Pub Date : 2024-06-29DOI: 10.1016/j.mtadv.2024.100513
Kai-Chieh Chang, Fei-Yi Hung, Jun-Ren Zhao
Quasi-periodic materials hold unique properties, but mass-producing bulk materials with such structures remains challenging. The rational approximant phase belongs to the Bravais crystal system but exhibits irrational cut features and diffraction symmetries, which are similar to quasicrystals. This study uses additive manufacturing (AM) and prolonged annealing to create an aluminum-based alloy featuring a quasicrystal-like rational approximant phase, Al(Cu, Ni)(Cr, Mn, Fe), overcoming the production limitations of reproducible quasi-periodic materials. This phase transformation occurs at the Al–AlFeNi interface, resulting in a monoclinic periodic structure with long-range translational symmetry. The structure comprises sublattices of stars and compressed hexagons, forming tile mode coverings with pseudo-five-fold decagonal shield-like tiles (SLTs) through transition-element atoms. Furthermore, HAADF imaging reveals clear dark monoclinic rhombic patterns with long-range ordered translational symmetry, free from atomic defects. The rational approximant phase has been verified crystallography through X-ray diffraction, confirming its translational symmetry. Additionally, the Al(Zr, Sc) phase facilitates the phase transformation process through lattice interactions. These findings introduce a novel perspective on the phase transformation in decagonal-like rational approximants and broaden the realm for future engineering applications.
准周期材料具有独特的性质,但要大规模生产具有这种结构的块状材料仍具有挑战性。有理近似相属于布拉维晶系,但表现出非理性切割特征和衍射对称性,与准晶体类似。本研究利用增材制造(AM)和长时间退火制造出一种具有类准晶体理性近似相 Al(Cu,Ni)(Cr,Mn,Fe)的铝基合金,克服了可复制准周期材料的生产限制。这种相变发生在铝-铝铁镍界面上,形成了具有长程平移对称性的单斜周期结构。该结构由星形和压缩六边形的子晶格组成,通过过渡元素原子形成具有伪五折十边形盾牌状瓦片(SLT)的瓦片模式覆盖。此外,HAADF 成像还显示出清晰的暗单斜菱形图案,具有长程有序平移对称性,不存在原子缺陷。通过 X 射线衍射对合理近似相进行了晶体学验证,确认了其平移对称性。此外,Al(Zr,Sc)相通过晶格相互作用促进了相变过程。这些发现为十边形有理近似物的相变引入了一个新的视角,并拓宽了未来工程应用的领域。
{"title":"Study of engineering developing decagonal-like rational approximant structure of Al–Ni–Cu–Fe–Mn–Cr senary system in aluminum alloy through additive manufacturing","authors":"Kai-Chieh Chang, Fei-Yi Hung, Jun-Ren Zhao","doi":"10.1016/j.mtadv.2024.100513","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100513","url":null,"abstract":"Quasi-periodic materials hold unique properties, but mass-producing bulk materials with such structures remains challenging. The rational approximant phase belongs to the Bravais crystal system but exhibits irrational cut features and diffraction symmetries, which are similar to quasicrystals. This study uses additive manufacturing (AM) and prolonged annealing to create an aluminum-based alloy featuring a quasicrystal-like rational approximant phase, Al(Cu, Ni)(Cr, Mn, Fe), overcoming the production limitations of reproducible quasi-periodic materials. This phase transformation occurs at the Al–AlFeNi interface, resulting in a monoclinic periodic structure with long-range translational symmetry. The structure comprises sublattices of stars and compressed hexagons, forming tile mode coverings with pseudo-five-fold decagonal shield-like tiles (SLTs) through transition-element atoms. Furthermore, HAADF imaging reveals clear dark monoclinic rhombic patterns with long-range ordered translational symmetry, free from atomic defects. The rational approximant phase has been verified crystallography through X-ray diffraction, confirming its translational symmetry. Additionally, the Al(Zr, Sc) phase facilitates the phase transformation process through lattice interactions. These findings introduce a novel perspective on the phase transformation in decagonal-like rational approximants and broaden the realm for future engineering applications.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"47 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review explores the integration of titanium carbide (TiCT) MXene materials with three-dimensional (3D) printing techniques for advanced functional applications. TiCT MXenes exhibit remarkable intrinsic properties like high surface area, metallic conductivity, and flexible surface functionalities. These materials can be associated to 3D printing techniques that offer solutions to conventional techniques’ limitations, enabling the creation of high-performance, free-standing, and multiscale devices with precise control over architecture. Additionally, 3D printing techniques are cost-effective, energy-saving, and sustainable, reducing material waste and carbon footprint. This review begins by presenting an overview of two-dimensional (2D) materials and their distinct characteristics when comparted to the MXenes family, followed by discussions on synthesis routes for 3D printable MXene inks and fabrication methods for complex MXene-based structures. Various applications of 3D-printed MXene architectures are explored, particularly in energy storage devices like supercapacitors and batteries, leveraging MXenes exceptional electrical conductivity and high surface area to enhance energy storage capabilities. Moreover, the potential of 3D-printed MXene architectures in smart devices, incorporating technologies such as artificial intelligence and connectivity features, is highlighted, particularly in smart sensors, biosensors, electromagnetic shielding, and environmental remediation.
{"title":"3D printed MXene architectures for a plethora of smart applications","authors":"Maria Leonor Matias, Cláudia Pereira, Henrique Vazão Almeida, Santanu Jana, Shrabani Panigrahi, Ugur Deneb Menda, Daniela Nunes, Elvira Fortunato, Rodrigo Martins, Suman Nandy","doi":"10.1016/j.mtadv.2024.100512","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100512","url":null,"abstract":"This review explores the integration of titanium carbide (TiCT) MXene materials with three-dimensional (3D) printing techniques for advanced functional applications. TiCT MXenes exhibit remarkable intrinsic properties like high surface area, metallic conductivity, and flexible surface functionalities. These materials can be associated to 3D printing techniques that offer solutions to conventional techniques’ limitations, enabling the creation of high-performance, free-standing, and multiscale devices with precise control over architecture. Additionally, 3D printing techniques are cost-effective, energy-saving, and sustainable, reducing material waste and carbon footprint. This review begins by presenting an overview of two-dimensional (2D) materials and their distinct characteristics when comparted to the MXenes family, followed by discussions on synthesis routes for 3D printable MXene inks and fabrication methods for complex MXene-based structures. Various applications of 3D-printed MXene architectures are explored, particularly in energy storage devices like supercapacitors and batteries, leveraging MXenes exceptional electrical conductivity and high surface area to enhance energy storage capabilities. Moreover, the potential of 3D-printed MXene architectures in smart devices, incorporating technologies such as artificial intelligence and connectivity features, is highlighted, particularly in smart sensors, biosensors, electromagnetic shielding, and environmental remediation.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"48 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1016/j.mtadv.2024.100510
Sanghyun Kim, Joo-Hyoung Lee
Ammonia (NH) has been a subject of great interest due to its important roles in diverse technological applications. However, high toxicity and corrosiveness of NH has made it an important task to develop an efficient carrier to safely capture NH with high capacity. Here, we employ a machine learning (ML) model to discover high-performance metal organic frameworks (MOFs) that will work as efficient NH carriers. By constructing databases at two distinct conditions, adsorption and desorption, through Grand Canonical Monte Carlo (GCMC) simulations to train ML models, we identify eight novel MOFs as potentially efficient NH carriers through screening the large-scale MOF databases with the trained models and GCMC verification. The identified MOFs exhibit the average NH working capacity exceeding 1100 mg/g, and subsequent molecular dynamics simulations demonstrate mechanical stability of the predicted MOFs. Moreover, analyses of the diffusion mechanism within the proposed MOFs underscore the strong dependence of NH₃ gas diffusivity on the structural details of the materials.
{"title":"Data-driven discovery of novel metal organic frameworks with superior ammonia adsorption capacity","authors":"Sanghyun Kim, Joo-Hyoung Lee","doi":"10.1016/j.mtadv.2024.100510","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100510","url":null,"abstract":"Ammonia (NH) has been a subject of great interest due to its important roles in diverse technological applications. However, high toxicity and corrosiveness of NH has made it an important task to develop an efficient carrier to safely capture NH with high capacity. Here, we employ a machine learning (ML) model to discover high-performance metal organic frameworks (MOFs) that will work as efficient NH carriers. By constructing databases at two distinct conditions, adsorption and desorption, through Grand Canonical Monte Carlo (GCMC) simulations to train ML models, we identify eight novel MOFs as potentially efficient NH carriers through screening the large-scale MOF databases with the trained models and GCMC verification. The identified MOFs exhibit the average NH working capacity exceeding 1100 mg/g, and subsequent molecular dynamics simulations demonstrate mechanical stability of the predicted MOFs. Moreover, analyses of the diffusion mechanism within the proposed MOFs underscore the strong dependence of NH₃ gas diffusivity on the structural details of the materials.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"11 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-24DOI: 10.1016/j.mtadv.2024.100500
Halima El Aadad, Hicham El Hamzaoui, Gaëlle Brévalle-Wasilewskis, Rémy Bernard, Christophe Kinowski, Yves Quiquempois, Marc Douay
Owning to their intrinsic properties, silica-based glasses are widely used in various technological fields, especially in photonics. However, high degree of flexibility is yet challenging in realization of next-generation miniaturized optical components. In this work, we develop an approach based on ‶Solmers″ hybrid resins allowing versatile two-photon polymerization 3D printing of silica glasses with 23 nm resolution, doping with Germanium and/or rare-earths elements. Other dopants such as gold nanoparticles were also incorporated for localized metallization. After 3D printing and sintering (1100–1300 °C), high optical quality glasses with low surface roughness (<0.2 nm) were obtained. Structural analyses confirmed the amorphous structure of silica glasses. Various mono- or multi-materials microstructures were successfully fabricated on fused silica substrates. Besides, this approach was extended to the functionalization of optical fibers for optical sensing applications in harsh environment (1000 °C). Compared to organic or organic-inorganic materials, these dense silica-based glasses with enhanced optical and structural properties will open new avenues for the development of emerging advanced optical components.
硅基玻璃因其固有特性而被广泛应用于各个技术领域,尤其是光子学领域。然而,在实现下一代微型光学元件时,高度灵活性仍是一项挑战。在这项工作中,我们开发了一种基于‶Solmers″混合树脂的方法,可通过掺杂锗和/或稀土元素,以 23 纳米的分辨率对二氧化硅玻璃进行多功能双光子聚合 3D 打印。此外,还加入了金纳米粒子等其他掺杂剂,以实现局部金属化。经过三维打印和烧结(1100-1300 °C),获得了表面粗糙度较低(<0.2 nm)的高质量光学玻璃。结构分析证实了二氧化硅玻璃的无定形结构。在熔融石英基底上成功制备出了各种单材料或多材料微结构。此外,这种方法还扩展到了光纤的功能化,用于恶劣环境(1000 °C)下的光学传感应用。与有机或有机-无机材料相比,这些具有更强光学和结构特性的致密二氧化硅基玻璃将为开发新兴的先进光学元件开辟新的途径。
{"title":"Solmers: Versatile hybrid resins for nanometric 3D printing of silica-based photonic components","authors":"Halima El Aadad, Hicham El Hamzaoui, Gaëlle Brévalle-Wasilewskis, Rémy Bernard, Christophe Kinowski, Yves Quiquempois, Marc Douay","doi":"10.1016/j.mtadv.2024.100500","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100500","url":null,"abstract":"Owning to their intrinsic properties, silica-based glasses are widely used in various technological fields, especially in photonics. However, high degree of flexibility is yet challenging in realization of next-generation miniaturized optical components. In this work, we develop an approach based on ‶Solmers″ hybrid resins allowing versatile two-photon polymerization 3D printing of silica glasses with 23 nm resolution, doping with Germanium and/or rare-earths elements. Other dopants such as gold nanoparticles were also incorporated for localized metallization. After 3D printing and sintering (1100–1300 °C), high optical quality glasses with low surface roughness (<0.2 nm) were obtained. Structural analyses confirmed the amorphous structure of silica glasses. Various mono- or multi-materials microstructures were successfully fabricated on fused silica substrates. Besides, this approach was extended to the functionalization of optical fibers for optical sensing applications in harsh environment (1000 °C). Compared to organic or organic-inorganic materials, these dense silica-based glasses with enhanced optical and structural properties will open new avenues for the development of emerging advanced optical components.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"206 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1016/j.mtadv.2024.100501
Rongxin Wang, Zhichao Lin, Xinhua Ouyang
{"title":"Tailoring the permittivity of passivated dyes to achieve stable and efficient perovskite solar cells with modulated defects","authors":"Rongxin Wang, Zhichao Lin, Xinhua Ouyang","doi":"10.1016/j.mtadv.2024.100501","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100501","url":null,"abstract":"","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"23 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weak Li-O bonds and small grains enable fast ion diffusion and electron transport for LiFePO4 cathode","authors":"Han-xin Wei, Dao-fa Ying, Jing-ju Liu, Yang Lv, Yu-tao Liu, Jiang-feng Wang, Xuan-lin Gong, Mu-yang Zhou, Zuo-sheng Li, Kuo Chen, Luo-jia Chen, Chuan-ping Wu, Bao-hui Chen","doi":"10.1016/j.mtadv.2024.100502","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100502","url":null,"abstract":"","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"39 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.1016/j.mtadv.2024.100498
Thalita Maysha Herninda, Zi-Ying Chen, Ching-Hwa Ho
Band gap engineering is crucial in the development of two-dimensional layered materials in nanoelectronics, optoelectronics, and photonics fields. In this study, we present characteristics of layered SnSSe (0 ≤ x ≤ 1) ternary alloys grown via chemical vapor transport (CVT) with tunable compositions. Polarized micro-Raman spectroscopy shows the existence of intralayer E and A modes in all the compositions. The A mode demonstrates a pronounced resonant intensity, whilst the E mode is significantly weaker. In the ternary compositions, two groups of E and A modes undergo shift, reflecting lattice and bond transitions from S-rich to Se-rich compositions. Micro-thermoreflectance and optical transmission spectroscopy reveal tunable optical properties consistent with the alloy-composition change. All samples exhibit a single band-edge transition peak, shifting from 1.3 eV (for pure SnSe) to 2.3 eV (for pure SnS), indicating high-quality alloy nanosheets of SnSSe. The optical and electrical applications, such as photodegradation, photoconductivity, and thermoelectric performance are also explored. The alteration in selenium composition within SnSSe is observed to significantly influence potential applications of the materials. The materials with a predominant selenium composition exhibit superior electrical and thermoelectric properties, whereas those with a sulfur-dominant composition manifest enhanced optical characteristics. The engineered 2D structures presents promising opportunities for investigating their fundamental physical properties and also exploring their wide-range applications in electronic and optoelectronic devices, as well as in the field of energy and photocatalytic application.
带隙工程对于二维层状材料在纳米电子学、光电子学和光子学领域的发展至关重要。在本研究中,我们介绍了通过化学气相传输(CVT)生长的具有可调成分的层状 SnSSe(0 ≤ x ≤ 1)三元合金的特性。偏振微拉曼光谱显示,在所有成分中都存在层内 E 和 A 模式。A 模式具有明显的共振频率,而 E 模式则明显较弱。在三元成分中,两组 E 和 A 模式发生了转变,反映了从富 S 成分到富 Se 成分的晶格和键的转变。显微热反射光谱和透射光谱显示了与合金成分变化相一致的可调光学特性。所有样品都显示出单个带边转变峰,从 1.3 eV(纯 SnSe)转变到 2.3 eV(纯 SnS),表明了高质量的 SnSSe 合金纳米片。此外,还探讨了光降解、光导和热电性能等光学和电学应用。据观察,SnSSe 中硒成分的变化会对材料的潜在应用产生重大影响。硒成分占主导地位的材料具有优异的电学和热电性能,而硫成分占主导地位的材料则具有更强的光学特性。这种工程二维结构为研究其基本物理性质以及探索其在电子和光电设备、能源和光催化应用领域的广泛应用提供了大好机会。
{"title":"Structural, optical and electrical properties in multilayer SnS2(1-x)Se2(x) compounds for energy, thermoelectric and photocatalytic application","authors":"Thalita Maysha Herninda, Zi-Ying Chen, Ching-Hwa Ho","doi":"10.1016/j.mtadv.2024.100498","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100498","url":null,"abstract":"Band gap engineering is crucial in the development of two-dimensional layered materials in nanoelectronics, optoelectronics, and photonics fields. In this study, we present characteristics of layered SnSSe (0 ≤ x ≤ 1) ternary alloys grown via chemical vapor transport (CVT) with tunable compositions. Polarized micro-Raman spectroscopy shows the existence of intralayer E and A modes in all the compositions. The A mode demonstrates a pronounced resonant intensity, whilst the E mode is significantly weaker. In the ternary compositions, two groups of E and A modes undergo shift, reflecting lattice and bond transitions from S-rich to Se-rich compositions. Micro-thermoreflectance and optical transmission spectroscopy reveal tunable optical properties consistent with the alloy-composition change. All samples exhibit a single band-edge transition peak, shifting from 1.3 eV (for pure SnSe) to 2.3 eV (for pure SnS), indicating high-quality alloy nanosheets of SnSSe. The optical and electrical applications, such as photodegradation, photoconductivity, and thermoelectric performance are also explored. The alteration in selenium composition within SnSSe is observed to significantly influence potential applications of the materials. The materials with a predominant selenium composition exhibit superior electrical and thermoelectric properties, whereas those with a sulfur-dominant composition manifest enhanced optical characteristics. The engineered 2D structures presents promising opportunities for investigating their fundamental physical properties and also exploring their wide-range applications in electronic and optoelectronic devices, as well as in the field of energy and photocatalytic application.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"160 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.1016/j.mtadv.2024.100497
Muhammad Raies Abdullah, Zhen Peng
{"title":"“ Review and perspective on additive manufacturing of refractory high entropy alloys”","authors":"Muhammad Raies Abdullah, Zhen Peng","doi":"10.1016/j.mtadv.2024.100497","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100497","url":null,"abstract":"","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"18 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1016/j.mtadv.2024.100493
Geoffrey Rivers, Anna Lion, Nur Rofiqoh Eviana Putri, Graham A. Rance, Cara Moloney, Vincenzo Taresco, Valentina Cuzzucoli Crucitti, Hannah Constantin, Maria Inês Evangelista Barreiros, Laura Ruiz Cantu, Christopher J. Tuck, Felicity R.A.J. Rose, Richard J.M. Hague, Clive J. Roberts, Lyudmila Turyanska, Ricky D. Wildman, Yinfeng He
Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing enables the precise deposition (10–80 μm) of multiple materials, which permits integration of precise doses with tailored release rates; in the meanwhile, this technique has demonstrated its capability of high-volume personalised production. In this paper we demonstrate how two dissimilar materials, one water soluble and one insoluble, can be co-printed within a design envelope to dial up a range of release rates including slow (0.98 ± 0.04 mg/min), fast (4.07 ± 0.25 mg/min) and multi-stepped (2.17 ± 0.04 mg/min then 0.70 ± 0.13 mg/min) dissolution curves. To achieve this, we adopted poly-4-acryloylmorpholine (poly-ACMO) as a new photocurable water-soluble carrier and demonstrated its contemporaneous deposition with an insoluble monomer. The water soluble ACMO formulation with aspirin incorporated was successfully printed and cured under UV light and a wide variety of shapes with material distributions that control drug elution was successfully fabricated by inkjet based 3D printing technique, suggesting its viability as a future personalised solid dosage form fabrication routine.
{"title":"Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient","authors":"Geoffrey Rivers, Anna Lion, Nur Rofiqoh Eviana Putri, Graham A. Rance, Cara Moloney, Vincenzo Taresco, Valentina Cuzzucoli Crucitti, Hannah Constantin, Maria Inês Evangelista Barreiros, Laura Ruiz Cantu, Christopher J. Tuck, Felicity R.A.J. Rose, Richard J.M. Hague, Clive J. Roberts, Lyudmila Turyanska, Ricky D. Wildman, Yinfeng He","doi":"10.1016/j.mtadv.2024.100493","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100493","url":null,"abstract":"Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing enables the precise deposition (10–80 μm) of multiple materials, which permits integration of precise doses with tailored release rates; in the meanwhile, this technique has demonstrated its capability of high-volume personalised production. In this paper we demonstrate how two dissimilar materials, one water soluble and one insoluble, can be co-printed within a design envelope to dial up a range of release rates including slow (0.98 ± 0.04 mg/min), fast (4.07 ± 0.25 mg/min) and multi-stepped (2.17 ± 0.04 mg/min then 0.70 ± 0.13 mg/min) dissolution curves. To achieve this, we adopted poly-4-acryloylmorpholine (poly-ACMO) as a new photocurable water-soluble carrier and demonstrated its contemporaneous deposition with an insoluble monomer. The water soluble ACMO formulation with aspirin incorporated was successfully printed and cured under UV light and a wide variety of shapes with material distributions that control drug elution was successfully fabricated by inkjet based 3D printing technique, suggesting its viability as a future personalised solid dosage form fabrication routine.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"5 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1016/j.mtadv.2024.100495
D. Errandonea, H.H.H. Osman, R. Turnbull, D. Diaz-Anichtchenko, A. Liang, J. Sanchez-Martin, C. Popescu, D. Jiang, H. Song, Y. Wang, F.J. Manjon
In this work, we report evidence of pressure-induced changes in the crystal structure of Sr(IO)HIO connected to changes the coordination of the iodine atom and the of the configuration of HIO and IO units. The changes favor iodine hypercoordination and happen in two steps on sample compression. Firstly, at 2.5 GPa, [HIO]·[IO] complexes are formed, and secondly, at 4.5 GPa, these complexes form dimers of [HIO]·[IO]·[IO]·[HIO]. The evidence is obtained from a combined experimental and theoretical study performed up to 20 GPa. Synchrotron powder X-ray diffraction, Raman spectroscopy, and optical-absorption experiments have been complemented with density-functional theory calculations, including the study of the topology of the electron density. The changes observed in the crystal structure are related to the transformation of secondary (halogen) bonds into electron-deficient multicenter bonds. The paper also discusses the effect of pressure on the compressibility of the Sr(IO)HIO crystal structure, its phonons, the electronic band gap, and the refractive index. Sr(IO)HIO was found to be highly compressible with an anisotropic compressibility. The softening of the internal I–O vibrations of IO units was also observed, together with a decrease of the band-gap energy (from 4.1 eV at 0 GPa to 3.7 eV at 20 GPa), a band-gap crossing, and a change in the topology of the band structure, with Sr(IO)HIO transforming from a direct gap semiconductor at 0 GPa to an indirect gap semiconductor beyond 6 GPa.
{"title":"Pressure-induced hypercoordination of iodine and dimerization of I2O6H in strontium di-iodate hydrogen-iodate (Sr(IO3)2HIO3)","authors":"D. Errandonea, H.H.H. Osman, R. Turnbull, D. Diaz-Anichtchenko, A. Liang, J. Sanchez-Martin, C. Popescu, D. Jiang, H. Song, Y. Wang, F.J. Manjon","doi":"10.1016/j.mtadv.2024.100495","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100495","url":null,"abstract":"In this work, we report evidence of pressure-induced changes in the crystal structure of Sr(IO)HIO connected to changes the coordination of the iodine atom and the of the configuration of HIO and IO units. The changes favor iodine hypercoordination and happen in two steps on sample compression. Firstly, at 2.5 GPa, [HIO]·[IO] complexes are formed, and secondly, at 4.5 GPa, these complexes form dimers of [HIO]·[IO]·[IO]·[HIO]. The evidence is obtained from a combined experimental and theoretical study performed up to 20 GPa. Synchrotron powder X-ray diffraction, Raman spectroscopy, and optical-absorption experiments have been complemented with density-functional theory calculations, including the study of the topology of the electron density. The changes observed in the crystal structure are related to the transformation of secondary (halogen) bonds into electron-deficient multicenter bonds. The paper also discusses the effect of pressure on the compressibility of the Sr(IO)HIO crystal structure, its phonons, the electronic band gap, and the refractive index. Sr(IO)HIO was found to be highly compressible with an anisotropic compressibility. The softening of the internal I–O vibrations of IO units was also observed, together with a decrease of the band-gap energy (from 4.1 eV at 0 GPa to 3.7 eV at 20 GPa), a band-gap crossing, and a change in the topology of the band structure, with Sr(IO)HIO transforming from a direct gap semiconductor at 0 GPa to an indirect gap semiconductor beyond 6 GPa.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"68 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}