Yanmei Meng, Tingting Zhang, Jin Wei, Jinlai Zhang, Xulei Zhai
To solve the time-consuming and laborious problem of manual winding and unwinding water pipes by field workers during irrigation or pesticide spraying in agricultural production, an automatic pipe winding machine for winding and unwinding water pipes was designed. The guiding mechanism, pipe winding mechanism, and pipe arrangement mechanism of the pipe winding machine are designed, and the automatic deviation correction control method of pipe arrangement based on PID and the constant tension control method of pipe winding and unwinding is put forward, and the control system of the automatic pipe winding machine is developed. By making a prototype of an automatic pipe winding machine, the effects of pipe winding and unwinding and the constant tension control of the automatic winding machine are tested and analyzed. The test results show that under the condition of 4.0 km/h speed, the maximum angle error of the automatic pipe winding machine is 3.32°, the average absolute error is 0.95°, and the water pipes are arranged neatly and tightly. The maximum relative error of the water pipe tension is 9.3%, and the maximum relative error under the 0~4.0 km/h velocity step variable condition is 16.3%. The speed of the pipe winding and unwinding can adapt to the change of the vehicle’s speed automatically, and the tension of the pipe is within a reasonable range. The performance of the pipe arrangement and pipe coiling of the automatic pipe winding machine can meet the operating requirements.
{"title":"Design and experiments of an automatic pipe winding machine","authors":"Yanmei Meng, Tingting Zhang, Jin Wei, Jinlai Zhang, Xulei Zhai","doi":"10.4081/jae.2023.1429","DOIUrl":"https://doi.org/10.4081/jae.2023.1429","url":null,"abstract":"To solve the time-consuming and laborious problem of manual winding and unwinding water pipes by field workers during irrigation or pesticide spraying in agricultural production, an automatic pipe winding machine for winding and unwinding water pipes was designed. The guiding mechanism, pipe winding mechanism, and pipe arrangement mechanism of the pipe winding machine are designed, and the automatic deviation correction control method of pipe arrangement based on PID and the constant tension control method of pipe winding and unwinding is put forward, and the control system of the automatic pipe winding machine is developed. By making a prototype of an automatic pipe winding machine, the effects of pipe winding and unwinding and the constant tension control of the automatic winding machine are tested and analyzed. The test results show that under the condition of 4.0 km/h speed, the maximum angle error of the automatic pipe winding machine is 3.32°, the average absolute error is 0.95°, and the water pipes are arranged neatly and tightly. The maximum relative error of the water pipe tension is 9.3%, and the maximum relative error under the 0~4.0 km/h velocity step variable condition is 16.3%. The speed of the pipe winding and unwinding can adapt to the change of the vehicle’s speed automatically, and the tension of the pipe is within a reasonable range. The performance of the pipe arrangement and pipe coiling of the automatic pipe winding machine can meet the operating requirements.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"10 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89320758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Luis Morales-Reyes, H. Acosta-Mesa, E. Aquino-Bolaños, Socorro Herrera Meza, Aldo Márquez Grajales
Studying chemical components in food of natural origin allows us to understand their nutritional contents. However, nowadays, this analysis is performed using invasive methods that destroy the sample under study. These methods are also expensive and time-consuming. Computer vision is a non-invasive alternative to determine the nutritional contents through digital image processing to obtain the colour properties. This work employed a probability mass function (PMF) in colour spaces HSI (hue, saturation, intensity) and CIE L*a*b* (International Commission on Illumination) as inputs for a convolutional neural network (CNN) to estimate the anthocyanin contents in landraces of homogeneous colour. This proposal is called AnthEstNet (Anthocyanins Estimation Net). Before applying the CNN, a methodology was used to take digital images of the bean samples and extract their colourimetric properties represented by PMF. AnthEstNet was compared against regression methods and artificial neural networks (ANN) with different characterisation in the same colour spaces. The performance was measured using precision metrics. Results suggest that AnthEstNet presented a behaviour statistically equivalent to the invasive method results (pH differential method). For probabilistic representation in channels H and S, AnthEstNet obtained a precision value of 87.68% with a standard deviation of 10.95 in the test set of samples. As to root mean square error (RMSE) and R2, this configuration was 0.49 and 0.94, respectively. On the other hand, AnthEstNet, with probabilistic representations on channels a* and b* of the CIE L*a*b* colour model, reached a precision value of 87.49% with a standard deviation of 11.84, an RMSE value of 0.51, and an R2 value of 0.93.
{"title":"Anthocyanins estimation in homogeneous bean landrace (Phaseolus vulgaris L.) using probabilistic representation and convolutional neural networks","authors":"José Luis Morales-Reyes, H. Acosta-Mesa, E. Aquino-Bolaños, Socorro Herrera Meza, Aldo Márquez Grajales","doi":"10.4081/jae.2023.1421","DOIUrl":"https://doi.org/10.4081/jae.2023.1421","url":null,"abstract":"Studying chemical components in food of natural origin allows us to understand their nutritional contents. However, nowadays, this analysis is performed using invasive methods that destroy the sample under study. These methods are also expensive and time-consuming. Computer vision is a non-invasive alternative to determine the nutritional contents through digital image processing to obtain the colour properties. This work employed a probability mass function (PMF) in colour spaces HSI (hue, saturation, intensity) and CIE L*a*b* (International Commission on Illumination) as inputs for a convolutional neural network (CNN) to estimate the anthocyanin contents in landraces of homogeneous colour. This proposal is called AnthEstNet (Anthocyanins Estimation Net). Before applying the CNN, a methodology was used to take digital images of the bean samples and extract their colourimetric properties represented by PMF. AnthEstNet was compared against regression methods and artificial neural networks (ANN) with different characterisation in the same colour spaces. The performance was measured using precision metrics. Results suggest that AnthEstNet presented a behaviour statistically equivalent to the invasive method results (pH differential method). For probabilistic representation in channels H and S, AnthEstNet obtained a precision value of 87.68% with a standard deviation of 10.95 in the test set of samples. As to root mean square error (RMSE) and R2, this configuration was 0.49 and 0.94, respectively. On the other hand, AnthEstNet, with probabilistic representations on channels a* and b* of the CIE L*a*b* colour model, reached a precision value of 87.49% with a standard deviation of 11.84, an RMSE value of 0.51, and an R2 value of 0.93.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"10 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80036546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stanimir I Stoilov, S. Papandrea, G. Angelov, Delyan Oslekov, G. Zimbalatti, A. Proto
Salvage logging is increasing in Central Europe because of the growth of severe meteorological events, and timber harvesting in these conditions is challenging in terms of both productivity performances and safety of the operations. In recent years, with the increase of natural calamities, several researchers studied machinery productivity performances regarding salvage logging carried out by ground-based systems. In fact, a common post-disturbance management approach is salvage logging which consists of the widespread removal of damaged trees. In this research, system productivity and the cost of salvage logging are analysed in European beech stands affected by wet snow. The accretion of heavy wet snow poses the greatest risk to forests in the Northern Hemisphere. This type of snow attaches more effectively to tree crowns and branches when temperatures are close to freezing at the time of precipitation. As a result, trees may break or bend and may be uprooted when the soil is unfrozen. This study has been implemented to evaluate the productivity and cost-effectiveness of extraction in salvage logging deployed with a skidder in beech stands affected by two different types of wet snow damage. The results show that the productivity of the four-wheel-drive cable skidder, despite operating in salvage cutting with a removal intensity of 10%, is 14.73 m3·SMH–1, similar to skidder performances in ‘ordinary’ cuttings. Skidder’s productive time was 86% of the scheduled time, whereas the delays were due to organisational reasons, mechanical delays, and adverse weather conditions. The mean travel speed of the cable skidder obtained in this study is close to the results obtained from other studies on similar machines. The costs per unit are lower than effective cost consumptions for the other cable skidders and agricultural tractors, adapted for skidding operated in hardwood salvage logging. Therefore, under the given conditions, the operation of the fourwheel-drive cable skidder is viable from a silvicultural, technical, and economic point of view in the salvage operation logging.
{"title":"Productivity analysis and costs of wheel cable skidder during salvage logging in European beech stand","authors":"Stanimir I Stoilov, S. Papandrea, G. Angelov, Delyan Oslekov, G. Zimbalatti, A. Proto","doi":"10.4081/jae.2023.1419","DOIUrl":"https://doi.org/10.4081/jae.2023.1419","url":null,"abstract":"Salvage logging is increasing in Central Europe because of the growth of severe meteorological events, and timber harvesting in these conditions is challenging in terms of both productivity performances and safety of the operations. In recent years, with the increase of natural calamities, several researchers studied machinery productivity performances regarding salvage logging carried out by ground-based systems. In fact, a common post-disturbance management approach is salvage logging which consists of the widespread removal of damaged trees. In this research, system productivity and the cost of salvage logging are analysed in European beech stands affected by wet snow. The accretion of heavy wet snow poses the greatest risk to forests in the Northern Hemisphere. This type of snow attaches more effectively to tree crowns and branches when temperatures are close to freezing at the time of precipitation. As a result, trees may break or bend and may be uprooted when the soil is unfrozen. This study has been implemented to evaluate the productivity and cost-effectiveness of extraction in salvage logging deployed with a skidder in beech stands affected by two different types of wet snow damage. The results show that the productivity of the four-wheel-drive cable skidder, despite operating in salvage cutting with a removal intensity of 10%, is 14.73 m3·SMH–1, similar to skidder performances in ‘ordinary’ cuttings. Skidder’s productive time was 86% of the scheduled time, whereas the delays were due to organisational reasons, mechanical delays, and adverse weather conditions. The mean travel speed of the cable skidder obtained in this study is close to the results obtained from other studies on similar machines. The costs per unit are lower than effective cost consumptions for the other cable skidders and agricultural tractors, adapted for skidding operated in hardwood salvage logging. Therefore, under the given conditions, the operation of the fourwheel-drive cable skidder is viable from a silvicultural, technical, and economic point of view in the salvage operation logging.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"25 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89169608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Du, Cailing Liu, Changqing Liu, Qixin Sun, Shufa Chen
Discrete element numerical simulations can help researchers find potential problems in the design phase, shortening the development cycle and reducing costs. In the field of agricultural engineering, more and more researchers are using discrete element methods (DEM) to assist in designing and optimising equipment parameters. Model parameters calibration is a prerequisite for discrete element numerical calculations, and the angle of repose (AoR) is commonly used to calibrate the parameters. However, the measurement of AoR in DEM was not seriously considered in industrial or academic fields. In practice, AoR is measured manually, using 2D digital image processing or using a 3D scan. However, reliable and consistent measurements of AoR in DEM are rarely mentioned. This study suggests an accurate and consistent way to measure AoR in DEM using a novel method to read particle coordinate information directly from the data file; then, the AoR is calculated by linearly fitting the centre coordinates of the outermost particles. Influences of input variables on AoR acquisition are discussed through several examples using customised templates with known angles. Then a comparative study of the accuracy of the measurement of AoR in DEM and the reliability of the parameter calibration results by the manual measurement, 2D digital image processing, and algorithm proposed in this paper was conducted. In case studies with four seed materials, this method prevented the subjective selection of AoR, improved the identification accuracy, and increased the precision and accuracy of DEM calibration. In addition, the time consumption for obtaining AoR using the novel method for measurement is much less than that of 2D.
{"title":"A novel method for measurement of the angle of repose of granular seeds in discrete element methods","authors":"Xin Du, Cailing Liu, Changqing Liu, Qixin Sun, Shufa Chen","doi":"10.4081/jae.2023.1504","DOIUrl":"https://doi.org/10.4081/jae.2023.1504","url":null,"abstract":"Discrete element numerical simulations can help researchers find potential problems in the design phase, shortening the development cycle and reducing costs. In the field of agricultural engineering, more and more researchers are using discrete element methods (DEM) to assist in designing and optimising equipment parameters. Model parameters calibration is a prerequisite for discrete element numerical calculations, and the angle of repose (AoR) is commonly used to calibrate the parameters. However, the measurement of AoR in DEM was not seriously considered in industrial or academic fields. In practice, AoR is measured manually, using 2D digital image processing or using a 3D scan. However, reliable and consistent measurements of AoR in DEM are rarely mentioned. This study suggests an accurate and consistent way to measure AoR in DEM using a novel method to read particle coordinate information directly from the data file; then, the AoR is calculated by linearly fitting the centre coordinates of the outermost particles. Influences of input variables on AoR acquisition are discussed through several examples using customised templates with known angles. Then a comparative study of the accuracy of the measurement of AoR in DEM and the reliability of the parameter calibration results by the manual measurement, 2D digital image processing, and algorithm proposed in this paper was conducted. In case studies with four seed materials, this method prevented the subjective selection of AoR, improved the identification accuracy, and increased the precision and accuracy of DEM calibration. In addition, the time consumption for obtaining AoR using the novel method for measurement is much less than that of 2D.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"78 6 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85935702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the growth characteristics of the flowers and fruits of camellia in the same period, the vibrating camellia fruit picking machine needs to ensure the constant rotational speed of the vibrating hydraulic motor when the picking mechanism is operating, to achieve a constant vibration frequency, to ensure that the camellia fruit can smoothly fall off the branches through vibration. In contrast, the camellia fruit does not fall off. In this regard, this paper deduced the state space equation of the camellia fruit picking machine’s valve-controlled vibrating hydraulic motor system and designed a fuzzy wavelet neural network PID controller (FWNN PID controller) based on the traditional incremental PID control principle. Then the designed vibration picking manipulator control system was simulated under no-load, 5 s load conditions, and load start conditions with MATLAB/Simulink, a general PID controller and a fuzzy RBF neural network PID controller (FRBFNN PID controller) were used to contrast with it. The results show that the general PID controller has a slow response speed and poor robustness, while fuzzy neural network PID controllers (including FWNN PID controller and FRBFNN PID controller) have a fast response speed and strong robustness, which can well meet the requirements of a specific vibration frequency. Finally, a field test was carried out. The results show that the FWNN PID control is better than the FRBFNN PID control. Furthermore, the FWNN PID controller obviously reduced the drop rate of camellia flowers within 6% while ensuring the picking efficiency above 90%, which can well meet the needs of the camellia fruit picking operation.
{"title":"Fuzzy neural network PID control design of camellia fruit vibration picking manipulator","authors":"Ziyan Fan, Lijun Li, Zicheng Gao","doi":"10.4081/jae.2023.1466","DOIUrl":"https://doi.org/10.4081/jae.2023.1466","url":null,"abstract":"Due to the growth characteristics of the flowers and fruits of camellia in the same period, the vibrating camellia fruit picking machine needs to ensure the constant rotational speed of the vibrating hydraulic motor when the picking mechanism is operating, to achieve a constant vibration frequency, to ensure that the camellia fruit can smoothly fall off the branches through vibration. In contrast, the camellia fruit does not fall off. In this regard, this paper deduced the state space equation of the camellia fruit picking machine’s valve-controlled vibrating hydraulic motor system and designed a fuzzy wavelet neural network PID controller (FWNN PID controller) based on the traditional incremental PID control principle. Then the designed vibration picking manipulator control system was simulated under no-load, 5 s load conditions, and load start conditions with MATLAB/Simulink, a general PID controller and a fuzzy RBF neural network PID controller (FRBFNN PID controller) were used to contrast with it. The results show that the general PID controller has a slow response speed and poor robustness, while fuzzy neural network PID controllers (including FWNN PID controller and FRBFNN PID controller) have a fast response speed and strong robustness, which can well meet the requirements of a specific vibration frequency. Finally, a field test was carried out. The results show that the FWNN PID control is better than the FRBFNN PID control. Furthermore, the FWNN PID controller obviously reduced the drop rate of camellia flowers within 6% while ensuring the picking efficiency above 90%, which can well meet the needs of the camellia fruit picking operation.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"29 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74917917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sorghum seedling transplanting is an essential agricultural activity in Sub-Saharan Africa. However, conventional manual transplanting of sorghum is a time-consuming, labour-intensive, costly activity with a low transplanting rate, uneven plant distribution, and low degree of accuracy. In order to realize rapid and precise sorghum seedlings transplanting, a duckbill-type mechanism has been designed. This mechanism is a five-bar linkage consisting of two crankshafts, two connecting rods, and a duckbillshaped planter to improve the quality of transplanting operations. The study includes kinematic and synthesis analysis through MATLAB software, parts design, and motion analysis using SolidWorks software. After synthesis analysis using a genetic algorithm, the optimal length between the two cranks is 300 mm, the length of the upper crankshaft is 106 mm, the length of the connecting rod I is 169 mm, the length of the connecting rod II is 222 mm, and the length of the lower crankshaft is 67 mm. Furthermore, the speed and acceleration analysis show that the seedlings are planted with zero-speed operation to obtain a high perpendicularity qualification. The results show that the proposed planting mechanism meets the agronomic requirements of transplanted sorghum with a good transplanting rate.
{"title":"Design of a five-bar duckbill-type mechanism for sorghum transplanting","authors":"Aristide Timene, H. Djalo","doi":"10.4081/jae.2023.1473","DOIUrl":"https://doi.org/10.4081/jae.2023.1473","url":null,"abstract":"Sorghum seedling transplanting is an essential agricultural activity in Sub-Saharan Africa. However, conventional manual transplanting of sorghum is a time-consuming, labour-intensive, costly activity with a low transplanting rate, uneven plant distribution, and low degree of accuracy. In order to realize rapid and precise sorghum seedlings transplanting, a duckbill-type mechanism has been designed. This mechanism is a five-bar linkage consisting of two crankshafts, two connecting rods, and a duckbillshaped planter to improve the quality of transplanting operations. The study includes kinematic and synthesis analysis through MATLAB software, parts design, and motion analysis using SolidWorks software. After synthesis analysis using a genetic algorithm, the optimal length between the two cranks is 300 mm, the length of the upper crankshaft is 106 mm, the length of the connecting rod I is 169 mm, the length of the connecting rod II is 222 mm, and the length of the lower crankshaft is 67 mm. Furthermore, the speed and acceleration analysis show that the seedlings are planted with zero-speed operation to obtain a high perpendicularity qualification. The results show that the proposed planting mechanism meets the agronomic requirements of transplanted sorghum with a good transplanting rate.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"105 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79265358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Dwomoh, Xingye Zhu, Alexander Fordjour, Junping Liu, S. Yuan, Hong Li
The fluidic sprinkler was designed to have the prospect of a simple design, ease of construction, low energy consumption, and water saving. The present review focused on the fluidic sprinkler, compared the performance parameters of the fluidic sprinkler with the impact sprinkler, and highlighted the main challenges associated with the fluidic sprinkler. Even though the fluidic sprinkler compares quite well with the impact sprinkler, the review highlighted that the fluidic sprinkler appears to have more variability in application rate (0-1.5 mm/h) than the impact sprinkler (0-0.8 mm/h). The wetted radii were, on average, less than the impact sprinkler by 9.7, 9.3, 11.0, and 9.9% at 200, 250, 300, and 350 kPa operating pressures, respectively. Experiments on the fluidic sprinkler have mainly concentrated on the structural design of the fluidic component, water distribution profile, coefficient of uniformity, droplet size characterisation, and rotation uniformity, as well as the effect of different nozzle sizes on hydraulic performance under varying discharge and pressure conditions ranging from 100-500 kPa under indoor conditions. However, experimental studies on its performance in the field remain scanty. Statistical analysis of research papers published on the fluidic sprinkler indicates that less than 10% of the studies focused on the performance of the fluidic sprinkler on the field, and more than 90% on the design, structural and hydraulic performance under indoor conditions. Rotation stability of the fluidic sprinkler and testing with different sizes of the nozzle under low-pressure conditions on the field require further research to achieve energy and water saving through optimisation of the operating conditions.
{"title":"Structural design and performance characteristics of the fluidic sprinkler application technology for saving irrigation water: a review","authors":"F. Dwomoh, Xingye Zhu, Alexander Fordjour, Junping Liu, S. Yuan, Hong Li","doi":"10.4081/jae.2023.1452","DOIUrl":"https://doi.org/10.4081/jae.2023.1452","url":null,"abstract":"The fluidic sprinkler was designed to have the prospect of a simple design, ease of construction, low energy consumption, and water saving. The present review focused on the fluidic sprinkler, compared the performance parameters of the fluidic sprinkler with the impact sprinkler, and highlighted the main challenges associated with the fluidic sprinkler. Even though the fluidic sprinkler compares quite well with the impact sprinkler, the review highlighted that the fluidic sprinkler appears to have more variability in application rate (0-1.5 mm/h) than the impact sprinkler (0-0.8 mm/h). The wetted radii were, on average, less than the impact sprinkler by 9.7, 9.3, 11.0, and 9.9% at 200, 250, 300, and 350 kPa operating pressures, respectively. Experiments on the fluidic sprinkler have mainly concentrated on the structural design of the fluidic component, water distribution profile, coefficient of uniformity, droplet size characterisation, and rotation uniformity, as well as the effect of different nozzle sizes on hydraulic performance under varying discharge and pressure conditions ranging from 100-500 kPa under indoor conditions. However, experimental studies on its performance in the field remain scanty. Statistical analysis of research papers published on the fluidic sprinkler indicates that less than 10% of the studies focused on the performance of the fluidic sprinkler on the field, and more than 90% on the design, structural and hydraulic performance under indoor conditions. Rotation stability of the fluidic sprinkler and testing with different sizes of the nozzle under low-pressure conditions on the field require further research to achieve energy and water saving through optimisation of the operating conditions.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"52 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89320647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
So as to study the influence of speed factors on the stability of tractor automatic navigation system, combined with neural network control theory, the author proposed a dual-objective joint sliding mode control method based on lateral position deviation and heading angle deviation, using back propagation neural network to establish two-wheel tractor-path dynamics model and straight-line path tracking deviation model, the overall system simulation was carried out by using Matlab/Simulink, and the reliability of the control method was verified. The experimental results showed: when the tractor was tracked with the automatic control of linear path under the condition of the variable speed, the maximum deviation of the lateral position deviation was 12.7cm, and the average absolute deviation was kept within 4.88cm; the maximum deviation of the heading angle deviation was 5°, and the average absolute deviation was kept within 2°; the maximum value of the actual rotation angle was 3.13°, and the standard deviation of the fluctuation was within 0.84°. Under the condition of constant speed and variable speed, using the joint sliding mode control method designed by the author, the dual-objective joint control of lateral position deviation and heading angle deviation could be realized, the controlled overshoot was small, the controlled deviation was small after reaching a stable state, and the adaptability to speed factors was strong, which basically could meet the accuracy requirements of farmland operations.
{"title":"Agricultural machinery photoelectric automatic navigation control system based on back propagation neural network","authors":"Yerong Sun, Kechuan Yi","doi":"10.4081/jae.2023.1530","DOIUrl":"https://doi.org/10.4081/jae.2023.1530","url":null,"abstract":"So as to study the influence of speed factors on the stability of tractor automatic navigation system, combined with neural network control theory, the author proposed a dual-objective joint sliding mode control method based on lateral position deviation and heading angle deviation, using back propagation neural network to establish two-wheel tractor-path dynamics model and straight-line path tracking deviation model, the overall system simulation was carried out by using Matlab/Simulink, and the reliability of the control method was verified. The experimental results showed: when the tractor was tracked with the automatic control of linear path under the condition of the variable speed, the maximum deviation of the lateral position deviation was 12.7cm, and the average absolute deviation was kept within 4.88cm; the maximum deviation of the heading angle deviation was 5°, and the average absolute deviation was kept within 2°; the maximum value of the actual rotation angle was 3.13°, and the standard deviation of the fluctuation was within 0.84°. Under the condition of constant speed and variable speed, using the joint sliding mode control method designed by the author, the dual-objective joint control of lateral position deviation and heading angle deviation could be realized, the controlled overshoot was small, the controlled deviation was small after reaching a stable state, and the adaptability to speed factors was strong, which basically could meet the accuracy requirements of farmland operations.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"30 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81174712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lignocellulosic biomass is a rich source of bioactive compounds that are extracted industrially from different parts of the plant. The extraction process generates residues that can contain from 75% to 95% of the raw material depending on the species. Among the many potential products of post-extraction residue’ processing there is biochar. The research objective was: i) to evaluate the parameters of biochars derived from post-extraction bark, wood and bark and wood of four lignocellulosic species; and ii) to discuss the parameters in the context of biochar functionality as an energy carrier and soil improver. The residues were subjected to pyrolysis at the three temperatures 170, 270, and 370°C, which correspond to the initiation of carbonization, and two biochars that differ in the decomposition rates of hemicelluloses, cellulose and lignin. On average, biochars had a high energy value owing to the increased content of the total and fixed carbon and calorific value by 77.0-78.4% DM, 64.6-66.7% DM and 25.8-30.1 MJ kg–1, respectively. The higher quantity of ash after processing of bark residues than wood residues implicates a lower energy value but at the same time the ash obtained is a better source of mineral compounds in the context of soil fertilization. Concerning the use of biochar as a soil improver, the biochars demonstrated lower H/C and O/C molar ratios, that indicate raised stability and resistance to the geochemical decomposition in soil. It was proven that the bark-based biochars had much higher concentrations of micro- and macronutrients as well as a higher pH, while processed wood fractions resulted in higher concentrations of total carbon and fixed carbon in biochar. The research results suggest that lignocellulose biomass extraction residues can serve as a valuable input material for production of biochar.
{"title":"Solid tailings after supercritical CO2 extraction of lignocellulosic biomass as a source of quality biochar for energetic use and as soil improvement","authors":"W. Radawiec, J. Gołaszewski, B. Kalisz","doi":"10.4081/jae.2023.1344","DOIUrl":"https://doi.org/10.4081/jae.2023.1344","url":null,"abstract":"Lignocellulosic biomass is a rich source of bioactive compounds that are extracted industrially from different parts of the plant. The extraction process generates residues that can contain from 75% to 95% of the raw material depending on the species. Among the many potential products of post-extraction residue’ processing there is biochar. The research objective was: i) to evaluate the parameters of biochars derived from post-extraction bark, wood and bark and wood of four lignocellulosic species; and ii) to discuss the parameters in the context of biochar functionality as an energy carrier and soil improver. The residues were subjected to pyrolysis at the three temperatures 170, 270, and 370°C, which correspond to the initiation of carbonization, and two biochars that differ in the decomposition rates of hemicelluloses, cellulose and lignin. On average, biochars had a high energy value owing to the increased content of the total and fixed carbon and calorific value by 77.0-78.4% DM, 64.6-66.7% DM and 25.8-30.1 MJ kg–1, respectively. The higher quantity of ash after processing of bark residues than wood residues implicates a lower energy value but at the same time the ash obtained is a better source of mineral compounds in the context of soil fertilization. Concerning the use of biochar as a soil improver, the biochars demonstrated lower H/C and O/C molar ratios, that indicate raised stability and resistance to the geochemical decomposition in soil. It was proven that the bark-based biochars had much higher concentrations of micro- and macronutrients as well as a higher pH, while processed wood fractions resulted in higher concentrations of total carbon and fixed carbon in biochar. The research results suggest that lignocellulose biomass extraction residues can serve as a valuable input material for production of biochar.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"12 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81913469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiang-hua Zhao, Tingyu Zhu, Zhichao Qiu, Tao Li, Guoliang Wang, Zhiwei Li, Huiling Du
Leaf pigment content can reflect the nutrient elements content of the cultivation medium indirectly. To rapidly and accurately predict the pigment content of tomato leaves, chlorophyll a, chlorophyll b, chlorophyll and carotenoid were extracted from leaves of tomato seedlings cultured at different nitrogen concentrations. The visible/near-infrared(VIS/NIR) hyperspectral imaging (HSI) non-destructive measurement technology, 430-900 nm and 950-1650 nm, with total variables of 794, was used to obtain the reflection spectra of leaves. An improved strategy of the sparrow search algorithm (SSA) based on Logistic chaotic mapping was proposed and optimized the back propagation (BP) neural network to predict the pigment content of leaves. Different pretreatment methods were used to effectively improve the prediction accuracy of the model. The results showed that when the nitrogen concentration in the nutrient solution was 302.84 mg·L-1, the pigment content of leaves reached the maximum. Meanwhile, the inhibition effect of high concentration was much stronger than that of low concentration. To address the problem that the SSA is prone to get in premature convergence due to the reduction of population diversity at the end of the iteration, the initialization of the SSA population by Logistic chaotic mapping improves the initial solution quality, convergence speed and search capacity. The root mean squared error (RMSE), coefficient of determination (R2) and relative percent deviation (RPD) of chlorophyll a were 0.77, 0.77 and 2.08, respectively. The RMSE, R2 and RPD of chlorophyll b were 0.30, 0.66 and 1.71, respectively. The RMSE, R2 and RPD of chlorophyll were 0.88, 0.81 and 2.28, respectively. The RMSE, R2 and RPD of carotenoid were 0.14, 0.75 and 2.00, respectively. The HSI technology combined with machine learning algorithms can achieve rapid and accurate prediction of crop physiological information, providing data support for the precise management of fertilization in facility agriculture, which is conducive to improving the quality and output of tomatoes.
{"title":"Hyperspectral prediction of pigment content in tomato leaves based on logistic-optimized sparrow search algorithm and back propagation neural network","authors":"Jiang-hua Zhao, Tingyu Zhu, Zhichao Qiu, Tao Li, Guoliang Wang, Zhiwei Li, Huiling Du","doi":"10.4081/jae.2023.1528","DOIUrl":"https://doi.org/10.4081/jae.2023.1528","url":null,"abstract":"Leaf pigment content can reflect the nutrient elements content of the cultivation medium indirectly. To rapidly and accurately predict the pigment content of tomato leaves, chlorophyll a, chlorophyll b, chlorophyll and carotenoid were extracted from leaves of tomato seedlings cultured at different nitrogen concentrations. The visible/near-infrared(VIS/NIR) hyperspectral imaging (HSI) non-destructive measurement technology, 430-900 nm and 950-1650 nm, with total variables of 794, was used to obtain the reflection spectra of leaves. An improved strategy of the sparrow search algorithm (SSA) based on Logistic chaotic mapping was proposed and optimized the back propagation (BP) neural network to predict the pigment content of leaves. Different pretreatment methods were used to effectively improve the prediction accuracy of the model. The results showed that when the nitrogen concentration in the nutrient solution was 302.84 mg·L-1, the pigment content of leaves reached the maximum. Meanwhile, the inhibition effect of high concentration was much stronger than that of low concentration. To address the problem that the SSA is prone to get in premature convergence due to the reduction of population diversity at the end of the iteration, the initialization of the SSA population by Logistic chaotic mapping improves the initial solution quality, convergence speed and search capacity. The root mean squared error (RMSE), coefficient of determination (R2) and relative percent deviation (RPD) of chlorophyll a were 0.77, 0.77 and 2.08, respectively. The RMSE, R2 and RPD of chlorophyll b were 0.30, 0.66 and 1.71, respectively. The RMSE, R2 and RPD of chlorophyll were 0.88, 0.81 and 2.28, respectively. The RMSE, R2 and RPD of carotenoid were 0.14, 0.75 and 2.00, respectively. The HSI technology combined with machine learning algorithms can achieve rapid and accurate prediction of crop physiological information, providing data support for the precise management of fertilization in facility agriculture, which is conducive to improving the quality and output of tomatoes.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"314 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78612245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}