driven city development strategies. Despite their potential, the specific capabilities of LLMs within the urban planning context remain underexplored, and the field lacks standardized benchmarks for systematic evaluation. This study presents the first comprehensive evaluation focused on OpenAI o1's performance and capabilities in urban planning, systematically benchmarking it against GPT-3.5 and GPT-4o using an original open-source benchmark comprising 556 tasks across five critical categories: urban planning documentation, examinations, routine data analysis, AI algorithm support, and thesis writing. Through rigorous testing and manual analysis of 170,627 words of generated output, OpenAI o1 consistently outperformed its counterparts, achieving an average performance score of 84.08 % compared to 69.30 % for GPT-4o and 45.27 % for GPT-3.5. Our findings highlight o1's strengths in domain knowledge mastery, basic operational competence, and coding capabilities, demonstrating its potential applications in information retrieval, urban data analytics, planning decision support, educational assistance, and LLM-based agent development. However, significant limitations were identified, including inability in urban design, susceptibility to fabricating information, moderate academic writing quality, challenges in high-level professional examinations, and spatial reasoning, and limited support for specialized or emerging AI algorithms. Future optimizations should prioritize enhancing multimodal integration, implementing robust validation mechanisms, adopting adaptive learning strategies, and enabling domain-specific fine-tuning to meet urban planners' specialized needs. These advancements would enable LLMs to better support the evolving demands of urban planning, allowing professionals to focus more on strategic decision-making and the creative aspects of the field.
{"title":"Urban planning in the age of large language models: Assessing OpenAI o1's performance and capabilities across 556 tasks","authors":"Xukai Zhao , He Huang , Tao Yang , Yuxing Lu , Lu Zhang , Ruoyu Wang , Zhengliang Liu , Tianyang Zhong , Tianming Liu","doi":"10.1016/j.compenvurbsys.2025.102332","DOIUrl":"10.1016/j.compenvurbsys.2025.102332","url":null,"abstract":"<div><div>Integrating Large Language Models (LLMs) into urban planning presents significant opportunities to enhance efficiency and support data-driven city development strategies. Despite their potential, the specific capabilities of LLMs within the urban planning context remain underexplored, and the field lacks standardized benchmarks for systematic evaluation. This study presents the first comprehensive evaluation focused on OpenAI o1's performance and capabilities in urban planning, systematically benchmarking it against GPT-3.5 and GPT-4o using an original open-source benchmark comprising 556 tasks across five critical categories: urban planning documentation, examinations, routine data analysis, AI algorithm support, and thesis writing. Through rigorous testing and manual analysis of 170,627 words of generated output, OpenAI o1 consistently outperformed its counterparts, achieving an average performance score of 84.08 % compared to 69.30 % for GPT-4o and 45.27 % for GPT-3.5. Our findings highlight o1's strengths in domain knowledge mastery, basic operational competence, and coding capabilities, demonstrating its potential applications in information retrieval, urban data analytics, planning decision support, educational assistance, and LLM-based agent development. However, significant limitations were identified, including inability in urban design, susceptibility to fabricating information, moderate academic writing quality, challenges in high-level professional examinations, and spatial reasoning, and limited support for specialized or emerging AI algorithms. Future optimizations should prioritize enhancing multimodal integration, implementing robust validation mechanisms, adopting adaptive learning strategies, and enabling domain-specific fine-tuning to meet urban planners' specialized needs. These advancements would enable LLMs to better support the evolving demands of urban planning, allowing professionals to focus more on strategic decision-making and the creative aspects of the field.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102332"},"PeriodicalIF":8.3,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144748888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-01DOI: 10.1016/j.compenvurbsys.2025.102333
Zihui Ma , Guangxiao Hu , Ting-Syuan Lin , Lingyao Li , Songhua Hu , Loni Hagen , Gregory B. Baecher
The increasing frequency and severity of wildfires pose significant risks to communities, infrastructure, and the environment, especially in Wildland-Urban Interface (WUI) areas. Effective disaster management requires understanding how the public perceives and responds to wildfire threats in near-real-time. This study uses social media data to assess public responses (including collective perceptions/reactions) and explores how these responses are linked to city-level community characteristics. Specifically, we leveraged a transformer-based topic modeling technique called BERTopic to identify wildfire response-related topics and then utilized the Susceptible-Infectious-Recovered (SIR) model to compute two key metrics — public response awareness and resilience indicators. Additionally, we used GIS-based spatial analysis to map wildfire responses and the relationships with four groups of city-level factors (racial/ethnic, socioeconomic, demographic, and wildfire-specific). Our findings reveal significant geographic and socio-spatial differences in public responses. Southern California cities with larger Hispanic populations demonstrate higher wildfire awareness and resilience. In contrast, urbanized regions in Central and Northern California exhibit lower awareness levels. Furthermore, resilience is negatively correlated with unemployment rates, particularly in southern regions where higher unemployment aligns with reduced resilience. These findings highlight the need for targeted and equitable wildfire management strategies to improve the adaptive capacity of WUI communities.
{"title":"Analyzing public response to wildfires: A socio-spatial study using SIR models and NLP techniques","authors":"Zihui Ma , Guangxiao Hu , Ting-Syuan Lin , Lingyao Li , Songhua Hu , Loni Hagen , Gregory B. Baecher","doi":"10.1016/j.compenvurbsys.2025.102333","DOIUrl":"10.1016/j.compenvurbsys.2025.102333","url":null,"abstract":"<div><div>The increasing frequency and severity of wildfires pose significant risks to communities, infrastructure, and the environment, especially in Wildland-Urban Interface (WUI) areas. Effective disaster management requires understanding how the public perceives and responds to wildfire threats in near-real-time. This study uses social media data to assess public responses (including collective perceptions/reactions) and explores how these responses are linked to city-level community characteristics. Specifically, we leveraged a transformer-based topic modeling technique called BERTopic to identify wildfire response-related topics and then utilized the Susceptible-Infectious-Recovered (SIR) model to compute two key metrics — public response awareness and resilience indicators. Additionally, we used GIS-based spatial analysis to map wildfire responses and the relationships with four groups of city-level factors (racial/ethnic, socioeconomic, demographic, and wildfire-specific). Our findings reveal significant geographic and socio-spatial differences in public responses. Southern California cities with larger Hispanic populations demonstrate higher wildfire awareness and resilience. In contrast, urbanized regions in Central and Northern California exhibit lower awareness levels. Furthermore, resilience is negatively correlated with unemployment rates, particularly in southern regions where higher unemployment aligns with reduced resilience. These findings highlight the need for targeted and equitable wildfire management strategies to improve the adaptive capacity of WUI communities.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102333"},"PeriodicalIF":8.3,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144748887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-26DOI: 10.1016/j.compenvurbsys.2025.102330
Wenqi Qian , Fujie Rao , Xiaoyu Li , Dayi Lai
Global climate change has intensified heat wave events, raising their intensity, duration, and frequency. Outdoor urban green spaces and indoor air-conditioned spaces serve as critical ‘heat shelters’, providing crucial cooling relief to extreme heat. However, there is a lack of studies focused on the spatial distribution of potential heat shelters and how shelters in different urban areas match varying degrees of heat risk. To address this research gap, we quantify and map heat risks and shelter provisions of administrative neighborhoods (often the smallest level of urban governance) and walkable grids of 500 × 500 m (a commonly-used comfortable walking distance for vulnerable groups such as the elderly people), and identify vulnerable areas where heat mitigation interventions should be prioritized. We select Shanghai – a metropolis of around 25 million people experiencing increasingly extreme heat wave events - for the case study. We measure heat risk by a composite index incorporating heat hazard, exposure and vulnerability. We largely measure heat provision by the number of indoor air-conditioned venues and outdoor green spaces, weighted by their time availability. Our findings reveal a general decrease in heat mitigation priority levels from the urban core to the suburbs, a pattern that is consistent between neighborhoods and grids at the metropolitan scale. This said, at smaller scales, significant differences between these two types of spatial units emerged in the degree and distribution of heat mitigation priority levels, revealing nuanced, inequitable capacities of different urban areas to tackle extreme heat. Our study provides a novel and systematic lens for assessing heat mitigation priority levels, informing more effective strategies for planning and managing heat shelters and allocating heat mitigation resources.
{"title":"Mapping priority zones for urban heat mitigation in Shanghai: Heat risk vs. shelter provision","authors":"Wenqi Qian , Fujie Rao , Xiaoyu Li , Dayi Lai","doi":"10.1016/j.compenvurbsys.2025.102330","DOIUrl":"10.1016/j.compenvurbsys.2025.102330","url":null,"abstract":"<div><div>Global climate change has intensified heat wave events, raising their intensity, duration, and frequency. Outdoor urban green spaces and indoor air-conditioned spaces serve as critical ‘heat shelters’, providing crucial cooling relief to extreme heat. However, there is a lack of studies focused on the spatial distribution of potential heat shelters and how shelters in different urban areas match varying degrees of heat risk. To address this research gap, we quantify and map heat risks and shelter provisions of administrative neighborhoods (often the smallest level of urban governance) and walkable grids of 500 × 500 m (a commonly-used comfortable walking distance for vulnerable groups such as the elderly people), and identify vulnerable areas where heat mitigation interventions should be prioritized. We select Shanghai – a metropolis of around 25 million people experiencing increasingly extreme heat wave events - for the case study. We measure heat risk by a composite index incorporating heat hazard, exposure and vulnerability. We largely measure heat provision by the number of indoor air-conditioned venues and outdoor green spaces, weighted by their time availability. Our findings reveal a general decrease in heat mitigation priority levels from the urban core to the suburbs, a pattern that is consistent between neighborhoods and grids at the metropolitan scale. This said, at smaller scales, significant differences between these two types of spatial units emerged in the degree and distribution of heat mitigation priority levels, revealing nuanced, inequitable capacities of different urban areas to tackle extreme heat. Our study provides a novel and systematic lens for assessing heat mitigation priority levels, informing more effective strategies for planning and managing heat shelters and allocating heat mitigation resources.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102330"},"PeriodicalIF":7.1,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144704836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Detailed contact data is important to model disease transmission in dense urban areas, as human mobility and social interactions significantly impact spread. However, linking mobility, activities, and social contacts in large cities is challenging. Current models often rely on contact surveys and overlook travel behaviors. Here we present a novel modeling framework for estimating large-scale, multi-setting contact networks by leveraging high-resolution synthetic activity-travel data. Our approach introduces a new mathematical formalism to construct multi-setting contact networks from spatiotemporal co-location patterns, enabling constraints based on key statistics (e.g., contact rates per setting, proportions of each contact type), incorporation of location types, and individual activity purposes. Efficient algorithms extract co-presence events, generating validated, individual-based contact networks, from which age-specific contact matrices are derived. The approach is tested using EQASIM, an open and reproducible activity-based travel demand model that relies on publicly available data for France’s Île-de-France region. We also evaluated the spatial effects of work-from-home policies on contact patterns by modifying individuals’ activity-travel diaries. Results show that multi-setting contact networks — representing 12 million individuals distributed across 1,714,920 unique locations — can be generated in minutes while accurately reproducing setting- and age-specific spatial contact patterns.
{"title":"An agent-based model for estimating daily face-to-face contact networks in large urban systems","authors":"Ismaïl Saadi , Etienne Côme , Liem Binh Luong Nguyen , Mahdi Zargayouna","doi":"10.1016/j.compenvurbsys.2025.102321","DOIUrl":"10.1016/j.compenvurbsys.2025.102321","url":null,"abstract":"<div><div>Detailed contact data is important to model disease transmission in dense urban areas, as human mobility and social interactions significantly impact spread. However, linking mobility, activities, and social contacts in large cities is challenging. Current models often rely on contact surveys and overlook travel behaviors. Here we present a novel modeling framework for estimating large-scale, multi-setting contact networks by leveraging high-resolution synthetic activity-travel data. Our approach introduces a new mathematical formalism to construct multi-setting contact networks from spatiotemporal co-location patterns, enabling constraints based on key statistics (e.g., contact rates per setting, proportions of each contact type), incorporation of location types, and individual activity purposes. Efficient algorithms extract co-presence events, generating validated, individual-based contact networks, from which age-specific contact matrices are derived. The approach is tested using EQASIM, an open and reproducible activity-based travel demand model that relies on publicly available data for France’s Île-de-France region. We also evaluated the spatial effects of work-from-home policies on contact patterns by modifying individuals’ activity-travel diaries. Results show that multi-setting contact networks — representing 12 million individuals distributed across 1,714,920 unique locations — can be generated in minutes while accurately reproducing setting- and age-specific spatial contact patterns.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102321"},"PeriodicalIF":7.1,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144653395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-11DOI: 10.1016/j.compenvurbsys.2025.102327
Devin Yongzhao Wu , Jue Wang
This study proposes a framework for modeling environmental noise pollution by integrating land use regression (LUR) with machine learning models and street built environments. Using noise data collected from 128 locations over nine consecutive days in Mississauga, Ontario, Canada, the research demonstrates that incorporating finer-scale street built environment features derived from street view images significantly improves noise prediction accuracy. The model using XGBoost and street view-derived variables significantly outperforms traditional LUR-based models. The results indicate that street-level characteristics, particularly terrain, play a critical role in modeling noise levels, complementing traditional land use and NDVI-based greenness. Furthermore, the research highlights the importance of using non-linear models like XGBoost to capture complex relationships between noise and urban features. This approach offers valuable insights for advancing environmental noise modeling, which further supports future public health studies investigating the impact of noise exposure on population health.
{"title":"Modeling spatial and temporal urban environmental noise using street view imagery and machine learning","authors":"Devin Yongzhao Wu , Jue Wang","doi":"10.1016/j.compenvurbsys.2025.102327","DOIUrl":"10.1016/j.compenvurbsys.2025.102327","url":null,"abstract":"<div><div>This study proposes a framework for modeling environmental noise pollution by integrating land use regression (LUR) with machine learning models and street built environments. Using noise data collected from 128 locations over nine consecutive days in Mississauga, Ontario, Canada, the research demonstrates that incorporating finer-scale street built environment features derived from street view images significantly improves noise prediction accuracy. The model using XGBoost and street view-derived variables significantly outperforms traditional LUR-based models. The results indicate that street-level characteristics, particularly terrain, play a critical role in modeling noise levels, complementing traditional land use and NDVI-based greenness. Furthermore, the research highlights the importance of using non-linear models like XGBoost to capture complex relationships between noise and urban features. This approach offers valuable insights for advancing environmental noise modeling, which further supports future public health studies investigating the impact of noise exposure on population health.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102327"},"PeriodicalIF":7.1,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144595513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-01DOI: 10.1016/j.compenvurbsys.2025.102326
Sebastian Kohl , Bo Li , Can Cui
Most studies on residential segregation in China have primarily relied on decennial population census data, which lacks the granularity and timeliness needed to capture segregation dynamics with higher frequency. Drawing on georeferenced housing market transaction data between 2012 and 2023 in Shanghai and Beijing, and employing fine-grained spatial segregation analysis techniques, including k-nearest neighbor approaches (k−NN) and modifiable grids, we find that housing segregation by price and size increased between 2012 and 2018, followed by a decline thereafter, particularly in the larger-sized and higher-priced market segments. While segregation levels are generally comparable between the two cities, Shanghai exhibits higher segregation for the top 20 % of apartments, while Beijing shows greater segregation for the bottom 20 %. Segregation is highest for prices, followed by rents, with housing size showing the lowest segregation. Expanding the analysis to 11 major Chinese cities, we suggest that high and rising housing prices are associated with increasing segregation, particularly in cities with lower initial segregation. Methodologically, this paper demonstrates that leveraging big transaction and listing data, alongside utilizing fine-grained spatial analysis, can advance our understanding of urban inequalities.
{"title":"Housing segregation in Chinese major cities: A K-nearest neighbor analysis of longitudinal big data","authors":"Sebastian Kohl , Bo Li , Can Cui","doi":"10.1016/j.compenvurbsys.2025.102326","DOIUrl":"10.1016/j.compenvurbsys.2025.102326","url":null,"abstract":"<div><div>Most studies on residential segregation in China have primarily relied on decennial population census data, which lacks the granularity and timeliness needed to capture segregation dynamics with higher frequency. Drawing on georeferenced housing market transaction data between 2012 and 2023 in Shanghai and Beijing, and employing fine-grained spatial segregation analysis techniques, including k-nearest neighbor approaches (<em>k</em>−NN) and modifiable grids, we find that housing segregation by price and size increased between 2012 and 2018, followed by a decline thereafter, particularly in the larger-sized and higher-priced market segments. While segregation levels are generally comparable between the two cities, Shanghai exhibits higher segregation for the top 20 % of apartments, while Beijing shows greater segregation for the bottom 20 %. Segregation is highest for prices, followed by rents, with housing size showing the lowest segregation. Expanding the analysis to 11 major Chinese cities, we suggest that high and rising housing prices are associated with increasing segregation, particularly in cities with lower initial segregation. Methodologically, this paper demonstrates that leveraging big transaction and listing data, alongside utilizing fine-grained spatial analysis, can advance our understanding of urban inequalities.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102326"},"PeriodicalIF":7.1,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144522231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-29DOI: 10.1016/j.compenvurbsys.2025.102325
Run Shi , Anthony Gar-On Yeh , Fang Bian
Social area analysis is a framework for understanding residential social structure as a product of urbanization and economic development. Building on our previous findings that socioeconomically similar residents exhibit different mobility patterns, this study examines urban socio-spatial structure by incorporating commuting patterns from mobile phone data with census in Shenzhen, China. We conduct a comparative analysis to explore differences between the traditional and mobility approaches. Principal Component Analysis (PCA) results reveal that mobility is an essential dimension of socio-spatial differentiation at the aggregated neighborhood committee level. The derived residential social structure explicitly highlights mobility disparities, providing evidence for possible segregation and potential improvements in urban planning. By analyzing the interplays of economic, political, and social forces, we conceptualize mobility as a sub-dimension of social space. The contribution of this study lies in two folds. First, we propose a framework for integrating mobile phone data with census data to capture mobility disparities at the aggregated level with the concept of activity space. Second, we explore the role of mobility in delineating urban socio-spatial structure, providing a novel perspective for examining the internal spatial structure of cities.
{"title":"Social areas revisited through the lens of mobility: A comparative study of the traditional and mobility approaches","authors":"Run Shi , Anthony Gar-On Yeh , Fang Bian","doi":"10.1016/j.compenvurbsys.2025.102325","DOIUrl":"10.1016/j.compenvurbsys.2025.102325","url":null,"abstract":"<div><div>Social area analysis is a framework for understanding residential social structure as a product of urbanization and economic development. Building on our previous findings that socioeconomically similar residents exhibit different mobility patterns, this study examines urban socio-spatial structure by incorporating commuting patterns from mobile phone data with census in Shenzhen, China. We conduct a comparative analysis to explore differences between the traditional and mobility approaches. Principal Component Analysis (PCA) results reveal that mobility is an essential dimension of socio-spatial differentiation at the aggregated neighborhood committee level. The derived residential social structure explicitly highlights mobility disparities, providing evidence for possible segregation and potential improvements in urban planning. By analyzing the interplays of economic, political, and social forces, we conceptualize mobility as a sub-dimension of social space. The contribution of this study lies in two folds. First, we propose a framework for integrating mobile phone data with census data to capture mobility disparities at the aggregated level with the concept of activity space. Second, we explore the role of mobility in delineating urban socio-spatial structure, providing a novel perspective for examining the internal spatial structure of cities.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102325"},"PeriodicalIF":7.1,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144510637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-28DOI: 10.1016/j.compenvurbsys.2025.102322
Zelin Wang , Tianshu Feng , Abolfazl Safikhani , Emre Tepe
Recent applications of machine learning (ML) and deep learning (DL) techniques in land-use change modeling have demonstrated significant success in capturing the intricate dynamics of land development. However, their “black-box” nature restricts their utility in various contexts, such as uncovering the underlying drivers of urban expansion. To mitigate this issue, we propose to utilize eXplainable AI (XAI) techniques in ML/DL methods, which presents a promising solution to this primary constraint. To that end, we introduce DL methods to investigate and predict the non-linear dynamics of land use changes. These methods achieved notably high accuracy scores and were more computationally viable than traditional statistical approaches. Moreover, the proposed approach employed in this study surpassed the parameter interpretation capabilities of statistical methods. More specifically, the proposed XAI approach not only highlights the average effects of features on the outcome but also elucidates the factors influencing specific decisions regarding land use changes, including the number of vacant parcels, the share of single-family parcels, and certain time-lagged neighborhood features. Such analyses provide invaluable insights for researchers, practitioners, and policymakers.
{"title":"Enhancing transparency in land use change modeling: Leveraging eXplainable AI techniques for urban growth prediction with spatially distributed insights","authors":"Zelin Wang , Tianshu Feng , Abolfazl Safikhani , Emre Tepe","doi":"10.1016/j.compenvurbsys.2025.102322","DOIUrl":"10.1016/j.compenvurbsys.2025.102322","url":null,"abstract":"<div><div>Recent applications of machine learning (ML) and deep learning (DL) techniques in land-use change modeling have demonstrated significant success in capturing the intricate dynamics of land development. However, their “black-box” nature restricts their utility in various contexts, such as uncovering the underlying drivers of urban expansion. To mitigate this issue, we propose to utilize eXplainable AI (XAI) techniques in ML/DL methods, which presents a promising solution to this primary constraint. To that end, we introduce DL methods to investigate and predict the non-linear dynamics of land use changes. These methods achieved notably high accuracy scores and were more computationally viable than traditional statistical approaches. Moreover, the proposed approach employed in this study surpassed the parameter interpretation capabilities of statistical methods. More specifically, the proposed XAI approach not only highlights the average effects of features on the outcome but also elucidates the factors influencing specific decisions regarding land use changes, including the number of vacant parcels, the share of single-family parcels, and certain time-lagged neighborhood features. Such analyses provide invaluable insights for researchers, practitioners, and policymakers.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102322"},"PeriodicalIF":7.1,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144502242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-28DOI: 10.1016/j.compenvurbsys.2025.102324
Meixu Chen , Caitlin Robinson , Alex Singleton
This work provides a thorough Energy Deprivation Segmentation (EDS) for Great Britain, which aims to address the complex and varied aspects of energy poverty in different small regions. By proposing a reproducible analytical framework, we combine many data sources to provide a comprehensive segmentation that encompasses various dimensions such as energy efficiency, accessibility, demand and supply, housing conditions, and financial vulnerability. The results indicate notable disparities in energy deprivation based on social and spatial factors. We observed higher degrees of deprivation in the peripheral areas of major cities and suburbs in the northern regions of England, southern regions of Wales, and central regions of Scotland. The created EDS identifies six top-level Supergroups and 14 finer Groups and was validated internally and externally to confirm its robustness and applicability. This segmentation offers a more comprehensive insights into the characteristics and distribution of energy-deprived neighbourhoods than traditional measures. This research facilitates policymakers to design targeted strategies and resource allocation to combat specific vulnerabilities within communities and foster sustainable and equitable urban growth. Additionally, a practical tool is provided for monitoring and evaluating the effectiveness of policies aimed at reducing energy poverty.
{"title":"Mapping multidimensional energy deprivation: Socio-spatial inequalities and policy implications in Great Britain","authors":"Meixu Chen , Caitlin Robinson , Alex Singleton","doi":"10.1016/j.compenvurbsys.2025.102324","DOIUrl":"10.1016/j.compenvurbsys.2025.102324","url":null,"abstract":"<div><div>This work provides a thorough Energy Deprivation Segmentation (EDS) for Great Britain, which aims to address the complex and varied aspects of energy poverty in different small regions. By proposing a reproducible analytical framework, we combine many data sources to provide a comprehensive segmentation that encompasses various dimensions such as energy efficiency, accessibility, demand and supply, housing conditions, and financial vulnerability. The results indicate notable disparities in energy deprivation based on social and spatial factors. We observed higher degrees of deprivation in the peripheral areas of major cities and suburbs in the northern regions of England, southern regions of Wales, and central regions of Scotland. The created EDS identifies six top-level Supergroups and 14 finer Groups and was validated internally and externally to confirm its robustness and applicability. This segmentation offers a more comprehensive insights into the characteristics and distribution of energy-deprived neighbourhoods than traditional measures. This research facilitates policymakers to design targeted strategies and resource allocation to combat specific vulnerabilities within communities and foster sustainable and equitable urban growth. Additionally, a practical tool is provided for monitoring and evaluating the effectiveness of policies aimed at reducing energy poverty.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102324"},"PeriodicalIF":7.1,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144502243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}