首页 > 最新文献

Materials Today Advances最新文献

英文 中文
Synergistic actuation performance of artificial fern muscle with a double nanocarbon structure 具有双纳米碳结构的人造蕨肌的协同致动性能
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-12-22 DOI: 10.1016/j.mtadv.2023.100459
Chae-Lin Park, Byeonghwa Goh, Keon Jung Kim, Seongjae Oh, Dongseok Suh, Young-Chul Song, Hyun Kim, Eun Sung Kim, Habeom Lee, Dong Wook Lee, Joonmyung Choi, Shi Hyeong Kim

Electrochemically powered carbon nanotube (CNT) yarn muscles are of increasing interest because of their advantageous features as artificial muscles. They are light, and have high electrical properties, mechanical strength, and chemical stability. Twist-based CNT yarn muscles show superior actuation performance: 30 times the work capacity and 85 times the power density of natural muscles. Despite achieving these high performances, there is still potential for performance improvement because their twisted structure is not fully utilized. In particular, designing a cross-sectional structure that allows ions to freely enter and exit the twisted structure of the yarn muscle is necessary. Here, we propose highly enhanced artificial muscles with high chemical stability that consist of only nanocarbon materials of carbon nanoscroll (CNS) and twisted CNT yarns. The CNS/CNT yarn muscles (CCYM) can improve the ion accessibility and utilization of the twist structure. The maximum contractile stroke, work capacity, power density, and energy conversion efficiency of the CCYM were 20.11%, 2.26 J g−1, 0.53 W g−1, and 3.39%, which are 1.4-, 1.4-, 4.8, and 4.3 times that of the pristine CNT yarn muscles, respectively. The effects of CNS on CCYM were confirmed by experimental and theoretical analyses. Additionally, in a solid electrolyte, which opens up new application possibilities, the CCYM demonstrates high actuation performance (16.38%) with very low input energy.

电化学驱动的碳纳米管(CNT)纱线肌肉因其作为人造肌肉的优势特性而越来越受到关注。它们重量轻,具有较高的电气性能、机械强度和化学稳定性。扭转式碳纳米管纱线肌肉显示出卓越的驱动性能:其工作能力是天然肌肉的 30 倍,功率密度是天然肌肉的 85 倍。尽管实现了这些高性能,但由于其扭曲结构未得到充分利用,因此仍有提高性能的潜力。特别是,有必要设计一种横截面结构,使离子能够自由进出纱线肌肉的扭曲结构。在此,我们提出了具有高化学稳定性的高度增强型人工肌肉,这种肌肉仅由纳米碳材料碳纳米卷(CNS)和扭曲的 CNT 纱线组成。这种 CNS/CNT 纱线肌肉(CCYM)能提高离子的可及性和捻线结构的利用率。CCYM的最大收缩冲程、做功能力、功率密度和能量转换效率分别为20.11%、2.26 J g-1、0.53 W g-1和3.39%,分别是原始CNT纱线肌肉的1.4倍、1.4倍、4.8倍和4.3倍。实验和理论分析证实了 CNS 对 CCYM 的影响。此外,在固态电解质中,CCYM 以极低的输入能量实现了很高的致动性能(16.38%),这开辟了新的应用前景。
{"title":"Synergistic actuation performance of artificial fern muscle with a double nanocarbon structure","authors":"Chae-Lin Park, Byeonghwa Goh, Keon Jung Kim, Seongjae Oh, Dongseok Suh, Young-Chul Song, Hyun Kim, Eun Sung Kim, Habeom Lee, Dong Wook Lee, Joonmyung Choi, Shi Hyeong Kim","doi":"10.1016/j.mtadv.2023.100459","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100459","url":null,"abstract":"<p>Electrochemically powered carbon nanotube (CNT) yarn muscles are of increasing interest because of their advantageous features as artificial muscles. They are light, and have high electrical properties, mechanical strength, and chemical stability. Twist-based CNT yarn muscles show superior actuation performance: 30 times the work capacity and 85 times the power density of natural muscles. Despite achieving these high performances, there is still potential for performance improvement because their twisted structure is not fully utilized. In particular, designing a cross-sectional structure that allows ions to freely enter and exit the twisted structure of the yarn muscle is necessary. Here, we propose highly enhanced artificial muscles with high chemical stability that consist of only nanocarbon materials of carbon nanoscroll (CNS) and twisted CNT yarns. The CNS/CNT yarn muscles (CCYM) can improve the ion accessibility and utilization of the twist structure. The maximum contractile stroke, work capacity, power density, and energy conversion efficiency of the CCYM were 20.11%, 2.26 J g<sup>−1</sup>, 0.53 W g<sup>−1</sup>, and 3.39%, which are 1.4-, 1.4-, 4.8, and 4.3 times that of the pristine CNT yarn muscles, respectively. The effects of CNS on CCYM were confirmed by experimental and theoretical analyses. Additionally, in a solid electrolyte, which opens up new application possibilities, the CCYM demonstrates high actuation performance (16.38%) with very low input energy.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139035381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated thermal property mapping of TRISO advanced nuclear fuel 加速绘制 TRISO 高级核燃料的热性能图
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-12-09 DOI: 10.1016/j.mtadv.2023.100455
Michael Moorehead, Zilong Hua, Kevin Vallejo, Geoffrey Leonard Beausoleil II, Amey Khanolkar, Tyler Gerczak, Marat Khafizov, David Hurley

TRistructural ISOtropic (TRISO) fuel is a leading-edge nuclear fuel form representing a departure from the more traditional nuclear fuel forms utilized in the reactor fleet of today. Rather than a monolithic fuel pellet of uranium dioxide, integral fuel forms containing TRISO fuel are composed of thousands of microencapsulated uranium-bearing fuel kernels and individually coated with multiple layers of pyrolytic carbon and silicon carbide. These multilayered ceramic coatings serve as an environmental barrier to ensure radioactive and chemically reactive fission products are contained within the reactor fuel elements, but also participate in the transfer of heat generated in the nuclear fuel to the coolant – the primary purpose of a nuclear reactor. Since traditional thermal property measurement techniques, such as laser flash analysis, would be unable to resolve the thermal properties of the individual TRISO coating layers, a simplified frequency-domain thermoreflectance technique has been developed to rapidly map the thermal properties of TRISO particles. Using this technique, the thermal properties of TRISO particles have been mapped from room temperature up to 1000 °C to examine the spatial variation and temperature-dependency of the thermal properties within each layer. Additionally, spatial-domain thermoreflectance was used to examine the anisotropy of the thermal properties for each layer at different locations within a single TRISO particle, and across multiple TRISO particles to assess the intra- and inter-particle uniformity of thermal properties, respectively. To elucidate the underlying causes for the measured variations in thermal properties, scanning electron microscopy and Raman spectroscopy were used to examine variations in microstructure and chemical bonding within the different coating layers. Results from this work are then compared with previous examinations of TRISO fuel particles and microstructurally driven mechanisms for the variations in the measured thermal properties of the different carbonaceous layers are discussed.

TRistructural ISOtropic(TRISO)燃料是一种先进的核燃料形式,不同于当今反应堆中使用的传统核燃料形式。含有 TRISO 燃料的整体燃料形式不是由二氧化铀组成的整体燃料颗粒,而是由成千上万个微囊化的含铀燃料颗粒组成,并分别涂有多层热解碳和碳化硅涂层。这些多层陶瓷涂层起到环境屏障的作用,确保放射性和化学反应裂变产物被控制在反应堆燃料元件内,同时也参与将核燃料中产生的热量传递到冷却剂中--这是核反应堆的主要目的。由于激光闪光分析等传统热特性测量技术无法解析单个 TRISO 涂层层的热特性,因此开发了一种简化的频域热反射技术,用于快速绘制 TRISO 粒子的热特性图。利用这种技术,我们绘制了从室温到 1000 °C 的 TRISO 颗粒热特性图,以研究每层内热特性的空间变化和温度依赖性。此外,还利用空间域热反射法研究了单个 TRISO 颗粒内不同位置各层热特性的各向异性,以及多个 TRISO 颗粒之间的热特性各向异性,以分别评估颗粒内和颗粒间热特性的均匀性。为了阐明所测得的热性能变化的根本原因,使用了扫描电子显微镜和拉曼光谱来检查不同涂层内微观结构和化学键的变化。然后将这项工作的结果与以前对 TRISO 燃料颗粒的研究结果进行了比较,并讨论了不同碳质层热性能测量变化的微观结构驱动机制。
{"title":"Accelerated thermal property mapping of TRISO advanced nuclear fuel","authors":"Michael Moorehead, Zilong Hua, Kevin Vallejo, Geoffrey Leonard Beausoleil II, Amey Khanolkar, Tyler Gerczak, Marat Khafizov, David Hurley","doi":"10.1016/j.mtadv.2023.100455","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100455","url":null,"abstract":"<p>TRistructural ISOtropic (TRISO) fuel is a leading-edge nuclear fuel form representing a departure from the more traditional nuclear fuel forms utilized in the reactor fleet of today. Rather than a monolithic fuel pellet of uranium dioxide, integral fuel forms containing TRISO fuel are composed of thousands of microencapsulated uranium-bearing fuel kernels and individually coated with multiple layers of pyrolytic carbon and silicon carbide. These multilayered ceramic coatings serve as an environmental barrier to ensure radioactive and chemically reactive fission products are contained within the reactor fuel elements, but also participate in the transfer of heat generated in the nuclear fuel to the coolant – the primary purpose of a nuclear reactor. Since traditional thermal property measurement techniques, such as laser flash analysis, would be unable to resolve the thermal properties of the individual TRISO coating layers, a simplified frequency-domain thermoreflectance technique has been developed to rapidly map the thermal properties of TRISO particles. Using this technique, the thermal properties of TRISO particles have been mapped from room temperature up to 1000 °C to examine the spatial variation and temperature-dependency of the thermal properties within each layer. Additionally, spatial-domain thermoreflectance was used to examine the anisotropy of the thermal properties for each layer at different locations within a single TRISO particle, and across multiple TRISO particles to assess the intra- and inter-particle uniformity of thermal properties, respectively. To elucidate the underlying causes for the measured variations in thermal properties, scanning electron microscopy and Raman spectroscopy were used to examine variations in microstructure and chemical bonding within the different coating layers. Results from this work are then compared with previous examinations of TRISO fuel particles and microstructurally driven mechanisms for the variations in the measured thermal properties of the different carbonaceous layers are discussed.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A flexible adhesive hydrogel dressing of embedded structure with pro-angiogenesis activity for wound repair at moving parts inspired by commercial adhesive bandages 受商业绷带的启发,一种具有促进血管生成活性的嵌入式结构的柔性胶粘剂水凝胶敷料,用于活动部位的伤口修复
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-12-06 DOI: 10.1016/j.mtadv.2023.100452
Xingling Jian, Huajun Wang, Xingming Jian, Yanfen Zou, Bin Jiang, Chaofeng Chen, Jiang Guo, Wenqiang Li, Bo Yu

Compared with the wound in the flat part of human body, the repair of the wound in the joint, armpit and other frequently moving parts is still a complex problem. Although many flexible and adhesive hydrogel dressings for the repair of wounds at moving parts have been developed, in order to improve their flexibility and adhesion, most hydrogel dressings use synthetic polymers and natural polymers to form composite hydrogels, which greatly reduces their biocompatibility and bioactivity compared with a single natural polymer hydrogel. They can only passively provide a barrier to the wound and the process of wound repair is slow, which seriously hinders their further application. Inspired by commercial adhesive bandages, we have successfully constructed a flexible adhesive hydrogel dressing of embedded structure with pro-angiogenesis activity. The hydrogel was prepared by the adhesive and non-adhesive parts by topological adhesion and molecular entanglement. Due to the high-density hydrogen bonding, hydrogels possessed good adhesion and flexibility, which allowed them to repair wounds of moving parts successfully. In addition, the non-adhesive part loaded with exosomes was directly in contact with the wound, minimizing the stimulation of the wound tissue by cytotoxic materials, and continuously releasing active substances to promote vascular regeneration. This biocompatible flexible and adhesive hydrogel dressing with pro-angiogenesis activity shows strong potential in wound tissue remodeling, providing a new strategy for the treatment of moving parts or sensitive wound parts.

与人体扁平部位的伤口相比,关节、腋窝等活动频繁部位伤口的修复仍然是一个复杂的问题。虽然目前已经开发出了许多用于活动部位伤口修复的柔性、粘连性水凝胶敷料,但为了提高其柔韧性和粘连性,大多数水凝胶敷料采用合成聚合物和天然聚合物组成复合水凝胶,与单一的天然聚合物水凝胶相比,其生物相容性和生物活性大大降低。它们只能被动地为伤口提供屏障,伤口修复过程缓慢,严重阻碍了它们的进一步应用。受商业胶粘绷带的启发,我们成功地构建了一种具有促血管生成活性的嵌入式柔性胶粘水凝胶敷料。通过拓扑黏附和分子缠结的方法制备了水凝胶。由于高密度的氢键,水凝胶具有良好的粘附性和柔韧性,可以成功地修复运动部件的伤口。此外,装载外泌体的非粘附部分直接与创面接触,最大限度地减少了细胞毒性物质对创面组织的刺激,并不断释放活性物质促进血管再生。这种具有促血管生成活性的生物相容性柔韧性和黏附性水凝胶敷料在伤口组织重塑中显示出强大的潜力,为活动部位或敏感部位的治疗提供了一种新的策略。
{"title":"A flexible adhesive hydrogel dressing of embedded structure with pro-angiogenesis activity for wound repair at moving parts inspired by commercial adhesive bandages","authors":"Xingling Jian, Huajun Wang, Xingming Jian, Yanfen Zou, Bin Jiang, Chaofeng Chen, Jiang Guo, Wenqiang Li, Bo Yu","doi":"10.1016/j.mtadv.2023.100452","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100452","url":null,"abstract":"<p>Compared with the wound in the flat part of human body, the repair of the wound in the joint, armpit and other frequently moving parts is still a complex problem. Although many flexible and adhesive hydrogel dressings for the repair of wounds at moving parts have been developed, in order to improve their flexibility and adhesion, most hydrogel dressings use synthetic polymers and natural polymers to form composite hydrogels, which greatly reduces their biocompatibility and bioactivity compared with a single natural polymer hydrogel. They can only passively provide a barrier to the wound and the process of wound repair is slow, which seriously hinders their further application. Inspired by commercial adhesive bandages, we have successfully constructed a flexible adhesive hydrogel dressing of embedded structure with pro-angiogenesis activity. The hydrogel was prepared by the adhesive and non-adhesive parts by topological adhesion and molecular entanglement. Due to the high-density hydrogen bonding, hydrogels possessed good adhesion and flexibility, which allowed them to repair wounds of moving parts successfully. In addition, the non-adhesive part loaded with exosomes was directly in contact with the wound, minimizing the stimulation of the wound tissue by cytotoxic materials, and continuously releasing active substances to promote vascular regeneration. This biocompatible flexible and adhesive hydrogel dressing with pro-angiogenesis activity shows strong potential in wound tissue remodeling, providing a new strategy for the treatment of moving parts or sensitive wound parts.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D metallic vanadium dichalcogenides and related heterostructures 二维金属二硫化物钒及其异质结构
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-12-02 DOI: 10.1016/j.mtadv.2023.100451
Mongur Hossain, Hongmei Zhang, Ying Huangfu, Muhammad Zeeshan Saeed, Biao Qin, Dominik Bloos, Xidong Duan

Two-dimensional (2D) metallic transition metal dichalcogenides (TMDs) have garnered significant attention as promising candidates for various applications, including electronics, spintronics, and energy-related fields. Their appeal lies in their exceptional electronic conductivity, room-temperature ferromagnetism, charge density wave (CDW) phenomena, and catalytic properties, among other attributes. Among the diverse array of metallic TMDs, vanadium dichalcogenides (VX2, X = S, Se, and Te) stand out due to their distinctive set of physical and chemical properties. These properties have positioned VX2 materials at the forefront of both fundamental research and technological exploration in fields such as condensed matter physics, materials science, and device physics. In this comprehensive review, we present a thorough investigation of the recent advancements in 2D metallic VX2 materials and related heterostructures in the aspects of their structures, fabrication methods, key properties, and potential applications. First, the electronic and crystal structures of 2D VX2 are introduced. Second, the growth methods of VX2 and their heterostructures are discussed. Then, the novel physical properties and potential applications of 2D VX2 and its heterostructures are highlighted. Finally, we assess the current state of development in this growing field, acknowledging the obstacles ahead and the promising avenues for future research.

二维(2D)金属过渡金属二硫族化物(TMDs)作为各种应用的有前途的候选者,包括电子,自旋电子学和能源相关领域,已经引起了人们的极大关注。它们的吸引力在于其卓越的电子导电性、室温铁磁性、电荷密度波(CDW)现象和催化性能等特性。在各种各样的金属tmd中,二硫化物钒(VX2, X = S, Se和Te)因其独特的物理和化学性质而脱颖而出。这些特性使VX2材料处于凝聚态物理、材料科学和器件物理等领域基础研究和技术探索的前沿。本文对二维金属VX2材料及其异质结构的结构、制备方法、关键性能和应用前景等方面的研究进展进行了综述。首先介绍了二维VX2的电子结构和晶体结构。其次,讨论了VX2及其异质结构的生长方法。然后,重点介绍了二维VX2及其异质结构的新物理性质和潜在应用。最后,我们评估了这个不断发展的领域的发展现状,承认前方的障碍和未来研究的有希望的途径。
{"title":"2D metallic vanadium dichalcogenides and related heterostructures","authors":"Mongur Hossain, Hongmei Zhang, Ying Huangfu, Muhammad Zeeshan Saeed, Biao Qin, Dominik Bloos, Xidong Duan","doi":"10.1016/j.mtadv.2023.100451","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100451","url":null,"abstract":"<p>Two-dimensional (2D) metallic transition metal dichalcogenides (TMDs) have garnered significant attention as promising candidates for various applications, including electronics, spintronics, and energy-related fields. Their appeal lies in their exceptional electronic conductivity, room-temperature ferromagnetism, charge density wave (CDW) phenomena, and catalytic properties, among other attributes. Among the diverse array of metallic TMDs, vanadium dichalcogenides (VX<sub>2</sub>, X = S, Se, and Te) stand out due to their distinctive set of physical and chemical properties. These properties have positioned VX<sub>2</sub> materials at the forefront of both fundamental research and technological exploration in fields such as condensed matter physics, materials science, and device physics. In this comprehensive review, we present a thorough investigation of the recent advancements in 2D metallic VX<sub>2</sub> materials and related heterostructures in the aspects of their structures, fabrication methods, key properties, and potential applications. First, the electronic and crystal structures of 2D VX<sub>2</sub> are introduced. Second, the growth methods of VX<sub>2</sub> and their heterostructures are discussed. Then, the novel physical properties and potential applications of 2D VX<sub>2</sub> and its heterostructures are highlighted. Finally, we assess the current state of development in this growing field, acknowledging the obstacles ahead and the promising avenues for future research.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triethylsilane introduced precursor engineering towards efficient and stable perovskite solar cells 三乙基硅烷引入了高效稳定的钙钛矿太阳能电池前驱体工程
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-12-02 DOI: 10.1016/j.mtadv.2023.100449
Yuanmei Huang, Wencai Zhou, Huaying Zhong, Wei Chen, Guoping Yu, Wenjie Zhang, Shuanglin Wang, Yujie Sui, Xin Yang, Yu Zhuang, Jun Tang, Leifeng Cao, Peter Müller-Buschbaum, Abuduwayiti Aierken, Peigang Han, Zeguo Tang

Perovskite solar cells (PSCs) are believed to be optimistic for commercial deployment soon since the power conversion efficiency of PSCs presently reaches up to 26.10 % due to the intensive efforts these years. The two-step method is comparatively more suitable for scalable perovskite films, where lead halides and ammonium salts are prepared in separate precursors and deposited sequentially. Therefore, the reactivity between these two precursors governs the quality of final perovskite films and the intrinsic non-radiative recombination (NRR) at the perovskite's interfaces. Herein, we empowered both types of precursors, one by one and then simultaneously, with triethylsilane (TES) to investigate its effect on the (FAPbI3)1-x (MAPbBr3)x perovskite's morphological and optoelectronic properties. TES, with ethyl moieties and metalloid center, in ammonium salts delivers homogeneous perovskites' crystals and inhibits the NRR of perovskite films by reducing the defects and trap states. As a result, the optimized devices exhibit not only improved device performance (particularly for the increased fill factors and open circuit voltages) but also enhanced stabilities.

经过多年的努力,钙钛矿太阳能电池(PSCs)的功率转换效率目前已达到26.10%,有望很快实现商业化应用。两步法相对更适合于可扩展的钙钛矿薄膜,其中卤化铅和铵盐在单独的前驱体中制备并依次沉积。因此,这两种前驱体之间的反应性决定了最终钙钛矿薄膜的质量和钙钛矿界面处的本征非辐射复合(NRR)。在本文中,我们将三乙基硅烷(TES)逐一并同时赋予这两种前体,以研究其对(FAPbI3)1-x (MAPbBr3)x钙钛矿的形态和光电子性质的影响。在铵盐中,具有乙基部分和类金属中心的TES可使钙钛矿晶体均匀化,并通过减少缺陷和陷阱态来抑制钙钛矿薄膜的NRR。因此,优化后的器件不仅表现出改进的器件性能(特别是对于增加的填充因子和开路电压),而且还增强了稳定性。
{"title":"Triethylsilane introduced precursor engineering towards efficient and stable perovskite solar cells","authors":"Yuanmei Huang, Wencai Zhou, Huaying Zhong, Wei Chen, Guoping Yu, Wenjie Zhang, Shuanglin Wang, Yujie Sui, Xin Yang, Yu Zhuang, Jun Tang, Leifeng Cao, Peter Müller-Buschbaum, Abuduwayiti Aierken, Peigang Han, Zeguo Tang","doi":"10.1016/j.mtadv.2023.100449","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100449","url":null,"abstract":"<p>Perovskite solar cells (PSCs) are believed to be optimistic for commercial deployment soon since the power conversion efficiency of PSCs presently reaches up to 26.10 % due to the intensive efforts these years. The two-step method is comparatively more suitable for scalable perovskite films, where lead halides and ammonium salts are prepared in separate precursors and deposited sequentially. Therefore, the reactivity between these two precursors governs the quality of final perovskite films and the intrinsic non-radiative recombination (NRR) at the perovskite's interfaces. Herein, we empowered both types of precursors, one by one and then simultaneously, with triethylsilane (TES) to investigate its effect on the (FAPbI<sub>3</sub>)<sub>1-x</sub> (MAPbBr<sub>3</sub>)<sub>x</sub> perovskite's morphological and optoelectronic properties. TES, with ethyl moieties and metalloid center, in ammonium salts delivers homogeneous perovskites' crystals and inhibits the NRR of perovskite films by reducing the defects and trap states. As a result, the optimized devices exhibit not only improved device performance (particularly for the increased fill factors and open circuit voltages) but also enhanced stabilities.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogel microneedle patch for treatment of liver fibrosis 水凝胶微针贴片治疗肝纤维化
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-12-01 DOI: 10.1016/j.mtadv.2023.100417
Xiangqian Gu, Zhaorong Wu, Duan Wu, Biao Hou, Linke Bian, Tao Zhou, Yuchen Hou, Hongye Wang, Zhigang Zheng
{"title":"Hydrogel microneedle patch for treatment of liver fibrosis","authors":"Xiangqian Gu, Zhaorong Wu, Duan Wu, Biao Hou, Linke Bian, Tao Zhou, Yuchen Hou, Hongye Wang, Zhigang Zheng","doi":"10.1016/j.mtadv.2023.100417","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100417","url":null,"abstract":"","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48468351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light emission, structure-phase evolution, and photocatalytic behavior in full-series multilayered GaTe1−xSx (0 ≤ x ≤ 1) with direct-transition edge 具有直接跃迁边缘的全系列多层GaTe1−xSx(0≤x≤1)的光发射、结构相演化和光催化行为
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-11-25 DOI: 10.1016/j.mtadv.2023.100450
Luthviyah Choirotul Muhimmah, Yu-Hung Peng, Ching-Hwa Ho

The crystal structures and optical properties of full-series multilayered GaTe1−xSx (0 ≤ x ≤ 1) are examined. The results reveal that the monoclinic (M) phase dominates for 0 ≤ x ≤ 0.4, and the hexagonal (H) phase dominates for 0.425 ≤ x ≤ 1. The full-series multilayer GaTe1−xSx exhibited strong photoluminescence. The emission range of M-GaTe1−xSx (0 ≤ x ≤ 0.4) layers displays 1.65–1.77 eV (700–750 nm) and that of the H-GaTe1−xSx (0 ≤ x ≤ 1) layers is 1.588–2.5 eV (496–780 nm). Micro-time-resolved photoluminescence (μTRPL) revealed that the M-phase had a shorter PL recombination lifetime than H-phase because the surface effect. The multilayer GaTe1−xSx (0 ≤ x ≤ 1) exhibited superior light emission and absorption capabilities for application in light-emitting and photocatalytic devices. The GaTe0.5S0.5 nanosheet photocatalyst demonstrated the best photocatalytic performance because its abundant surface state and mixed phases to enhance the photo-degradation ability.

研究了全系列多层GaTe1−xSx(0≤x≤1)的晶体结构和光学性能。结果表明:在0≤x≤0.4时,单斜相(M)占主导地位;在0.425≤x≤1时,六方相(H)占主导地位;全系列多层GaTe1−xSx表现出较强的光致发光。M-GaTe1−xSx(0≤x≤0.4)层的发射范围为1.65 ~ 1.77 eV (700 ~ 750nm), H-GaTe1−xSx(0≤x≤1)层的发射范围为1.588 ~ 2.5 eV (496 ~ 780nm)。微时间分辨光致发光(μTRPL)结果表明,由于表面效应,m相比h相具有更短的PL复合寿命。多层GaTe1−xSx(0≤x≤1)表现出优异的光发射和吸收能力,可用于发光和光催化器件。GaTe0.5S0.5纳米片光催化剂表现出最好的光催化性能,因为其丰富的表面态和混合相增强了光降解能力。
{"title":"Light emission, structure-phase evolution, and photocatalytic behavior in full-series multilayered GaTe1−xSx (0 ≤ x ≤ 1) with direct-transition edge","authors":"Luthviyah Choirotul Muhimmah, Yu-Hung Peng, Ching-Hwa Ho","doi":"10.1016/j.mtadv.2023.100450","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100450","url":null,"abstract":"<p>The crystal structures and optical properties of full-series multilayered GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 1) are examined. The results reveal that the monoclinic (M) phase dominates for 0 ≤ x ≤ 0.4, and the hexagonal (H) phase dominates for 0.425 ≤ x ≤ 1. The full-series multilayer GaTe<sub>1−x</sub>S<sub>x</sub> exhibited strong photoluminescence. The emission range of M-GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 0.4) layers displays 1.65–1.77 eV (700–750 nm) and that of the H-GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 1) layers is 1.588–2.5 eV (496–780 nm). Micro-time-resolved photoluminescence (μTRPL) revealed that the M-phase had a shorter PL recombination lifetime than H-phase because the surface effect. The multilayer GaTe<sub>1−x</sub>S<sub>x</sub> (0 ≤ x ≤ 1) exhibited superior light emission and absorption capabilities for application in light-emitting and photocatalytic devices. The GaTe<sub>0.5</sub>S<sub>0.5</sub> nanosheet photocatalyst demonstrated the best photocatalytic performance because its abundant surface state and mixed phases to enhance the photo-degradation ability.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superhydrophobic ZIF-67 with exceptional hydrostability 超疏水ZIF-67具有优异的水稳定性
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-11-22 DOI: 10.1016/j.mtadv.2023.100448
Fraz Saeed Butt, Muddasar Safdar, Allana Lewis, Nurul A. Mazlan, Norbert Radacsi, Xianfeng Fan, Harvey Arellano-García, Yi Huang

Zeolitic Imidazolate Framework-67 (ZIF-67) has been used in a variety of applications including catalysis, separations, and energy storage. However, the weak hydrostability of ZIF-67, due to structural hydrolysis and degradation, dramatically limits their applicability after aqueous exposure. In this work, cosolvent-stabilized superhydrophobic, highly hydrostable ZIF-67 was synthesized at room temperature using a facile, one-pot hydrothermal synthesis route, and the effect of cosolvent concentration on ZIF-67 crystal structure properties and hydrostability was studied systematically. The underlying mechanism for the cosolvent-supported hydrostability improvement was also proposed. Furthermore, the influence of hydrotreatment on the resultant ZIF-67s' catalytic performance was studied in the ‘Sabatier reaction’ for CO2 to synthetic natural gas (CH4) conversion. The ZIF-67-derived calcined catalysts obtained from the hydrotreated samples of the cosolvent-stabilized ZIF-67 exhibited no prominent loss in catalytic performance and showed better CO2 conversion, higher CH4 selectivity, and less CO production, in comparison to the conventional ZIF-67 samples. Notably, the use of a lower ligand-to-metal ratio (∼8) in the current synthesis significantly reduced the overall chemical consumption, achieving highly economically and environmentally friendly manufacturing of exceptionally hydrostable ZIF-67.

分子筛咪唑酸框架-67 (ZIF-67)已被广泛应用于催化、分离和储能等领域。然而,由于结构水解和降解,ZIF-67的水稳定性较弱,极大地限制了其在水暴露后的适用性。本文采用简单的一锅水热合成方法,在室温下合成了助溶剂稳定的超疏水、高水稳定性的ZIF-67,并系统地研究了助溶剂浓度对ZIF-67晶体结构性能和水稳定性的影响。提出了助溶剂支持下提高水稳定性的基本机理。在Sabatier反应中,研究了加氢处理对ZIF-67s催化CO2转化合成天然气(CH4)性能的影响。由助溶剂稳定的ZIF-67加氢处理样品得到的ZIF-67煅烧催化剂与传统的ZIF-67样品相比,没有明显的催化性能损失,具有更好的CO2转化率,更高的CH4选择性和更少的CO产量。值得注意的是,在目前的合成中使用了较低的配体与金属比例(~ 8),大大降低了总体化学消耗,实现了高度经济和环保的极具水稳定性的ZIF-67的制造。
{"title":"Superhydrophobic ZIF-67 with exceptional hydrostability","authors":"Fraz Saeed Butt, Muddasar Safdar, Allana Lewis, Nurul A. Mazlan, Norbert Radacsi, Xianfeng Fan, Harvey Arellano-García, Yi Huang","doi":"10.1016/j.mtadv.2023.100448","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100448","url":null,"abstract":"<p>Zeolitic Imidazolate Framework-67 (ZIF-67) has been used in a variety of applications including catalysis, separations, and energy storage. However, the weak hydrostability of ZIF-67, due to structural hydrolysis and degradation, dramatically limits their applicability after aqueous exposure. In this work, cosolvent-stabilized superhydrophobic, highly hydrostable ZIF-67 was synthesized at room temperature using a facile, one-pot hydrothermal synthesis route, and the effect of cosolvent concentration on ZIF-67 crystal structure properties and hydrostability was studied systematically. The underlying mechanism for the cosolvent-supported hydrostability improvement was also proposed. Furthermore, the influence of hydrotreatment on the resultant ZIF-67s' catalytic performance was studied in the ‘Sabatier reaction’ for CO<sub>2</sub> to synthetic natural gas (CH<sub>4</sub>) conversion. The ZIF-67-derived calcined catalysts obtained from the hydrotreated samples of the cosolvent-stabilized ZIF-67 exhibited no prominent loss in catalytic performance and showed better CO<sub>2</sub> conversion, higher CH<sub>4</sub> selectivity, and less CO production, in comparison to the conventional ZIF-67 samples. Notably, the use of a lower ligand-to-metal ratio (∼8) in the current synthesis significantly reduced the overall chemical consumption, achieving highly economically and environmentally friendly manufacturing of exceptionally hydrostable ZIF-67.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced α-CSH/β-TCP-based injectable paste with magnesium hydroxide and vitamin D-incorporated PLGA microspheres for bone repair 含氢氧化镁和含维生素d的PLGA微球的高级α-CSH/β- tcp注射糊剂用于骨修复
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-11-20 DOI: 10.1016/j.mtadv.2023.100447
Ji-Won Jung, Da-Seul Kim, Jun-Kyu Lee, Seung-Woon Baek, So-Yeon Park, Semi Lee, Jun Hyuk Kim, Dong Keun Han

With the development of minimally invasive approaches, calcium-based injectable bone paste has attracted attention as a synthetic alternative due to its biodegradability and analogous composition with native bone. However, this approach is associated with the problem of the materials being absorbed before new bone formation has occurred, with a high resorption, and degradation rate. Here, a poly(lactic-co-glycolic acid) (PLGA)/magnesium hydroxide (MH)/vitamin D (Vit D) microsphere-incorporated α-calcium sulfate hemihydrate (α-CSH)/beta-tricalcium phosphate (β-TCP) injectable paste was designed for the regeneration of bone tissue. The combination of the bioceramic particles with α-CSH demonstrated an appropriate setting time for ease of use in clinical practice and enhanced mechanical properties. Additionally, the introduction of a bone paste with the MH and Vit D-incorporated PLGA microsphere induced osteogenic differentiation and alleviated the inflammatory response, which may occur after massive bone surgery. Based on these findings, this paper presents a versatile bone paste that promotes osteogenesis and modulates the osteoimmune microenvironment for effective bone regeneration.

随着微创入路技术的发展,钙基可注射骨膏由于其生物可降解性和与天然骨相似的成分而受到人们的关注。然而,这种方法与材料在新骨形成之前被吸收的问题有关,具有高的吸收和降解率。本实验设计了一种聚乳酸-羟基乙酸(PLGA)/氢氧化镁(MH)/维生素D (Vit D)微球掺入α-半水合硫酸钙(α-CSH)/ β-磷酸三钙(β-TCP)可注射浆料用于骨组织再生。生物陶瓷颗粒与α-CSH的结合显示出合适的凝固时间,便于临床使用,并增强了力学性能。此外,引入含有MH和Vit d的PLGA微球的骨膏可诱导成骨分化并减轻大规模骨手术后可能发生的炎症反应。基于这些发现,本文提出了一种促进骨生成和调节骨免疫微环境的多功能骨膏,以实现有效的骨再生。
{"title":"Advanced α-CSH/β-TCP-based injectable paste with magnesium hydroxide and vitamin D-incorporated PLGA microspheres for bone repair","authors":"Ji-Won Jung, Da-Seul Kim, Jun-Kyu Lee, Seung-Woon Baek, So-Yeon Park, Semi Lee, Jun Hyuk Kim, Dong Keun Han","doi":"10.1016/j.mtadv.2023.100447","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100447","url":null,"abstract":"<p>With the development of minimally invasive approaches, calcium-based injectable bone paste has attracted attention as a synthetic alternative due to its biodegradability and analogous composition with native bone. However, this approach is associated with the problem of the materials being absorbed before new bone formation has occurred, with a high resorption, and degradation rate. Here, a poly(lactic-<em>co</em>-glycolic acid) (PLGA)/magnesium hydroxide (MH)/vitamin D (Vit D) microsphere-incorporated α-calcium sulfate hemihydrate (α-CSH)/beta-tricalcium phosphate (β-TCP) injectable paste was designed for the regeneration of bone tissue. The combination of the bioceramic particles with α-CSH demonstrated an appropriate setting time for ease of use in clinical practice and enhanced mechanical properties. Additionally, the introduction of a bone paste with the MH and Vit D-incorporated PLGA microsphere induced osteogenic differentiation and alleviated the inflammatory response, which may occur after massive bone surgery. Based on these findings, this paper presents a versatile bone paste that promotes osteogenesis and modulates the osteoimmune microenvironment for effective bone regeneration.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving the puzzle of hierarchical martensitic microstructures in NiTi by (111)-oriented epitaxial films 用(111)取向外延膜解决镍钛中分层马氏体微观结构难题
IF 1 2区 材料科学 Q1 Engineering Pub Date : 2023-11-18 DOI: 10.1016/j.mtadv.2023.100441
Klara Lünser, Andreas Undisz, Martin F.-X. Wagner, Kornelius Nielsch, Sebastian Fähler

The martensitic microstructure decides on the functional properties of shape memory alloys. However, for the most commonly used alloy, NiTi, it is still unclear how its microstructure is built up because the analysis is hampered by grain boundaries of polycrystalline samples. Here, we eliminate grain boundaries by using epitaxially grown films in (111)B2 orientation. By combining scale-bridging microscopy with integral inverse pole figures, we solve the puzzle of the hierarchical martensitic microstructure. We identify two martensite clusters as building blocks and three kinds of twin boundaries. Nesting them at different length scales explains why habit plane variants with 011B19' twin boundaries and {942} habit planes are dominant; but also some incompatible interfaces occur. Though the observed hierarchical microstructure agrees with the phenomenological theory of martensite, the transformation path decides which microstructure forms. The combination of local and global measurements with theory allows solving the scale bridging 3D puzzle of the martensitic microstructure in NiTi exemplarily for epitaxial films.

马氏体组织决定了形状记忆合金的功能性能。然而,对于最常用的合金NiTi,由于分析受到多晶样品晶粒边界的阻碍,其微观结构是如何建立的仍然不清楚。在这里,我们通过使用(111)B2取向的外延生长薄膜来消除晶界。将尺度桥接显微镜与积分反极图相结合,解决了马氏体分层显微结构的难题。我们确定了两种马氏体簇作为构建块和三种孪生边界。以不同的长度尺度嵌套它们解释了为什么⟨011⟩B19'双边界和{942}习惯面变体占主导地位;但也会出现一些不兼容的接口。虽然观察到的分层组织符合马氏体现象学理论,但相变路径决定了形成的微观组织。局部和全局测量与理论的结合可以解决镍钛中马氏体微观结构的尺度桥接3D难题,例如用于外延薄膜。
{"title":"Solving the puzzle of hierarchical martensitic microstructures in NiTi by (111)-oriented epitaxial films","authors":"Klara Lünser, Andreas Undisz, Martin F.-X. Wagner, Kornelius Nielsch, Sebastian Fähler","doi":"10.1016/j.mtadv.2023.100441","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100441","url":null,"abstract":"<p>The martensitic microstructure decides on the functional properties of shape memory alloys. However, for the most commonly used alloy, NiTi, it is still unclear how its microstructure is built up because the analysis is hampered by grain boundaries of polycrystalline samples. Here, we eliminate grain boundaries by using epitaxially grown films in (111)<sub>B2</sub> orientation. By combining scale-bridging microscopy with integral inverse pole figures, we solve the puzzle of the hierarchical martensitic microstructure. We identify two martensite clusters as building blocks and three kinds of twin boundaries. Nesting them at different length scales explains why habit plane variants with <span><math><msub is=\"true\"><mrow is=\"true\"><mo is=\"true\">⟨</mo><mn is=\"true\">011</mn><mo is=\"true\">⟩</mo></mrow><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">B</mi><msup is=\"true\"><mn is=\"true\">19</mn><mo is=\"true\">'</mo></msup></mrow></msub></math></span> twin boundaries and {942} habit planes are dominant; but also some incompatible interfaces occur. Though the observed hierarchical microstructure agrees with the phenomenological theory of martensite, the transformation path decides which microstructure forms. The combination of local and global measurements with theory allows solving the scale bridging 3D puzzle of the martensitic microstructure in NiTi exemplarily for epitaxial films.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":null,"pages":null},"PeriodicalIF":10.0,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Today Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1