首页 > 最新文献

Materials Today Advances最新文献

英文 中文
Non-resonant phase sensitive approach for time resolved microwave conductivity in photoactive thin films 用非共振相敏方法实现光活性薄膜的时间分辨微波传导性
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-07 DOI: 10.1016/j.mtadv.2024.100471
Jasleen K. Bindra, Pragya R. Shrestha, Sebastian Engmann, Chad D. Cruz, David J. Gundlach, Emily G. Bittle, Jason P. Campbell
Time-resolved microwave conductivity (TRMC) is a contactless technique utilized for the investigation of carrier density, transport properties, trapping phenomena, and recombination parameters in charge transport materials. Traditional TRMC methods rely on resonant cavities or resonators, which impose limitations on the frequency range and accuracy of measurements. In this study, we introduce an innovative approach that employs a non-resonant coplanar transmission line and a microwave interferometric detection scheme to investigate the phase-dependent complex microwave conductivity. Additionally, we demonstrate unique calibration techniques for determining the absolute complex microwave conductivity by combining transient photoconductivity (TPC) and electron spin resonance (ESR) as complementary methods. By utilizing a phase-sensitive microwave interferometer, our detection scheme significantly enhances measurement sensitivity and eliminates the need for a resonant cavity. This broadband detection system enables direct measurement of phase-dependent changes in film conductivity (Δσ). Moreover, it allows us to measure subtle variations in sample photoconductivity upon optical excitation and accommodates greatly restricted volumes (∼nL) consistent with typical device sizes. Here we demonstrate the utility of this technique on a series of poly(3-hexylthiophene) (P3HT) and the electron acceptor [6,6]-phenylC61-butyric acid methyl ester (PCBM) thin films with varying concentrations of PCBM and film thickness.
时间分辨微波传导性(TRMC)是一种非接触式技术,用于研究电荷传输材料中的载流子密度、传输特性、捕获现象和重组参数。传统的 TRMC 方法依赖于谐振腔或谐振器,这对频率范围和测量精度造成了限制。在本研究中,我们引入了一种创新方法,利用非谐振共面传输线和微波干涉仪检测方案来研究随相位变化的复合微波传导性。此外,我们还展示了独特的校准技术,通过结合瞬态光电导(TPC)和电子自旋共振(ESR)这两种互补方法来确定绝对复合微波电导率。通过利用相位敏感微波干涉仪,我们的检测方案大大提高了测量灵敏度,并且无需谐振腔。这种宽带检测系统可以直接测量薄膜电导率(Δσ)随相位的变化。此外,它还允许我们测量光激发时样品光电导率的微妙变化,并能容纳与典型器件尺寸一致的极小体积(∼nL)。在此,我们展示了该技术在一系列聚(3-己基噻吩)(P3HT)和电子受体 [6,6]-phenylC61-butyric acid methyl ester (PCBM) 薄膜上的应用,这些薄膜的 PCBM 浓度和厚度各不相同。
{"title":"Non-resonant phase sensitive approach for time resolved microwave conductivity in photoactive thin films","authors":"Jasleen K. Bindra, Pragya R. Shrestha, Sebastian Engmann, Chad D. Cruz, David J. Gundlach, Emily G. Bittle, Jason P. Campbell","doi":"10.1016/j.mtadv.2024.100471","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100471","url":null,"abstract":"Time-resolved microwave conductivity (TRMC) is a contactless technique utilized for the investigation of carrier density, transport properties, trapping phenomena, and recombination parameters in charge transport materials. Traditional TRMC methods rely on resonant cavities or resonators, which impose limitations on the frequency range and accuracy of measurements. In this study, we introduce an innovative approach that employs a non-resonant coplanar transmission line and a microwave interferometric detection scheme to investigate the phase-dependent complex microwave conductivity. Additionally, we demonstrate unique calibration techniques for determining the absolute complex microwave conductivity by combining transient photoconductivity (TPC) and electron spin resonance (ESR) as complementary methods. By utilizing a phase-sensitive microwave interferometer, our detection scheme significantly enhances measurement sensitivity and eliminates the need for a resonant cavity. This broadband detection system enables direct measurement of phase-dependent changes in film conductivity (Δσ). Moreover, it allows us to measure subtle variations in sample photoconductivity upon optical excitation and accommodates greatly restricted volumes (∼nL) consistent with typical device sizes. Here we demonstrate the utility of this technique on a series of poly(3-hexylthiophene) (P3HT) and the electron acceptor [6,6]-phenylC61-butyric acid methyl ester (PCBM) thin films with varying concentrations of PCBM and film thickness.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"35 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, synthesis, and progress of covalent organic frameworks (COFs)-based electrocatalysts for valorisation of biomass-derived platform chemicals 基于共价有机框架 (COF) 的电催化剂在生物质衍生平台化学品价值化方面的设计、合成与进展
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-07 DOI: 10.1016/j.mtadv.2024.100473
Changyu Weng, Hongmei Yuan, Lungang Chen, Xinghua Zhang, Qi Zhang, Longlong Ma, Jianguo Liu
The heavy reliance on fossil-based industries for basic chemicals not only contributes to severe global environmental problems but also hampers the sustainable development of the whole society. In addressing this issue, electrocatalysis utilizing biomass-derived platform chemicals provides a promising solution for the directed preparation of high-value chemicals. Among the various electrocatalysts, the remarkable appeal of COFs-based electrocatalysts has engendered great enthusiasm among researchers over the past decade due to the well-defined structure and large surface area of COFs. In this focused review, we highlight vital perspectives on the design, synthesis, and progress of COFs-based electrocatalysts in the electrocatalytic upgrading of biomass-derived platform chemicals. We provide a rational design of COFs-based electrocatalysts by incorporating metal species into the COFs frameworks and then regulate the local coordination environment and microstructure to facilitate efficient access to active centers, mass transportation, and electron transfer. This review offers a comprehensive understanding of the design principles underlying COFs-based electrocatalysts for platform molecules and its derivatives. Specifically, we thoroughly investigate the relationship between structure and performance, as well as synergistic effects within COFs-based electrocatalysts, aiming to shed light on the future design of next-generation electrocatalysts.
基础化学品的生产严重依赖化石燃料工业,这不仅造成了严重的全球环境问题,也阻碍了整个社会的可持续发展。为解决这一问题,利用生物质衍生平台化学品的电催化技术为定向制备高价值化学品提供了一种前景广阔的解决方案。在各种电催化剂中,基于 COFs 的电催化剂因其明确的结构和较大的比表面积,在过去十年中吸引了研究人员的极大热情。在这篇重点综述中,我们重点介绍了基于 COFs 的电催化剂在生物质衍生平台化学品电催化升级中的设计、合成和进展等方面的重要观点。我们通过在 COFs 框架中加入金属物种,然后调节局部配位环境和微结构来促进活性中心的有效访问、质量传输和电子转移,从而合理设计基于 COFs 的电催化剂。本综述全面介绍了基于 COFs 的平台分子及其衍生物电催化剂的设计原理。具体来说,我们深入研究了结构与性能之间的关系,以及基于 COFs 的电催化剂内部的协同效应,旨在为下一代电催化剂的未来设计提供启示。
{"title":"Design, synthesis, and progress of covalent organic frameworks (COFs)-based electrocatalysts for valorisation of biomass-derived platform chemicals","authors":"Changyu Weng, Hongmei Yuan, Lungang Chen, Xinghua Zhang, Qi Zhang, Longlong Ma, Jianguo Liu","doi":"10.1016/j.mtadv.2024.100473","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100473","url":null,"abstract":"The heavy reliance on fossil-based industries for basic chemicals not only contributes to severe global environmental problems but also hampers the sustainable development of the whole society. In addressing this issue, electrocatalysis utilizing biomass-derived platform chemicals provides a promising solution for the directed preparation of high-value chemicals. Among the various electrocatalysts, the remarkable appeal of COFs-based electrocatalysts has engendered great enthusiasm among researchers over the past decade due to the well-defined structure and large surface area of COFs. In this focused review, we highlight vital perspectives on the design, synthesis, and progress of COFs-based electrocatalysts in the electrocatalytic upgrading of biomass-derived platform chemicals. We provide a rational design of COFs-based electrocatalysts by incorporating metal species into the COFs frameworks and then regulate the local coordination environment and microstructure to facilitate efficient access to active centers, mass transportation, and electron transfer. This review offers a comprehensive understanding of the design principles underlying COFs-based electrocatalysts for platform molecules and its derivatives. Specifically, we thoroughly investigate the relationship between structure and performance, as well as synergistic effects within COFs-based electrocatalysts, aiming to shed light on the future design of next-generation electrocatalysts.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"140 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multistructured hydrogel promotes nerve regeneration 多结构水凝胶促进神经再生
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-07 DOI: 10.1016/j.mtadv.2024.100465
Ning Zhu, Yaping Zhuang, Wanju Sun, Juan Wang, Fan Wang, Xiaoyu Han, Zeyu Han, Ming Ni, Wenguo Cui, Yan Qiu
Hydrogels have emerged as promising biomaterials for nerve regeneration due to their adjustable properties, structural resemblance to the extracellular matrix, and ability to promote cell adhesion and proliferation. This comprehensive review discusses the advantages, challenges, and future directions of various functional hydrogels. Advanced technologies for fabricating Multistructured hydrogel, including injectable hydrogels, hydrogel microspheres, fibrous hydrogels, 3D printing hydrogels, nanogels, stem cell-loaded hydrogels, electrical hydrogels, ultrasound hydrogels, and magnetic hydrogels, have been developed and studied for nerve regeneration. These technologies demonstrate the versatility of hydrogels in neural tissue repair. However, challenges such as biocompatibility, degradation rates, and scaffold design need to be addressed. Interdisciplinary research is necessary to develop innovative hydrogel systems that overcome these challenges and realize the potential of hydrogels for nerve regeneration. This review provides valuable insights into advanced hydrogel technologies and highlights their potential in regenerative medicine, particularly in neural regeneration. Researchers can use this knowledge to refine therapeutic approaches involving hydrogels for enhancing nerve regeneration.
水凝胶具有可调节性、与细胞外基质结构相似以及促进细胞粘附和增殖的能力,因此已成为神经再生领域前景广阔的生物材料。本综述探讨了各种功能性水凝胶的优势、挑战和未来发展方向。目前已开发并研究了制造多结构水凝胶的先进技术,包括可注射水凝胶、水凝胶微球、纤维状水凝胶、三维打印水凝胶、纳米凝胶、干细胞负载水凝胶、电性水凝胶、超声波水凝胶和磁性水凝胶,用于神经再生。这些技术证明了水凝胶在神经组织修复方面的多功能性。然而,生物相容性、降解率和支架设计等挑战仍有待解决。有必要开展跨学科研究,以开发创新的水凝胶系统,克服这些挑战,实现水凝胶在神经再生方面的潜力。本综述提供了有关先进水凝胶技术的宝贵见解,并强调了它们在再生医学,尤其是神经再生方面的潜力。研究人员可以利用这些知识完善涉及水凝胶的治疗方法,以促进神经再生。
{"title":"Multistructured hydrogel promotes nerve regeneration","authors":"Ning Zhu, Yaping Zhuang, Wanju Sun, Juan Wang, Fan Wang, Xiaoyu Han, Zeyu Han, Ming Ni, Wenguo Cui, Yan Qiu","doi":"10.1016/j.mtadv.2024.100465","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100465","url":null,"abstract":"Hydrogels have emerged as promising biomaterials for nerve regeneration due to their adjustable properties, structural resemblance to the extracellular matrix, and ability to promote cell adhesion and proliferation. This comprehensive review discusses the advantages, challenges, and future directions of various functional hydrogels. Advanced technologies for fabricating Multistructured hydrogel, including injectable hydrogels, hydrogel microspheres, fibrous hydrogels, 3D printing hydrogels, nanogels, stem cell-loaded hydrogels, electrical hydrogels, ultrasound hydrogels, and magnetic hydrogels, have been developed and studied for nerve regeneration. These technologies demonstrate the versatility of hydrogels in neural tissue repair. However, challenges such as biocompatibility, degradation rates, and scaffold design need to be addressed. Interdisciplinary research is necessary to develop innovative hydrogel systems that overcome these challenges and realize the potential of hydrogels for nerve regeneration. This review provides valuable insights into advanced hydrogel technologies and highlights their potential in regenerative medicine, particularly in neural regeneration. Researchers can use this knowledge to refine therapeutic approaches involving hydrogels for enhancing nerve regeneration.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"35 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139925194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual functionality for hydrogen production and antibacterial activity in Zn-deficient Cu0.1Zn0.9O photocatalyst loaded with Ag nanoparticles of various sizes 不同尺寸银纳米颗粒负载的缺锌 Cu0.1Zn0.9O 光催化剂具有制氢和抗菌双重功能
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-07 DOI: 10.1016/j.mtadv.2024.100469
Hyunsub Shin, Sujeong Kim, Jaehun Lee, Harim Jeong, Sang Woo Joo, Chul-Tae Lee, Sun-Min Park, Misook Kang
This study aims to find an eco-friendly dual material to apply toward energy and antibacterial industry, and to identify their active sites. CuZnO nanoparticles (NPs) containing 10 % Cu ions into ZnO framework are synthesized using a facile hydrothermal method, and 10, 20, 30, or 40 nm-sized Ag NPs are loaded to obtain Ag@CuZnO particles. From the time-dependent increase in photocurrent density, it is confirmed that the Ag NPs has a photoelectron harvesting ability. Unlike ZnO and CuZnO, the Ag@CuZnO catalyst well splits water to generate hydrogen. Particularly, the catalyst loaded with 30 nm Ag NPs achieves the highest hydrogen production efficiency of 424.54 μmolg. This proves that the active sites generating hydrogen during water splitting are the Ag NP surfaces grafted onto the conduction band of the CuZnO particles. Contrastingly, antibacterial performances against are expressed in all samples of ZnO, CuZnO, and Ag@CuZnO. The antibacterial performance for the Ag NP-loaded sample slightly increases but it is not significant, indicating that the active site exhibiting the antibacterial activity is the hole of the valence band of CuZnO. In the end, this study revealed that the advantageous photocatalytic activity does not always express effective antibacterial activity because the active sites exhibiting photocatalytic and antibacterial properties may not be the same.
本研究旨在寻找一种环保的双重材料,应用于能源和抗菌工业,并确定其活性位点。研究采用简单的水热法合成了在 ZnO 框架中含有 10% Cu 离子的 CuZnO 纳米粒子(NPs),并负载了 10、20、30 或 40 nm 大小的 Ag NPs,得到 Ag@CuZnO 粒子。从光电流密度随时间增加的情况来看,Ag NPs 具有光电子收集能力。与 ZnO 和 CuZnO 不同,Ag@CuZnO 催化剂能很好地分裂水产生氢气。尤其是负载了 30 nm Ag NPs 的催化剂,制氢效率最高,达到 424.54 μmolg。这证明了在水分裂过程中产生氢气的活性位点是接枝在 CuZnO 颗粒导带上的 Ag NP 表面。相反,所有 ZnO、CuZnO 和 Ag@CuZnO 样品都具有抗菌性能。添加了 Ag NP 的样品的抗菌性能略有提高,但并不显著,这表明表现出抗菌活性的活性位点是 CuZnO 的价带空穴。最后,本研究揭示了光催化活性的优势并不总是有效的抗菌活性,因为表现光催化和抗菌特性的活性位点可能并不相同。
{"title":"Dual functionality for hydrogen production and antibacterial activity in Zn-deficient Cu0.1Zn0.9O photocatalyst loaded with Ag nanoparticles of various sizes","authors":"Hyunsub Shin, Sujeong Kim, Jaehun Lee, Harim Jeong, Sang Woo Joo, Chul-Tae Lee, Sun-Min Park, Misook Kang","doi":"10.1016/j.mtadv.2024.100469","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100469","url":null,"abstract":"This study aims to find an eco-friendly dual material to apply toward energy and antibacterial industry, and to identify their active sites. CuZnO nanoparticles (NPs) containing 10 % Cu ions into ZnO framework are synthesized using a facile hydrothermal method, and 10, 20, 30, or 40 nm-sized Ag NPs are loaded to obtain Ag@CuZnO particles. From the time-dependent increase in photocurrent density, it is confirmed that the Ag NPs has a photoelectron harvesting ability. Unlike ZnO and CuZnO, the Ag@CuZnO catalyst well splits water to generate hydrogen. Particularly, the catalyst loaded with 30 nm Ag NPs achieves the highest hydrogen production efficiency of 424.54 μmolg. This proves that the active sites generating hydrogen during water splitting are the Ag NP surfaces grafted onto the conduction band of the CuZnO particles. Contrastingly, antibacterial performances against are expressed in all samples of ZnO, CuZnO, and Ag@CuZnO. The antibacterial performance for the Ag NP-loaded sample slightly increases but it is not significant, indicating that the active site exhibiting the antibacterial activity is the hole of the valence band of CuZnO. In the end, this study revealed that the advantageous photocatalytic activity does not always express effective antibacterial activity because the active sites exhibiting photocatalytic and antibacterial properties may not be the same.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"139 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface modification of electrospun nitrogen-doped Ge@C fiber with highly porous NiCo2O4 layer as high-performance lithium-ion battery anode 电纺氮掺杂 Ge@C 纤维表面改性高孔隙率 NiCo2O4 层作为高性能锂离子电池负极
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-06 DOI: 10.1016/j.mtadv.2024.100472
Ariono Verdianto, Heechul Jung, Sang-Ok Kim

Elemental germanium (Ge) is considered a high-capacity anode material for lithium-ion batteries (LIBs). However, it suffers from severe capacity degradation and inherent material instability owing to inevitable volumetric changes during the alloying/dealloying reactions with lithium. In this study, we report a hierarchical architecture comprising Ge nanoparticles in electrospun carbon fibers (Ge@C) coated with an in situ grown NiCo2O4 (NCO) layer to enhance the structural stability and electrochemical reversibility of Ge. The Ge@C@NCO fibers possess unique features, including well-dispersed Ge in nitrogen-doped porous carbon network that serves as a conductive volumetric buffer. This configuration allows for effective volume accommodation and improved electronic conductivity. Moreover, the porous NCO contributed to enhanced reversible capacity and rapid ionic transfer during electrochemical reactions. As a result, the Ge@C@NCO anode exhibited an ultrahigh specific capacity of 981.7 mAh g−1 and excellent capacity retention over 200 cycles under a current density of 1 A g−1, indicating superior lithium storage properties compared to pure Ge. Additionally, it retained approximately 80 % of initial capacity after 300 cycles even at 5 A g−1, demonstrating fast charging capability. The outstanding performance of this hierarchical structure presents a new path for designing alloying-based anodes for high-energy-density LIBs.

元素锗(Ge)被认为是锂离子电池(LIB)的高容量负极材料。然而,由于在与锂的合金化/合金化反应过程中不可避免地会发生体积变化,因此它存在严重的容量衰减和固有的材料不稳定性。在本研究中,我们报告了一种由电纺碳纤维(Ge@C)中的 Ge 纳米颗粒组成的分层结构,该结构涂有原位生长的镍钴氧化物(NCO)层,可增强 Ge 的结构稳定性和电化学可逆性。Ge@C@NCO 纤维具有独特的特性,包括在掺氮多孔碳网络中良好分散的 Ge,该网络可作为导电体积缓冲器。这种结构可有效容纳体积并提高电子导电性。此外,多孔 NCO 还有助于增强电化学反应过程中的可逆容量和快速离子转移。因此,Ge@C@NCO 阳极表现出了 981.7 mAh g-1 的超高比容量,并且在电流密度为 1 A g-1 的条件下,经过 200 次循环后仍能保持极佳的容量,这表明其具有比纯 Ge 更优越的锂存储特性。此外,即使在 5 A g-1 的电流密度下,经过 300 次循环后,它仍能保持约 80% 的初始容量,显示了快速充电能力。这种分层结构的出色性能为设计基于合金的高能量密度锂离子电池阳极开辟了一条新路。
{"title":"Surface modification of electrospun nitrogen-doped Ge@C fiber with highly porous NiCo2O4 layer as high-performance lithium-ion battery anode","authors":"Ariono Verdianto, Heechul Jung, Sang-Ok Kim","doi":"10.1016/j.mtadv.2024.100472","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100472","url":null,"abstract":"<p>Elemental germanium (Ge) is considered a high-capacity anode material for lithium-ion batteries (LIBs). However, it suffers from severe capacity degradation and inherent material instability owing to inevitable volumetric changes during the alloying/dealloying reactions with lithium. In this study, we report a hierarchical architecture comprising Ge nanoparticles in electrospun carbon fibers (Ge@C) coated with an <em>in situ</em> grown NiCo<sub>2</sub>O<sub>4</sub> (NCO) layer to enhance the structural stability and electrochemical reversibility of Ge. The Ge@C@NCO fibers possess unique features, including well-dispersed Ge in nitrogen-doped porous carbon network that serves as a conductive volumetric buffer. This configuration allows for effective volume accommodation and improved electronic conductivity. Moreover, the porous NCO contributed to enhanced reversible capacity and rapid ionic transfer during electrochemical reactions. As a result, the Ge@C@NCO anode exhibited an ultrahigh specific capacity of 981.7 mAh g<sup>−1</sup> and excellent capacity retention over 200 cycles under a current density of 1 A g<sup>−1</sup>, indicating superior lithium storage properties compared to pure Ge. Additionally, it retained approximately 80 % of initial capacity after 300 cycles even at 5 A g<sup>−1</sup>, demonstrating fast charging capability. The outstanding performance of this hierarchical structure presents a new path for designing alloying-based anodes for high-energy-density LIBs.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"78 1 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive manufacturing of biomimetic lightweight silicon oxycarbide ceramics with high mechanical strength and low thermal conductivity 具有高机械强度和低导热性的生物仿生轻质碳化硅陶瓷的快速成型制造技术
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-02-06 DOI: 10.1016/j.mtadv.2024.100466
Zhuoqing Zhang, Jinghan Li, Yu Shi, Xiaokun Gu, Shaogang Wang, Rui Yang, Lei Cao, Xing Zhang

Thermal insulation is crucially important to the safety and reusability of aerospace vehicles. Fabrication of thermal insulation materials with light weight, high mechanical strength and low thermal conductivity remains challenging. In this study, porous polymer derived silicon oxycarbide (SiOC) ceramics with hierarchical structures mimicking cuttlebones were prepared through stereolithography additive manufacturing followed by pyrolysis. The compressive strength of SiOC ceramics with ridges (“R” structures) alongside the sinusoidal walls (“S” structures) (RS-SiOC, 13.37 ± 0.86 MPa for 7-RS-SiOC) mimicking those of cuttlebone was much higher than that of SiOC ceramics with just sinusoidal walls (S–SiOC, 8.43 ± 0.81 MPa), while the density of RS-SiOC with 7 ridges (7-RS-SiOC) and S–SiOC were 0.40 g/cm3 and 0.39 g/cm3, respectively. Our results revealed that the tailored “S” and “R” structures of biomimetic 7-RS-SiOC ceramics, together with the amorphous network of SiOC assembled in the layer-by-layer manner, rendered the high mechanical strength. In addition, the 7-RS-SiOC sample exhibited a low thermal conductivity of 0.12 W/(m·K) at room temperature. The back temperature of the 7-RS-SiOC sample was 179.5 °C when exposed to 800 °C for 1200 s, showing excellent thermal insulation capability. The state-of-the-art biomimetic design of lightweight SiOC ceramics likely offers a solution to high-performance thermal insulation for aerospace vehicles.

隔热材料对于航空航天飞行器的安全性和可重复使用性至关重要。制造重量轻、机械强度高、热导率低的隔热材料仍具有挑战性。本研究通过立体光刻增材制造法制备了多孔聚合物衍生碳化硅(SiOC)陶瓷,这种陶瓷具有模仿海螵蛸的分层结构,然后进行热解。具有脊("R "结构)和正弦曲线壁("S "结构)的碳氧化硅(SiOC)陶瓷的抗压强度(RS-SiOC,13.37 ± 0.7-RS-SiOC,13.37 ± 0.86 MPa)远高于仅有正弦壁的 SiOC 陶瓷(S-SiOC,8.43 ± 0.81 MPa),而具有 7 个脊的 RS-SiOC (7-RS-SiOC)和 S-SiOC 的密度分别为 0.40 g/cm3 和 0.39 g/cm3。我们的研究结果表明,生物仿生 7-RS-SiOC 陶瓷的定制 "S "和 "R "结构以及逐层组装的非晶网络 SiOC 使其具有很高的机械强度。此外,7-RS-SiOC 样品在室温下的热导率较低,仅为 0.12 W/(m-K)。当 7-RS-SiOC 样品暴露在 800 °C 的温度下 1200 秒时,其背面温度为 179.5 °C,显示出卓越的隔热能力。最先进的轻质 SiOC 陶瓷仿生设计为航空航天飞行器的高性能隔热提供了一种解决方案。
{"title":"Additive manufacturing of biomimetic lightweight silicon oxycarbide ceramics with high mechanical strength and low thermal conductivity","authors":"Zhuoqing Zhang, Jinghan Li, Yu Shi, Xiaokun Gu, Shaogang Wang, Rui Yang, Lei Cao, Xing Zhang","doi":"10.1016/j.mtadv.2024.100466","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100466","url":null,"abstract":"<p>Thermal insulation is crucially important to the safety and reusability of aerospace vehicles. Fabrication of thermal insulation materials with light weight, high mechanical strength and low thermal conductivity remains challenging. In this study, porous polymer derived silicon oxycarbide (SiOC) ceramics with hierarchical structures mimicking cuttlebones were prepared through stereolithography additive manufacturing followed by pyrolysis. The compressive strength of SiOC ceramics with ridges (“R” structures) alongside the sinusoidal walls (“S” structures) (RS-SiOC, 13.37 ± 0.86 MPa for 7-RS-SiOC) mimicking those of cuttlebone was much higher than that of SiOC ceramics with just sinusoidal walls (S–SiOC, 8.43 ± 0.81 MPa), while the density of RS-SiOC with 7 ridges (7-RS-SiOC) and S–SiOC were 0.40 g/cm<sup>3</sup> and 0.39 g/cm<sup>3</sup>, respectively. Our results revealed that the tailored “S” and “R” structures of biomimetic 7-RS-SiOC ceramics, together with the amorphous network of SiOC assembled in the layer-by-layer manner, rendered the high mechanical strength. In addition, the 7-RS-SiOC sample exhibited a low thermal conductivity of 0.12 W/(m·K) at room temperature. The back temperature of the 7-RS-SiOC sample was 179.5 °C when exposed to 800 °C for 1200 s, showing excellent thermal insulation capability. The state-of-the-art biomimetic design of lightweight SiOC ceramics likely offers a solution to high-performance thermal insulation for aerospace vehicles.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"64 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green growth of mixed valence manganese oxides on quasi-freestanding bilayer epitaxial graphene-silicon carbide substrates 在准自由双层外延石墨烯-碳化硅衬底上绿色生长混合价锰氧化物
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-26 DOI: 10.1016/j.mtadv.2024.100467
Michael Pedowitz, Daniel Lewis, Jennifer DeMell, Daniel J. Pennachio, Jenifer R. Hajzus, Rachael Myers-Ward, Soaram Kim, Kevin M. Daniels

Nanostructured manganese oxides (MnOx) have shown incredible promise in constructing next-generation energy storage and catalytic systems. However, it has proven challenging to integrate with other low-dimensional materials due to harsh deposition conditions and poor structural stability. Here, we report the deposition of layered manganese dioxide (δ-MnO2) on bilayer epitaxial graphene (QEG) using a simple three-step electrochemical process involving no harsh chemicals. Using this process we can synthesize a 50 nm thick H–MnO2 film in 1.25s. This synthetic birnessite is inherently water-stabilized, the first reported in the literature. We also confirm that this process does not cause structural damage to the QEG, as evidenced by the lack of D peak formation. This QEG heterostructure enhanced MnO2's redox active gas sensing, enabling room temperature detection of NH3 and NO2. We also report on transforming this δ-MnO2 to other MnOx compounds, Mn2O3 and Mn3O4, via mild annealing. This is confirmed by Raman spectroscopy of the films, which also confirms limited damage to the QEG substrate. To our knowledge, this is the first synthesis of Mn2O3 and Mn3O4 on pristine graphene substrates. Both methods demonstrate the potential of depositing and transforming multifunctional oxides on single-crystal graphene using QEG substrates, allowing for the formation of nanostructured heterostructures previously unseen. Additionally, the electrochemical nature of the deposition presents the ability to scale the process to the QEG wafer and adjust the solution to produce other powerful multifunctional oxides.

纳米结构锰氧化物(MnOx)在构建下一代能源存储和催化系统方面展现出了令人难以置信的前景。然而,由于苛刻的沉积条件和较差的结构稳定性,将其与其他低维材料集成具有挑战性。在此,我们报告了在双层外延石墨烯(QEG)上沉积层状二氧化锰(δ-MnO2)的过程,该过程采用简单的三步电化学工艺,不涉及刺激性化学物质。利用这一工艺,我们可以在 1.25 秒内合成出 50 nm 厚的 H-MnO2 薄膜。这种合成的桦烷石具有内在的水稳定性,这在文献中尚属首次报道。我们还证实,这一过程不会对 QEG 的结构造成破坏,没有 D 峰的形成就是证明。这种 QEG 异质结构增强了 MnO2 的氧化还原活性气体传感能力,实现了 NH3 和 NO2 的室温检测。我们还报告了通过温和退火将这种 δ-MnO2 转化为其他氧化锰化合物(Mn2O3 和 Mn3O4)的情况。薄膜的拉曼光谱证实了这一点,同时也证实了对 QEG 基底的破坏有限。据我们所知,这是首次在原始石墨烯基底上合成 Mn2O3 和 Mn3O4。这两种方法都证明了使用 QEG 基底在单晶石墨烯上沉积和转化多功能氧化物的潜力,从而可以形成以前从未见过的纳米异质结构。此外,沉积的电化学性质使其能够将工艺扩展到 QEG 晶圆,并调整溶液以生产其他功能强大的多功能氧化物。
{"title":"Green growth of mixed valence manganese oxides on quasi-freestanding bilayer epitaxial graphene-silicon carbide substrates","authors":"Michael Pedowitz, Daniel Lewis, Jennifer DeMell, Daniel J. Pennachio, Jenifer R. Hajzus, Rachael Myers-Ward, Soaram Kim, Kevin M. Daniels","doi":"10.1016/j.mtadv.2024.100467","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100467","url":null,"abstract":"<p>Nanostructured manganese oxides (MnO<sub>x</sub>) have shown incredible promise in constructing next-generation energy storage and catalytic systems. However, it has proven challenging to integrate with other low-dimensional materials due to harsh deposition conditions and poor structural stability. Here, we report the deposition of layered manganese dioxide (δ-MnO<sub>2</sub>) on bilayer epitaxial graphene (QEG) using a simple three-step electrochemical process involving no harsh chemicals. Using this process we can synthesize a 50 nm thick H–MnO<sub>2</sub> film in 1.25s. This synthetic birnessite is inherently water-stabilized, the first reported in the literature. We also confirm that this process does not cause structural damage to the QEG, as evidenced by the lack of D peak formation. This QEG heterostructure enhanced MnO<sub>2</sub>'s redox active gas sensing, enabling room temperature detection of NH<sub>3</sub> and NO<sub>2</sub>. We also report on transforming this δ-MnO<sub>2</sub> to other MnO<sub>x</sub> compounds, Mn<sub>2</sub>O<sub>3</sub> and Mn<sub>3</sub>O<sub>4</sub>, via mild annealing. This is confirmed by Raman spectroscopy of the films, which also confirms limited damage to the QEG substrate. To our knowledge, this is the first synthesis of Mn<sub>2</sub>O<sub>3</sub> and Mn<sub>3</sub>O<sub>4</sub> on pristine graphene substrates. Both methods demonstrate the potential of depositing and transforming multifunctional oxides on single-crystal graphene using QEG substrates, allowing for the formation of nanostructured heterostructures previously unseen. Additionally, the electrochemical nature of the deposition presents the ability to scale the process to the QEG wafer and adjust the solution to produce other powerful multifunctional oxides.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"59 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new class of porous silicon electrochemical transducers built from pyrolyzed polyfurfuryl alcohol 由热解聚糠醇制成的新型多孔硅电化学传感器
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-12 DOI: 10.1016/j.mtadv.2024.100464
Anandapadmanabhan A. Rajendran, Keying Guo, Alberto Alvarez-Fernandez, Thomas R. Gengenbach, Marina B. Velasco, Maximiliano J. Fornerod, Kandeel Shafique, Máté Füredi, Pilar Formentín, Hedieh Haji-Hashemi, Stefan Guldin, Nicolas H. Voelcker, Xavier Cetó, Beatriz Prieto-Simón

Carbon-based nanomaterials are key to developing high-performing electrochemical sensors with improved sensitivity and selectivity. Nonetheless, limitations in their fabrication and integration into devices often constrain their practical applications. Moreover, carbon nanomaterials-based electrochemical devices still face problems such as large background currents, poor stability, and slow kinetics. To advance towards a new class of carbon nanostructured electrochemical transducers, we propose the in-situ polymerization and carbonization of furfuryl alcohol (FA) on porous silicon (pSi) to produce a tailored and highly stable transducer. The thin layer of polyfurfuryl alcohol (PFA) that conformally coats the pSi scaffold transforms into nanoporous carbon when subjected to pyrolysis above 600 °C. The morphological and chemical properties of PFA-pSi were characterized by scanning electron microscopy, and Raman and X-ray photoelectron spectroscopies. Their stability and electrochemical performance were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in [Fe(CN)6]3-/4-, [Ru(NH3)6]2+/3+, and hydroquinone. PFA-pSi showed superior electrochemical performance compared to screen-printed carbon electrodes while also surpassing glassy carbon electrodes in specific aspects. Besides, PFA-pSi has the additional advantage of easy tuning of the electroactive surface area. To prove its potential for biosensing purposes, a DNA sensor based on quantifying the partial pore blockage of the pSi upon target hybridization was built on PFA-pSi. The sensor showed a limit of detection of 1.4 pM, outperforming other sensors based on the same sensing mechanism.

碳基纳米材料是开发具有更高灵敏度和选择性的高性能电化学传感器的关键。然而,碳基纳米材料在制造和集成到设备中的局限性往往会限制其实际应用。此外,基于碳纳米材料的电化学装置仍然面临着背景电流大、稳定性差和动力学速度慢等问题。为了推动新型碳纳米结构电化学换能器的发展,我们提出了在多孔硅(pSi)上对糠醇(FA)进行原位聚合和碳化,从而制备出一种量身定制且高度稳定的换能器。在 600 °C 以上的高温分解过程中,覆盖在多孔硅支架上的聚糠醇 (PFA) 薄层会转化为纳米多孔碳。扫描电子显微镜、拉曼光谱和 X 射线光电子能谱对 PFA-pSi 的形态和化学特性进行了表征。在[Fe(CN)6]3-/4-、[Ru(NH3)6]2+/3+和对苯二酚中,通过循环伏安法和电化学阻抗谱研究了它们的稳定性和电化学性能。与丝网印刷碳电极相比,PFA-pSi 显示出更优越的电化学性能,同时在某些方面还超过了玻璃碳电极。此外,PFA-pSi 还具有易于调节电活性表面积的优势。为了证明 PFA-pSi 在生物传感方面的潜力,我们在 PFA-pSi 上构建了一个 DNA 传感器,该传感器基于目标杂交时 pSi 部分孔隙堵塞情况的量化。该传感器的检测限为 1.4 pM,优于基于相同传感机制的其他传感器。
{"title":"A new class of porous silicon electrochemical transducers built from pyrolyzed polyfurfuryl alcohol","authors":"Anandapadmanabhan A. Rajendran, Keying Guo, Alberto Alvarez-Fernandez, Thomas R. Gengenbach, Marina B. Velasco, Maximiliano J. Fornerod, Kandeel Shafique, Máté Füredi, Pilar Formentín, Hedieh Haji-Hashemi, Stefan Guldin, Nicolas H. Voelcker, Xavier Cetó, Beatriz Prieto-Simón","doi":"10.1016/j.mtadv.2024.100464","DOIUrl":"https://doi.org/10.1016/j.mtadv.2024.100464","url":null,"abstract":"<p>Carbon-based nanomaterials are key to developing high-performing electrochemical sensors with improved sensitivity and selectivity. Nonetheless, limitations in their fabrication and integration into devices often constrain their practical applications. Moreover, carbon nanomaterials-based electrochemical devices still face problems such as large background currents, poor stability, and slow kinetics. To advance towards a new class of carbon nanostructured electrochemical transducers, we propose the in-situ polymerization and carbonization of furfuryl alcohol (FA) on porous silicon (pSi) to produce a tailored and highly stable transducer. The thin layer of polyfurfuryl alcohol (PFA) that conformally coats the pSi scaffold transforms into nanoporous carbon when subjected to pyrolysis above 600 °C. The morphological and chemical properties of PFA-pSi were characterized by scanning electron microscopy, and Raman and X-ray photoelectron spectroscopies. Their stability and electrochemical performance were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in [Fe(CN)<sub>6</sub>]<sup>3-/4-</sup>, [Ru(NH<sub>3</sub>)<sub>6</sub>]<sup>2+/3+</sup>, and hydroquinone. PFA-pSi showed superior electrochemical performance compared to screen-printed carbon electrodes while also surpassing glassy carbon electrodes in specific aspects. Besides, PFA-pSi has the additional advantage of easy tuning of the electroactive surface area. To prove its potential for biosensing purposes, a DNA sensor based on quantifying the partial pore blockage of the pSi upon target hybridization was built on PFA-pSi. The sensor showed a limit of detection of 1.4 pM, outperforming other sensors based on the same sensing mechanism.</p>","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"8 7 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139461569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy” [Mater. Today Adv., Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy, 15, (2022), 100276] 用于纳米药物诱导的癌症免疫疗法的工程金属及其复合物"[Mater.用于纳米药物诱导的癌症免疫疗法的工程金属及其复合物,15,(2022),100276)
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-04 DOI: 10.1016/j.mtadv.2023.100457
Yushu Wang, Bin Wang, Kao Li, Maosheng Wang, Haihua Xiao
Abstract not available
无摘要
{"title":"Corrigendum to “Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy” [Mater. Today Adv., Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy, 15, (2022), 100276]","authors":"Yushu Wang, Bin Wang, Kao Li, Maosheng Wang, Haihua Xiao","doi":"10.1016/j.mtadv.2023.100457","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100457","url":null,"abstract":"Abstract not available","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"79 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139093755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Bone marrow mesenchymal stem cells loaded into hydrogel/nanofiber composite scaffolds ameliorate ischemic brain injury” [Mater. Today Adv. 17, (March 2023)] 骨髓间充质干细胞载入水凝胶/纳米纤维复合支架可改善缺血性脑损伤》[Mater. Today Adv. 17, (March 2023)] 更正
IF 1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-01-03 DOI: 10.1016/j.mtadv.2023.100463
Yanhong Pei, Lifei Huang, Tong Wang, Qinhan Yao, Yanrong Sun, Yan Zhang, Xiaomei Yang, Jiliang Zhai, Lihua Qin, Jiajia Xue, Xing Wang, Hongquan Zhang, Junhao Yan
Abstract not available
无摘要
{"title":"Corrigendum to “Bone marrow mesenchymal stem cells loaded into hydrogel/nanofiber composite scaffolds ameliorate ischemic brain injury” [Mater. Today Adv. 17, (March 2023)]","authors":"Yanhong Pei, Lifei Huang, Tong Wang, Qinhan Yao, Yanrong Sun, Yan Zhang, Xiaomei Yang, Jiliang Zhai, Lihua Qin, Jiajia Xue, Xing Wang, Hongquan Zhang, Junhao Yan","doi":"10.1016/j.mtadv.2023.100463","DOIUrl":"https://doi.org/10.1016/j.mtadv.2023.100463","url":null,"abstract":"Abstract not available","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"8 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139078575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Materials Today Advances
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1